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Abstract. An inverse-conjugate composition of a positive integer m is an ordered parti-
tion of m whose conjugate coincides with its reversal. In this paper we consider inverse-
conjugate compositions in which the part sizes do not exceed a given integer k. It is
proved that the number of such inverse-conjugate compositions of 2n − 1 is equal to
2F(k−1)

n , where F(k)
n is a Fibonacci k-step number. We also give several connections with

other types of compositions, and obtain some analogues of classical combinatorial iden-
tities.

1. Introduction

A composition of a positive integer n is a representation of n as a sequence of pos-
itive integers called parts which sum to n. For example, the compositions of 4 are:
(4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2),
(1, 1, 1, 1). It is known that there are 2n−1 unrestricted compositions of n (see for exam-
ple [2]). The graphical representation of a composition, called a zig-zag graph, resembles
the partition Ferrers graph except that the first dot of each part is aligned with the last
part of its predecessor. For example, the zig-zag graph of the composition (6, 3, 1, 2, 2) is
shown in Figure 1.

• • • • • •
• • •

•
• •
• •

Figure 1

The conjugate of a composition is obtained by reading its graph by columns from
left to right. Thus Figure 1 gives the conjugate of the composition (6, 3, 1, 2, 2) as
(1, 1, 1, 1, 1, 2, 1, 3, 2, 1).

Let C denote a composition of n. A k-composition is a composition with k parts, i.e.
C = (c1, c2, ..., ck). The conjugate of C is denoted by C′ and the inverse of C is given by

Date: October 18, 2017.
1991 Mathematics Subject Classification. 05A19, 05A15, 05A17.
Key words and phrases. composition, inverse-conjugate, self-inverse, Fibonacci number, combinatorial

identity.
†This work was supported by the National Science Foundation of China (Grant No. 11461020).
‡Based on work supported by the National Research Foundation of South Africa grant number 80860.

1



2 Y. GUO AND A. O. MUNAGI

C = (ck, ck−1, ..., c1). C is called self-inverse if C = C, and inverse-conjugate if C
′
= C. For

example, (2, 1, 3, 1) is an inverse-conjugate composition of 7.
Inverse-conjugate compositions have been studied by many researchers (see for ex-

ample [5, 6, 4, 1]). It is known that these compositions are defined for only odd weights,
and that there are 2n inverse-conjugate compositions of 2n− 1. (Note: ‘weight’ means
‘positive integer’).

We will consider inverse-conjugate compositions with parts of size not exceeding a
fixed integer k > 0. Heubach-Mansour investigated a more general set of compositions
in [3].

Recently Guo [1] imposed parity restrictions on inverse-conjugate compositions and
proved that inverse-conjugate compositions using only odd parts exist for odd numbers
of the type 4k + 1 but not 4k + 3. He found that the number of inverse-conjugate
compositions of 4k + 1 is given by 2k, k > 0.

In 1975, Hoggatt-Bicknell [7] studied ordinary compositions with parts ≤ k, and
obtained the following result (also [2, p. 72]).

Theorem 1.1. Let Ck(n) be the number of compositions of a positive integer n using only the
parts 1, 2, . . . , k. Then

(1) Ck(n) = F(k)
n+1,

where F(n)
r is the Fibonacci n-step number [8, 2] (see Equation (2) below).

In Section 2, we obtain a general recurrence relation (Theorem 2.3), and an explicit
formula for the number of inverse-conjugate compositions of 2n − 1 with parts ≤ k
in terms of the Fibonacci n-step number (Corollary 2.5). This is followed by proofs
of the analogues of two classical identities inspired by the works of P. A. MacMahon
(Theorems 2.7 and 2.10). Then in Section 3 we discuss an interesting combinatorial
identity obtained by reversing the viewpoint of the main identity in the previous section
(Theorem 3.1).

2. Inverse-conjugate compositions

We first collect few known results that will be used later.
The Fibonacci n-step numbers F(n)

r extend the ordinary Fibonacci numbers and are
defined for any positive integer n, by

F(n)
r = 0 for r ≤ 0, F(n)

1 = F(n)
2 = 1,

(2) F(n)
r =

n

∑
i=1

F(n)
r−i , r > 2.

