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Abstract. In this paper, we introduce a new operator in order to derive some properties
of homogeneous symmetric functions. By making use of the proposed operator, we give
some new generating functions for k-Fibonacci numbers, k-Pell numbers and product of
sequences and Chebyshev polynomials of second kind.

1. Introduction and Notations

There are a lot of integer sequences such as Fibonacci, Pell, Lucas, etc. Pell and
Pell-Lucas numbers are used by scientists for basic theories and their applications. For
interest application of these numbers in science and nature [26], one can see [20, 21, 15,
23]. For instance, in science, authors gave sums of the generalized Pell numbers could
be derived directly using a new matrix representation [28]. In [19], Horadam showed
that some properties involving Pell numbers and gave the formula

Pn+1Pn−1 − P2
n = (−1)n,

for the Pell numbers. Also Ercolano [18], found the matrix A for generating the Pell
sequence as follows

A =

(
2 1
1 0

)
.

In [21], Horadam and Mahon obtained Simpson formula for the Pell-Lucas numbers
as follows

Qn+1Qn−1 −Q2
n = 8(−1)n+1.

For the rest of this paper, for n ≥ 2 the well known Pell (Pn)n≥2 and Pell-Lucas
numbers (Qn)n≥2 are defined by

Pn = 2Pn−1 + Pn−2 and Qn = 2Qn−1 + Qn−2,

with initial conditions given by P0 = 0, P1 = 1 and Q0 = Q1 = 2, respectively.
In [1, 3], Horadam gave some equations related to Pell numbers and generating

functions for powers of a certain generalized sequences of numbers. Falcon, in [25],
introduced the k-Lucas sequences by using a special sequence of squares of k-Fibonacci
numbers. Recently, Catarino and Vasco have considered the k-Pell numbers, k-Pell
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Lucas numbers and have presented some properties involving these number sequences
[16, 17].

In this contribution, we shall define a new useful operator denoted by δk
p1 p2

for which
we can formulate, extend and prove new results based on our previous ones [6, 7, 12], in
order to determine generating functions of the product of k-Fibonacci numbers, k-Pell
numbers, and Chebyshev polynomials of second kind.

In order to render the work self-contained we give the necessary preliminaries. We
recall some definitions and results.

Definition 1.1. [10] Let B = {b1, b2, ...} and P = {p1, p2, ...}be any two alphabets. We define
Sn(B− P) by the following form

(1.1)
ΠpεP(1− pt)
ΠbεB(1− bt)

=
∞

∑
n=0

Sn(B− P)tn,

with the condition Sn(B− P) = 0 for n < 0.

Equation (1.1) can be rewritten in the following form

∞

∑
n=0

Sn(B− P)tn =

(
∞

∑
n=0

Sn(B)tn

)
×
(

∞

∑
n=0

Sn(−P)tn

)
,

where

(1.2) Sn(B− P) =
n

∑
j=0

Sn−j(−P)Sj(B).

We know that the polynomial whose roots are P is written as

Sn(x− P) =
n

∑
j=0

Sn−j(−P)xn, with card(P) = n.

On the other hand, if B has cardinality equal to 1, i.e., B = {x} , then (1.1) can be
rewritten as follows [12]:

∞

∑
n=0

Sn(x− P)tn =

∏
p∈P

(1− pt)

(1− xt)
= 1 + · · ·+ Sn−1(x− P)tn−1 +

Sn(x− P)
(1− xt)

tn,

where Sn+k(x− P) = xkSn(x− P) for all k ≥ 0.
The summation is actually limited to a finite number of terms since S−k(·) = 0 for

all k > 0. In particular, we have

∏
p∈P

(x− p) = Sn(x− P) = S0(−P)xn + S1(−P)xn −1 + S2(−P)xn −2 + · · · ,

where Sk(−B) are the coefficients of the polynomials Sn(x − P) for 0 ≤ k ≤ n. These
coefficients are zero for k > n.

For example, if all p ∈ P are equal, i.e., P = np, then we have Sn(x− np) = (x− p)n.
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By choosing p = 1, i.e., P =

1, 1, ...1︸ ︷︷ ︸
n

 , we obtain

(1.3) Sk(−n) = (−1)k
(

n
k

)
and Sk(n) =

(
n + k− 1

k

)
.

By combining (1.2) and (1.3), we obtain the following expression

Sn(B− nx) = Sn(B)−
(

n
1

)
Sn−1(B)x +

(
n
2

)
Sn−2(B)x2 − · · ·+ (−1)n

(
n
n

)
xn.

Definition 1.2. [9] Given a function f on Rn, the divided difference operator is defined as
follows

∂pi pi+1( f ) =
f (p1, · · · , pi, pi+1, · · · pn)− f (p1, · · · pi−1, pi+1,pi, pi+2 · · · pn)

pi − pi+1
.

Definition 1.3. The symmetrizing operator δk
e1e2

is defined by

(1.5) δk
p1 p2

(g) =
pk

1g(p1)− pk
2g(p2)

p1 − p2
for all k ∈N.

