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Abstract. Let [k] = {1, 2, . . . , k} be an alphabet over k letters. A word ω of length n
over alphabet [k] is an element of [k]n and is also called k-ary word of length n. We
say that ω contains a peak, if exists 2 ≤ i ≤ n − 1 such that ωi < ωi+1, ωi+2 < ωi+1.
We say that ω contains a symmetric peak, if exists 2 ≤ i ≤ n − 1 such that ωi−1 =
ωi+1 < ωi, and contains a non-symmetric peak, otherwise. In this paper, we find an
explicit formula for the generating functions for the number of k-ary words of length
n according to the number of symmetric peaks and non-symmetric peaks in terms of
Chebyshev polynomials of the second kind. Moreover, we find the number of symmetric
and non-symmetric peaks in k-ary word of length n in two ways by using generating
functions techniques, and by applying probabilistic methods.

1. Introduction

Let [k] = {1, 2, . . . , k} be an alphabet over k letters. A word ω of length n over
alphabet [k] is an element of [k]n and is also called word of length n on k letters or k-
ary word of length n. The number of k-ary words of length n is kn. Kitaev, Mansour
and Remmel [6] enumerated the number of rises (respectively, levels and falls) which
are subword patterns 12, (respectively, 11 and 21) in words, that have a prescribe first
element. Heubach and Mansour [5] enumerated the number of k-ary words of length n
that contain the subword patterns 111 and 112 exactly r times. Burstein and Mansour
[1] generalized the result to subword patterns of length `. Knopfmacher, Munagi and
Wagner [4] found the mean and variance of the k-ary words of length n according to
the number of p-successions, (p-succession in a k-ary word ω1ω2 · · ·ωn of length n is
two consecutive letters of the form (ωi, ωi + p), where i = 1, 2, · · · , n− 1 ). Heubach
and Mansour [5] found the number of rises, descents and levels in k-ary words of
length n, after that Mansour [7] found the number of peaks (occurrence of a subword
pattern either 121, 132 or 231) and valleys (occurence of a subword pattern either 212,
213 or 312) in k-ary words of length n by using generating function. Mansour and
Shattuck [10] proved the last result by combinatorial tools. In this paper we restrict our
attention in two kind of peaks in k-ary words of length n. We say that ω = ω1ω2 . . . ωn
contains a symmetric peak, if exists 2 ≤ i ≤ n − 1 such that ωi−1ωiωi+1 is a peak,
ωi > max(ωi−1, ωi+1), and ωi−1 = ωi, and we say that ω contains a non-symmetric peak,
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if exists 2 ≤ i ≤ n− 1 such that ωi−1ωiωi+1 is a peak and ωi−1 6= ωi+1 . Let ω be any
k-ary word of length n, we define u(ω) = un,k(ω) to be the number of symmetric peaks
in ω, and we define ũ(ω) = ũn,k(ω) to be the number of non-symmetric peaks in ω. For
example, if ω = 12412133132 = 12222121333132 ∈ [3]14, then it contains one symmetric
peak, namely 121, and one non-symmetric peak, namely 132, so u(ω) = ũ(ω) = 1. Our
aim is to find the number of symmetric and non-symmetric peaks in k-ary words of
length n. To achieve our goal, we use two different ways, by using generating functions,
and by probabilistic approach.

2. Counting symmetric peaks

Let Wk(x, q) be the generating function for the number of k-ary words of length n
according to the number of symmetric peaks

Wk(x, q) = ∑
n≥0

xn ∑
ω∈[k]n

qu(ω)

.

Lemma 1. (see [7, Proposition D.5]) Let an be any sequence given by

an =
A + Ban−1

C + Dan−1

with a0 = 1 such that α = BC− AD 6= 0. Then for all n ≥ 0,

an =
A
(

A+B√
α

Un−1(t)−Un−2(t)
)

√
α
(

A+B√
α

Un(t)−Un−1(t)
)
− B

(
A+B√

α
Un−1(t)−Un−2(t)

) ,

where t = B+C
2
√

α
and Um is the m-th Chebyshev polynomial of the second kind.

Lemma 2. The generating function Wk(x, q) satisfies the recurrence relation

(1) Wk(x, q) =
x(q− 1) + (1− x(q− 1))Wk−1(x, q)

1− x(1− q)(1− (k− 1)x)− xWk−1(x, q)(x(k− 1) + q(1− x(k− 1)))

where W0(x, q) = 1, which is equivalent to

(2) Wk(x, q) =
x(q− 1)Ak−1

αAk − (1− x(q− 1))Ak−1
,

where t = 2+x2(k−1)(1−q)
2α , α =

√
1 + x2(k− 2)(1− q), Ak = Uk(t)

α −Uk−1(t) and Um is the
m-th Chebyshev polynomial of the second kind.