Note that the case n = 1 gives the sequence of ones, F(1)
r : 1, 1, 1, . . . while the case

n = 2 gives the Fibonacci numbers, that is (F(2)
r = Fr),

F1 = F2 = 1, Fr = Fr−1 + Fr−2, r > 2.
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It is not hard to deduce the generating function

(3)
∞

∑
n=1

F(n)
r xn =

x
1− x− x2 − · · · − xn .

Let A = (a1, a2, ..., ai) and B = (b1, b2, ..., bj) be compositions. The concatenation of
the parts of A and B is defined by A

∣∣B = (a1, a2, ..., ai, b1, b2,
..., bj). In particular for a nonnegative integer c, we have A

∣∣(c) = (A, c) and (c)
∣∣A =

(c, A).
The join of A and B is defined by A ] B = (a1, a2, ..., ai + b1, b2, ..., bj).

The following results may be found in [5].

Lemma 2.1. An inverse-conjugate composition C (or its inverse) has the form:

(4) C = (1br−1, b1, 1br−1−2, b2, 1br−2−2, b3, . . . , br−1, 1b1−2, br), bi ≥ 2.

Lemma 2.2. If C = (c1, . . . , ck) is an inverse-conjugate composition of n = 2k− 1 > 1, or its
inverse, then there is an index j such that c1 + · · ·+ cj = k− 1 and cj+1 + · · ·+ ck = k with
cj+1 > 1.

Moreover,

(5) (c1, . . . , cj) = (cj+1 − 1, cj+2, . . . , ck)
′

Thus C can be written in the form

(6) C = A|(1) ] B such that B′ = A,

where A and B are generally different compositions of k− 1.

As our first new result we present a fundamental recurrence relation.

Theorem 2.3. Let ICk(N) be the number of inverse-conjugate compositions of N into parts of
size ≤ k. Then

(7) ICk(2n− 1) =
k−1

∑
j=1

ICk(2(n− j)− 1), n > k,

with ICk(1) = 1 and ICk(2t− 1) = 2t−1, t = 2, . . . , k.

Proof. Let N > 1 be an odd integer. Then from (4) a composition C enumerated by
ICk(N) has the form

C = (1br−1, b1, 1br−1−2, b2, . . . , br−1, 1b1−2, br), 2 ≤ bi ≤ k.
We can obtain a composition T enumerated by ICk(N − 2br + 2) by deleting the first
br − 1 copies of 1 and replacing the last part br with 1:

C −→ (b1, 1br−1−2, b2, . . . , br−1, 1b1−2, 1) = T.

If we begin with C, we may apply a similar transformation to obtain T.
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Conversely, let T be a composition enumerated by ICk(N − 2b + 2), b ≥ 2. Then if
the first part of T is 1, we create a new first part b by adding the 1 to b− 1, and insert
b− 1 copies of 1 after the last big part. The resulting composition has first part > 1 and
is clearly enumerated by ICk(N). If the first part of T is greater than 1, we insert b− 1
copies of 1 on the left of the first part, and create a new last part by adding the previous
last part 1 to b− 1. This produces a composition enumerated by ICk(N) having first
part 1.

The range of b, that is, 2 ≤ b ≤ k, implies that
ICk(N) = ICk(N − 2) + ICk(N − 4) + · · ·+ ICk(N − 2b + 2) + · · ·

+ ICk(N − 2(k− 1)),
which gives the recurrence (7) on putting N = 2n− 1.

The initial values follow from the fact that every inverse-conjugate composition of
2t− 1, 1 ≤ t ≤ k, has all parts ≤ k. Since the number of inverse-conjugate compositions
of 2t− 1 is known to be 2t−1, we have ICk(2t− 1) = 2t−1. �

When k = 2 in Theorem 2.3, we obtain IC2(1) = 1 and IC2(2n− 1), n > 1.
When k = 3, the theorem reduces to

IC3(2n + 1) = IC3(2n− 1) + IC3(2n− 3), n > 2.

with IC3(1) = 1, IC3(3) = 2, IC3(5) = 4.
We give some values of ICk(2n− 1) for small n in Table 1.

Observe the interesting relation ICk(2k + 1)− ICk(2k− 1) = 2k−1 − 2, k ≥ 3.

2n− 1 1 3 5 7 9 11 13 15 17 19 21 23
IC1(2n− 1) 1 1 1 1 1 1 1 1 1 1 1 1
IC2(2n− 1) 1 2 2 2 2 2 2 2 2 2 2 2
IC3(2n− 1) 1 2 4 6 10 16 26 42 68 110 178 288
IC4(2n− 1) 1 2 4 8 14 26 48 88 162 298 548 1008
IC5(2n− 1) 1 2 4 8 16 30 58 112 216 416 802 1546
IC6(2n− 1) 1 2 4 8 16 32 62 122 240 472 928 1824
IC7(2n− 1) 1 2 4 8 16 32 64 126 250 496 984 1952
IC8(2n− 1) 1 2 4 8 16 32 64 128 254 506 1008 2008
IC9(2n− 1) 1 2 4 8 16 32 64 128 256 510 1018 2032

Table 1. Some values of ICk(2n− 1)

The following result may be deduced from Theorem 2.3.

Corollary 2.4. The generating function for the number of inverse-conjugate compositions of
2n− 1 with parts of size ≤ k is given by

∞

∑
n=1

ICk(2n− 1)xn =
x(1 + x + x2 + · · ·+ xk−1)

1− x− x2 − · · · − xk−1 .
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From Corollary 2.4 and Equation (3) we obtain the following enumeration result.

Corollary 2.5. We have

(8) ICk(2n− 1) = 2F(k−1)
n , n ≥ k− 1.

In particular the following simple formulas hold:
IC3(2n− 1) = 2Fn, n > 1.
IC4(2n− 1) = 2Tn, n > 2,

where Tn = F(3)
n is a Tribonacci number.

From Theorem 1.1 and (8) we easily obtain the following relation.

Corollary 2.6. We have

ICk+1(2n + 1) = 2Ck(n), n ≥ 1.

The fact that inverse-conjugate compositions of 2n− 1 are equinumerous with unre-
stricted compositions of n is implicit in MacMahon’s classic text [4]. Here we obtain
an analogous relation between certain compositions of n with parts ≤ k and inverse-
conjugate compositions of 2n− 1.

Theorem 2.7. Let CCk(n) be the number of compositions C of n when the parts of C and the
parts of C′ are ≤ k. Then

ICk(2n− 1) = CCk(n), n > 1.

Proof. Using Lemma 2.2, it may be deduced that every inverse-conjugate composition
C = (c1, . . . , cn) of 2n− 1 > 1 having parts ≤ k fulfills either of the following pairs of
properties (see also [6]):

(1a) c1 + · · ·+ cj = n− 1 and cj+1 + · · ·+ cn = n with cj+1 > 1, and

(1b) (c1, . . . , cj, 1)
′
= (cj+1, . . . , cn).

(2a) c1 + · · ·+ cj = n and cj+1 + · · ·+ cn = n− 1 with cj > 1, and

(2b) (c1, . . . , cj−1, cj − 1)
′
= (cj+1, . . . , cn).

We describe a bijection θ between the sets of compositions enumerated by ICk(2n− 1)
and CCk(n).

For each inverse-conjugate composition C satisfying (1a), define B = θ(C) to be the
composition of n given by (c1, c2, · · · , cj, 1), and for each satisfying (2a) define B = θ(C)
to be the composition of n given by (c1, c2, · · · , cj), which is already a composition of n
with parts ≤ k.
Since B

′
= (cj+1, cj+2, · · · , cn) or B

′
= (1, cj+1, cj+2, · · · , cn), we see that B

′
also has parts

≤ k.
Conversely, θ−1(B) is obtained for any composition B enumerated by CCk(n) by

extending it to a unique inverse-conjugate composition of 2n− 1 using property (1b)
or (2b) depending on whether the last part of B is 1 or > 1. �
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Example 2.8. Let n = 4 and k = 3. Then the corresponding relations between the relevant
compositions of 7 and 4 are as follows.

(2, 1, 3, 1)←→ (2, 1, 1), (1, 3, 1, 2)←→ (1, 3),
(3, 2, 1, 1)←→ (3, 1), (1, 1, 2, 3)←→ (1, 1, 2),
(2, 2, 2, 1)←→ (2, 2), (1, 2, 2, 2)←→ (1, 2, 1).