Proof. We write an equation for Wk(x, q). A k-ary word of length n may or may not
contains the letter k, so it is obvious that

(3) Wk(x, q) = Wk−1(x, q) + W∗k (x, q),

where W∗k (x, q) is the generating function for the number of k-ary words of length n
according to the number of symmetric peaks containing the letter k. A k-ary word
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ω of length n that contains the letter k may be decomposed as either k, ω′k, kω′′,
ω′kω′′′, or ω′kbω′′′′, where ω′ is a nonempty (k − 1)-ary word, ω′′ is a nonempty k-
ary word, ω′′′ is a nonempty k-ary word, which first letter equals to the last letter in
ω′, ω′′′′ (could be empty) is a k-ary word and b is a letter that different from the last
letter in ω′. The corresponding generating functions are given by x, x(Wk−1(x, q)− 1),
x(Wk(x, q)− 1), xq(Wk−1(x, q)− 1)(Wk(x, q)− (k− 1)xWk(x, q)− 1) and (Wk−1(x, q)−
1)x2(k− 1)Wk(x, q), respectively. By substituting the last terms in (3) we obtain

W∗k (x, q) = x + x(Wk−1(x, q)− 1) + x(Wk(x, q)− 1)

+ xq(Wk−1(x, q)− 1)(Wk(x, q)(1− (k− 1)x)− 1)

+ (Wk−1(x, q)− 1)x2(k− 1)Wk(x, q).

Thus

Wk(x, q) = Wk(x, q)
(

x− x2(k− 1)
)

− xqWk(x, q)(1− (k− 1)x) + xWk−1(x, q)Wk(x, q)(x(k− 1) + q(1− (k− 1)x))

+ x(q− 1) + (1− x(q− 1))Wk−1(x, q),

which leads to (1). By applying Lemma 1 for (1) we obtain (2), which completes the
proof.

Now our plan is to find the total number of symmetric peaks in k-ary words of length
n.

Theorem 3. The total number of symmetric peaks in k-ary words of length n is

(n− 2)
(

k
2

)
kn−3.

Proof. Define Vk(x) = d
dqWk(x, 1). By differentiating (1) with respect to q and substitut-

ing q = 1, we obtain

Vk(x) =
d
dq

Wk(x, 1)

=
x− xWk−1(x, 1) + Vk−1(x)

(1− xWk−1(x, 1))

− Wk−1(x, 1)(x(1− x(k− 1))− xVk−1(x)− x(1− (k− 1)x)Wk−1(x, 1))
(1− xWk−1(x, 1))2 .

By substituting q = 1 in the last equation, and using Wk(x, 1) = 1
1−kx (which it is

followed from 1 and induction on k), we obtain

(4)
d
dq

Wk(x, q) |q=1=
x3(k

2)

(1− kx)2 ,

and finally by finding the coefficient of xn in (4) we get the result.
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Another proof for Theorem 3. Now we show alternative proof for Theorem 3, by
using probability tools. In order to do that, we define Xi = Xi(ω), i = 2, 3, · · · , n− 1
and ω ∈ [k]n, to be the discrete random variable such that ωi−1 = ωi+1 < ωi. It is
obvious P(Xi = m) = m−1

k3 , for m = 2, 3, · · · , k, where P(X = m) denote the probability
that the discrete random variable X equals m. Then all Xi’s, i = 2, 3, · · · , n− 1, have
the same distribution and un,k = ∑n−1

i=2 Xi. The value of un,k is given by knE(un,k) =

kn ∑n−1
i=2 E(Xi) = kn(n− 2)E(X2), where

E(X2) =
k

∑
m=2

P(X2 = m) =
k

∑
m=2

m− 1
k3 =

k(k− 1)
2k3 =

k− 1
2k2 .

Therefore,

knE(un,k) = kn (n− 2)(k− 1)
2k2 = (n− 2)

(
k
2

)
kn−3,

which is accord with the result in Theorem 3.

3. Counting non-symmetric peaks

We define W̃k(x, q) to be the generating function for the number of k-ary words of
length n according to the number of non-symmetric peaks

W̃k(x, q) = ∑
n≥0

xn ∑
ω∈[k]n

qũ(ω)

.

Lemma 4. The generating function W̃k(x, q) satisfies the recurrence relation

(5) W̃k(x, q) =
x(q− 1) + (1− x(q− 1))W̃k−1(x, q)

1− x(1− q)(1− 2x)− xW̃k−1(x, q)(2x + q(1− 2x))

where W̃0(x, q) = 1, which is equivalent to

(6) W̃k(x, q) =
x(q− 1)Ak−1

αAk − (1− x(q− 1))Ak−1
,

where t = 1+x2(1−q)
α , α =

√
1 + x2(1− q), Ak = Uk(t)

α − Uk−1(t) and Um is the m-th
Chebyshev polynomial of the second kind.