We recall a classical combinatorial identity of MacMahon [4]. Since the algebraic
proof plays an important role in the proof of the next theorem we summarize it below.

Theorem 2.9. (MacMahon) The number of inverse-conjugate compositions of an odd integer
N > 1 equals the number of compositions of N which are self-inverse.

Proof. This version of the proof first appeared in [5]. Let N = 2n− 1, n > 1 and denote
the set of objects enumerated by a function f (n) by { f (n)}. Let the quantities in the
theorem be denoted respectively by IC(2n− 1) and SI(2n− 1), so that {IC(2n− 1)}
and {SI(2n− 1)} represent the enumerated sets.

We describe a bijection α : {IC(2n− 1)} → {SI(2n− 1)} using Lemma 2.2 as follows.
If C ∈ {IC(2n− 1)}, then one can write C = A|(1) ] B or C = A ] (1)|B for certain
compositions of n− 1 satisfying B′ = A.

In the first case we use (5) to get α(C) = A|[(1)] B]′, which is a member of {SI(2n−
1)} of the type A|(1)|A.
The second case, C = A] (1)|B, implies that there is a part v ≥ 2 such that C = X|(v)|B,
where the weight of X is less than n− 1 and B is a composition of n− 1. Split off 1
from v and write C = (X, v− 1) ] (1, B). Now set α(C) = (X, v− 1) ] (1, B)′, which is
a member of {SI(2n− 1)} of the type Y|(d)|Y, with d an odd integer > 1

Conversely, if T ∈ {SI(2n− 1)}, then T = A|(d)|A, where A is a composition with
weight < n.
If d = 1, then T = A|(1)|A = A|(1, A). Now set α−1(T) = A|(1, A)′ which is a member
of {IC(2n− 1)} of type A|(1) ] B.
If d > 1, then we write T = (A, d−1

2 )] ( d+1
2 , A). Now set α−1(T) = (A, d−1

2 )] ( d+1
2 , A)′

which is a member of {IC(2n− 1)} of type A ] (1)|B.
�

The next result asserts an analogous identity between the number of inverse-conjugate
compositions and the number of self-inverse compositions with parts ≤ k.

Theorem 2.10. Let SIk(N) be the number of self-inverse compositions of N when only parts of
size ≤ k are allowed in both a composition and its conjugate. Then

(9) ICk(2n− 1) = SIk(2n− 1) + SIk(2n− k), n > 1.

Proof. We invoke the bijection α used in the proof of Theorem 2.9. Let αk be the re-
striction of α to {ICk(2n − 1)}. Then we notice that a self-inverse composition T ∈
αk({ICk(2n − 1)}) = Im(αk) may have a middle part > k or contain at least k − 1
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copies of 1 in the center. This implies that such T /∈ {SIk(2n − 1)}. (Note that if T
contains ≥ k− 1 copies of 1 in the center, then T′ has a middle part > k).

We remark that the middle part of T = B|(d)|B is an odd integer satisfying 1 ≤ d ≤
2k− 1. To see this we refer to the definition of α.
The case d = 1 is clearly accounted for by pre-images of the form A|(1) ] B.
But when d > 1, the pre-image of T has the form (a1, . . . , aj) ] (1)|(a1, . . . , aj)′, where
1 ≤ aj ≤ k− 1. Since T = (a1, . . . , aj) ] (1, (a1, . . . , aj)′ )

′ we deduce that d = 2aj + 1.
Thus 1 ≤ aj ≤ k− 1 translates to 3 ≤ d ≤ 2k− 1 as required.

Thus the image set Im(αk) splits into two disjoint subsets, namely
(i) {SIk(2n− 1)}, the set of compositions enumerated by SIk(2n− 1);
(ii) V(2n− 1) := Im(αk) \ {SIk(2n− 1)}.

It remains to obtain the cardinality of V(2n− 1). We claim that
|V(2n− 1)| = SIk(2n− k).

Note that a composition T ∈ V(2n− 1) has the following property:
(iia) T has a middle part > k and all other parts ≤ k. There are at most k − 2 copies
of 1 between two consecutive parts > 1 elsewhere (with possible exception of initial or
final string of 1’s which may have up to k− 1 copies).

or
(iib) T contains at least k− 1 copies of 1 at the center and all other parts ≤ k. There are
at most k− 2 copies of 1 between two consecutive parts > 1 elsewhere (with possible
exception of initial or final string of 1’s which may have up to k− 1 copies).

Define a bijection

β : Im(αk) −→ {SIk(2n− 1)} ∪ {SIk(2n− k)}.
If T ∈ {SIk(2n− 1)} ⊂ Im(αk), then β(T) = T.
But if T ∈ V(2n− 1), then the image is obtained as follows.
If property (iia) holds, then T = (c1, . . . , cs, d, cs, . . . , c1), d ≥ k + 1, and

β(T) = (c1, . . . , cs, d− k + 1, cs, . . . , c1).

If property (iib) holds, then T = (c1, . . . , cs, 1 f , cs, . . . , c1), cs > 1, f ≥ k− 1, and

β(T) = (c1, . . . , cs, 1 f−k+1, cs, . . . , c1).

The action of β on T is to deduct k − 1 from a middle part d > k or remove k − 1
copies of 1 from the center, where necessary. So β(T) ∈ {ICk(2n − k)} whenever
T ∈ V(2n− 1). This mapping is clearly reversible since d− k + 1 ≥ 3 or f − k + 1 ≥ 1
when k is odd, and d− k + 1 ≥ 2 or f − k + 1 ≥ 0 when k is even. Thus β is indeed a
bijection. Hence |V(2n− 1)| = ICk(2n− k).

Lastly the identity (9) is established via a bijection consisting of the composition of
the two bijections αk and β, that is

βαk : {ICk(2n− 1)} −→ {SIk(2n− 1)} ∪ {SIk(2n− k)}.
�
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Example 2.11. The full correspondence βαk is illustrated in Table 2 for 2n − 1 = 7 when
k = 3, and k = 4.

{IC3(7)}
α3→ Im(α3)

β→ {SI3(7)} {SI3(5)}
(1,1,2,3) 7→ (1,1,3,1,1) 7→ (1,1,3,1,1)
(1,2,2,2) 7→ (1,2,1,2,1) 7→ (1,2,1,2,1)
(1,3,1,2) 7→ (1,5,1) 7→ (1,3,1)
(2,1,3,1) 7→ (2,1,1,1,2) 7→ (2,1,2)
(2,2,2,1) 7→ (2,3,2) 7→ (2,3,2)
(3,2,1,1) 7→ (3,1,3) 7→ (3,1,3)

{IC4(7)}
α4→ Im(α4)

β→ {SI4(7)} {SI4(4)}
(1,1,1,4) 7→ (1,1,1,1,1,1,1) 7→ (1,1,1,1)
(1,1,2,3) 7→ (1,1,3,1,1) 7→ (1,1,3,1,1)
(1,2,2,2) 7→ (1,2,1,2,1) 7→ (1,2,1,2,1)
(1,3,1,2) 7→ (1,5,1) 7→ (1,2,1)
(2,1,3,1) 7→ (2,1,1,1,2) 7→ (2,2)
(2,2,2,1) 7→ (2,3,2) 7→ (2,3,2)
(3,2,1,1) 7→ (3,1,3) 7→ (3,1,3)
(4,1,1,1) 7→ (7) 7→ (4)

Table 2. The Bijection βαk for 2n− 1 = 7 and k = 3, 4.

3. A dual identity

In this section we prove a dual identity to (9) that expresses SIk(N) in terms of the
ICk(2M− 1), 2M− 1 < N.

Theorem 3.1. Let n be a positive integer. Then,

(10) SIk(2n + k− 2) =
b k

2 c

∑
j=1

ICk(2n− 3 + 2j), k ≥ 2.

In particular we obtain
SI2(2n) = IC2(2n− 1);
SI4(2n + 2) = IC4(2n− 1) + IC4(2n + 1);
SI6(2n + 4) = IC6(2n− 1) + IC6(2n + 1) + IC6(2n + 3).