Proof. It is obvious that any k-ary word of length n may or may not contains the letter
k, so it is leads that W̃k(x, q) satisfies the following equation

(7) W̃k(x, q) = W̃k−1(x, q) + W̃∗k (x, q),

where W̃∗k (x, q) is the generating function for the number of k-ary words of length n ac-
cording to the number of non-symmetric peaks containing the letter k. A k-ary word ω
of length n that contains the letter k may be decomposed as either k, ω′k, kω′′, ω′kω′′′,
or ω′kbω′′′′, where ω′ is a nonempty (k− 1)-ary word, ω′′ is a nonempty k-ary word,
ω′′′ is a nonempty k-ary word such that the first letter in it different from the last letter
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in ω′, ω′′′′ is a k-ary word and b is a letter that equals to the last letter in ω′. The
corresponding generating functions are given by x, x(W̃k−1(x, q)− 1), x(W̃k(x, q)− 1),
xq(W̃k−1(x, q)− 1)(W̃k(x, q)− 2xW̃k(x, q)− 1) and (W̃k−1(x, q)− 1)2x2W̃k(x, q), respec-
tively. By substituting the last terms in (7) we obtain

W̃∗k (x, q) = x + x(W̃k−1(x, q)− 1) + x(W̃k(x, q)− 1)

+ xq(W̃k−1(x, q)− 1)(W̃k(x, q)(1− 2x)− 1)

+ (W̃k−1(x, q)− 1)2x2W̃k(x, q).

Therefore,

W̃k(x, q) = W̃k(x, q)
(

x− x(2x + q(1− 2x)) + xW̃k−1(x, q)(2x + q(1− 2x))
)

+ x(q− 1) + (1− x(q− 1))W̃k−1(x, q),

which is equivalent to (5). By applying [Appendix D] [7] for (5) we obtain (6), which
completes the proof.

Now our aim is to find the total number of non-symmetric peaks in k-ary words of
length n.

Theorem 5. The total number of non-symmetric peaks in k-ary words of length n is

2(n− 2)
(

k
3

)
kn−3.

Proof. By differentiating (5) with respect to q and substituting q = 1, we obtain

Ṽk(x) =
d
dq

W̃k(x, 1)

=
x− xW̃k−1(x, 1) + Ṽk−1(x)

(1− xW̃k−1(x, 1))
− W̃k−1(x, 1)(x(1− 2x)− xṼk−1(x)− x(1− 2x)W̃k−1(x, 1))

(1− xW̃k−1(x, 1))2
.

By substituting q = 1 in the last equation, and using W̃k(x, 1) = 1
1−kx (easy to proof by

induction), we obtain

(8)
d
dq

W̃k(x, q) |q=1=
2x3(k

3)

(1− kx)2 ,

and finally by finding the coefficient of xn in (8) we get the result.

Note that the total number of symmetric peaks in k-ary words of length n, and
the total number of the non-symmetric peaks in k-ary words of length n are equal
to the total number of all peaks in k-ary words of length n. Mansour and Shattuck
see [10] found that the number of all peaks in k-ary words of length n which is (n−
2)kn−3

(
2(k

3) + (k
2)
)

, by using Theorem 3 and the above result we obtain that,

ũ(t) = (n− 2)kn−3
(

2
(

k
3

)
+

(
k
2

))
− (n− 2)kn−3

(
k
2

)
= 2(n− 2)

(
k
3

)
kn−3.
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Another proof for Theorem 5. Now, we give a probabilistic proof for Theorem
5. For that, we define X̃i = X̃i(ω), i = 2, 3, · · · , n − 1 and ω ∈ [k]n, to be the dis-
crete random variable such that ωi−1, ωi+1 < ωi and ωi−1 6= ωi+1. It is obvious
P(X̃i = m) = (m−1)(m−2)

k3 , for m = 2, 3, · · · , k, where P(X = m) denote the proba-
bility that the discrete random variable X equals m. Then all X̃i’s, i = 2, 3, · · · , n− 1,
have the same distribution and ũn,k = ∑n−1

i=2 X̃i. The value of ũn,k is given by knE(ũn,k) =

kn ∑n−1
i=2 E(X̃i) = kn(n− 2)E(X̃2), where

E(X̃2) =
k

∑
m=2

P(X̃2 = m) =
k

∑
m=2

(m− 1)(m− 2)
k3 =

k−1

∑
m=1

m(m− 1)
k3

=
k−1

∑
m=1

2(m
2 )

k3 =
2(k

3)

k3 .

Hence we have,

knE(ũn,k) = kn 2(n− 2)(k
3)

k3 = 2(n− 2)
(

k
3

)
kn−3,

which is accord with the result in Theorem 5.
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