Also,
SI3(2n + 1) = IC3(2n− 1);
SI5(2n + 3) = IC5(2n− 1) + IC5(2n + 1);
SI7(2n + 5) = IC7(2n− 1) + IC7(2n + 1) + IC7(2n + 3).
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The following result follows immediately from Theorem 3.1 and Corollary 2.5.

Corollary 3.2. For all integers n > 0, we have

(11) SIk(2n + k− 2) = 2
b k−2

2 c

∑
j=0

F(k−1)
n+j , k ≥ 2.

We give two proofs of the theorem below, one algebraic, one combinatorial.

3.1. An algebraic proof of Theorem 3.1. We show that the stated identity is consistent
with the recurrence (7) and the identity (9).
First, let k be an odd integer. Then using (10) we obtain

SIk(2n+k− 2) + SIk(2n + 2k− 3)

=

k−1
2

∑
j=1

ICk(2n− 3 + 2j) +
k−1

2

∑
j=1

ICk(2n + k− 4 + 2j)

= (ICk(2n− 1) + ICk(2n + 1) + · · ·+ ICk(2n + k− 4))

+ (ICk(2n + k− 2) + ICk(2n + k) + · · ·+ ICk(2n + 2k− 5))

=ICk(2n + 2k− 3),

where the last equality follows from the recurrence (7). That is, we have shown that

SIk(2n + k− 2) + SIk(2n + 2k− 3) = ICk(2n + 2k− 3).

But this identity is precisely a restatement of (9) with the weight 2n + 2k− 3 in place of
2n− 1.

Note that the foregoing proof cannot be used if k is an even integer because ICk(2n +
k− 2 + 2j) is not defined as 2n + k− 2 + 2j is even for all j. However, we observe that
for any positive integer t, the statement

SI2t(2n + 2t− 2) =
t

∑
j=1

IC2t(2n− 3 + 2j)

implies and is implied by

SI2t+1(2n + 2t− 1) =
t

∑
j=1

IC2t+1(2n− 3 + 2j).

For example, see the specific expansions of SI5(2n + 3) and SI4(2n + 2), or SI7(2n + 5)
and SI6(2n + 4), given earlier.

By this correspondence we conclude that the above proof for an odd integer k implies
a proof for the even integer m = k− 1. Since k is arbitrary the result follows. �
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3.2. A combinatorial proof of Theorem 3.1. We will use the properties of the map αk
and some notations defined in the proof of Theorem 2.10. Consider the map

(12) ψ :
bk/2c⋃
j=1

{ICk(2n− 3 + 2j)} −→ {SIk(2n + k− 2)}.

We will prove that ψ is a bijection consisting of the composition of two bijections αk
and ρ, where the latter is described below.

If T ∈ Im(αk), then T = B|(d)|B, where d is odd with 1 ≤ d ≤ 2k− 1. Thus T has
two forms corresponding to the form of the middle part:
(a) T has a middle part d, 2 ≤ d ≤ 2k − 1 and all other parts ≤ k. There are at most
k − 2 copies of 1 between two consecutive parts (with possible exception of initial or
final string of 1’s which may have up to k− 1 copies).
(b) T contains v copies of 1 at the center, 1 ≤ v ≤ 2k− 3, with all parts ≤ k. There are
at most k− 2 copies of 1 between two consecutive parts > 1 elsewhere (with possible
exception of initial or final string of 1’s which may have up to k− 1 copies).

We define a map ρ on Im(αk) to change the middle terms of T so that the weight of
ρ(T) is 2n + k− 2 and the parts of ρ(T) and ρ(T)′ are ≤ k. Note that since the weight
of T is less than 2n + k− 2, we have T 6= ρ(T). So ρ has no fixed points.

(13) ρ : Im(αk) −→ {SIk(2n + k− 2)}.
Consider T ∈ αk({ICk(2n− 3+ 2j)}), 1 ≤ j ≤ b k

2c. Define ρ(T) to have weight 2n− 3+
2j + (k− 2j + 1) = 2n + k− 2. Notice that the weight difference k− 2j + 1 has opposite
parity to k.

If property (a) holds, let T = (c1, . . . , cs, d, cs, . . . , c1), 2 ≤ d ≤ 2k− 1. Then

(14) ρ(T) = (c1, . . . , cs, d+1
2 , 1k−2j, d+1

2 , cs, . . . , c1).

If property (b) holds, let T = (c1, . . . , cs, 1v, cs, . . . , c1), cs > 1, 1 ≤ v ≤ 2k− 3. Then

(15) ρ(T) = (c1, . . . , cs, 1(v−1)/2, k− 2j + 2, 1(v−1)/2, cs, . . . , c1).

We see that ρ(T) ∈ {SIk(2n + k − 2)} in (14) and (15); the k − 2j copies of 1 in (14)
transform into the middle value k − 2j + 2 ≤ k by conjugation, and vice-versa. A
similar property in the opposite direction is inherited from pre-images T as indicated
in the mutually conjugate types given under properties (a) and (b) above.

We show that ρ is one-to-one by describing ρ−1. Any D ∈ {SIk(2n + k− 2)} fulfills
either of the following properties.
(c) D has a middle part b, 2 ≤ b ≤ k and all other parts ≤ k. There are at most k− 2
copies of 1 between two consecutive parts (with possible exception of initial or final
string of 1’s which may have up to k− 1 copies).

or
(d) D contains s copies of 1 at the center, 0 ≤ s ≤ k− 2, with all parts ≤ k. There are
at most k− 2 copies of 1 between two consecutive parts > 1 elsewhere (with possible
exception of initial or final string of 1’s which may have up to k− 1 copies).
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So if property (c) holds, let D = (c1, . . . , ct, 1u, b, 1u, ct, . . . , c1), 0 ≤ u ≤ k− 2, 2 ≤ b ≤
k. Then b is replaced with 1 and

(16) ρ−1(D) = (c1, . . . , ct, 12u+1, ct, . . . , c1).

If property (d) holds, let D = (c1, . . . , ct, b, 1s, b, ct, . . . , c1), 2 ≤ b ≤ k, 0 ≤ s ≤ k − 2.
Then 1s is replaced by −1 and

(17) ρ−1(D) = (c1, . . . , ct, 2b− 1, ct, . . . , c1).

Observe that 0 ≤ u ≤ k − 2 =⇒ 1 ≤ 2u + 1 ≤ 2k − 3, and 2 ≤ b ≤ k =⇒ 3 ≤
2b− 1 ≤ 2k − 1. That is, each ρ−1(D) in (16) and (17) possesses property (b) and (a)
respectively. Thus uniquely ρ−1(D) ∈ Im(αk). Hence ρ is a bijection. Since αk is a
bijection, it follows from (12) that ψ is a bijection given by ψ = ραk.

This completes the proof of Theorem 3.1. �

Example 3.3. We give an illustration of the bijections in the proof of Theorem 3.1. Let k = 4
and n = 3 so that (10) becomes SI4(8) = IC4(5) + IC4(7), the summands correspond to j = 1
and j = 2, respectively, in the assignments (14) and (15). The details are shown in Table 3.

{IC4(5)} ∪ {IC4(7)} α4({IC4(5)} ∪ {IC4(7)})
ρ→ {SI4(8)}

(1,1,3) (1,1,1,1,1) 7→ (1,1,4,1,1)
(1,2,2) (1,3,1) 7→ (1,2,1,1,2,1)
(2,2,1) (2,1,2) 7→ (2,4,2)
(3,1,1) (5) 7→ (3,1,1,3)

(1,1,1,4) (1,1,1,1,1,1,1) 7→ (1,1,1,2,1,1,1)
(1,1,2,3) (1,1,3,1,1) 7→ (1,1,2,2,1,1)
(1,2,2,2) (1,2,1,2,1) 7→ (1,2,2,2,1)
(1,3,1,2) (1,5,1) 7→ (1,3,3,1)
(2,1,3,1) (2,1,1,1,2) 7→ (2,1,2,1,2)
(2,2,2,1) (2,3,2) 7→ (2,2,2,2)
(3,2,1,1) (3,1,3) 7→ (3,2,3)
(4,1,1,1) (7) 7→ (4,4)

Table 3. The Bijection ψ = ρα4 : {IC4(5)} ∪ {IC4(7)} → {SI4(8)}.
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