Proposition 1.4. [11] Let P = {p1, p2} an alphabet, we define the operator δk
p1 p2

as follows

δk
p1 p2

g(p1) = Sk−1(p1 + p2)g(p1) + pk
2∂p1 p2 g (p1), for all k ∈N.

Proposition 1.5. [6] The relations

1)Fk,−n = (−1)n+1Fk,n,

2)Pk,−n = (−1)n+1Pk,n

hold for all n ≥ 0.

2. The k-Pell Numbers and Properties

The k-Pell numbers have been defined in [16] for any number k as follows.

Definition 2.1. [16] For any positive real number k, the k-Pell numbers, say {Pk,n}n∈N is
defined recurrently by

(2.1) Pk,n+1 = 2Pk,n + kPk,n−1 for n ≥ 1,

with initial conditions Pk,0 = 1; Pk,1 = 1.

• If k = 1, the classical Pell numbers is obtained:
P0 = 0, P1 = 1, and Pn+1 = 2Pn + Pn−1 for n ≥ 1 :
{Pn}n∈N = {0, 1, 2, 5, 8, 21, ...}
The well-known Binet’s formula in the Pell numbers theory [17] allows us to express

the k-Pell number in function of the roots r1 and r2 of the characteristic equation, asso-
ciated to the recurrence relation (2.1):

(2.2) r2 = 2r + k.
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Proposition 2.2. (Binet’s formula) The nth k-Pell number is given by

Pk,n =
rn

1 − rn
2

r1 − r2
,

where r1, r2 are the roots of the characteristic equation (2.2) and r1 > r2.

Proof. The roots of the characteristic equation (2.2) are r1 = 1 +
√

1 + k and r2 = 1−√
1 + k.
Note that, since k > 0, the
r2 < 0 < r1 and |r2| < |r1| ,
r1 + r2 = 2 and r1.r2 = −k,
r1 − r2 = 2

√
1 + k. �

If σ denotes the positive root of the characteristic equation, the general term may be
written in the form [16]

Pk,n =
σn − σ−n

σ + σ−1 .

and the limit of the quotient of two terms is

lim
n→∞

Pk,n+1

Pk,n
= σ.

3. On the Generating Functions

In our main result, we will combine all these results in a unified way such that they
can be considered as a special case of the following Theorem.

Theorem 3.1. Given two alphabets P = {p1, p2} and B = {b1, b2, ..., bn} , we have

(3.1)
∞

∑
n=0

Sn(B)δn
p1 p2

(p1)tn =

∞
∑

n=0
Sn(−B)δp1 p2(pn

2)t
n(

∞
∑

n =0
Sn(−B)pn

1 tn
)(

∞
∑

n =0
Sn(−B)pn

2 tn
) .
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Proof. By applying the operator δp1 p2 to the series g(p1t) =
∞
∑

n=0
Sn(B)pn

1 tn, we have

δp1 p2 g(p1t) = δp1 p2

(
∞

∑
n=0

Sn(B)pn
1 tn

)

=

p1
∞
∑

n=0
Sn(B)pn

1 tn − p2
∞
∑

n=0
Sn(B)pn

2 tn

p1 − p2

=
∞

∑
n=0

Sn(B)

(
pn+1

1 − pn+1
2

p1 − p2

)
tn

=
∞

∑
n=0

Sn(B)δn
p1 p2

(p1)tn.

Which is the left-hand side of (3.1). On the other part, setting

g(p1t) =
1

∞
∑

n=0
Sn(−B)pn

1 tn
,

we have

δp1 p2 g(p1t) =

p1 ∏
b∈B

(1− bp2)t− p2 ∏
b∈B

(1− bp1t)

(p1 − p2)

(
∞
∑

n=0
Sn(−B)pn

1 tn
)(

∞
∑

n=0
Sn(−B)pn

2 tn
) .

Using the fact that :
∞

∑
n=0

Sn(−B)pn
1 tn = ∏

b∈B
(1− bp1t), then

δp1 p2 g(p1t) =

∞
∑

n =0
Sn(−B) p1 pn

2−p2 pn
1

p1−p2
tn(

∞
∑

n=0
Sn(−B)pn

1 tn
)(

∞
∑

n=0
Sn(−B)pn

2 tn
)

=

∞
∑

n=0
Sn(−B)δp1 p2(pn

2)t
n(

∞
∑

n =0
Sn(−B)pn

1 tn
)(

∞
∑

n =0
Sn(−B)pn

2 tn
) .

This completes the proof. �

We now derive new generating functions of the products of some well-known poly-
nomials. Indeed, we consider Theorem 1 in order to derive Fibonacci numbers and
Chebychev polynomials of second kind and the symmetric functions.
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Theorem 3.2. [8] Given two alphabets P = {p1, p2} and B = {b1, b2, b3} , we have

(3.2)
∞

∑
n=0

Sn(B)δn
p1 p2

(p1)tn =
S0(−B)− p1p2S2(−B)t2 − p1p2S3(−B) (p1 + p2) t3(

∞
∑

n=0
Sn(−B)pn

1 tn
)(

∞
∑

n=0
Sn(−B)pn

2 tn
) .

Case 1: For p1 = b1 = 1, b2 = y and p2 = x , b3 = α in Theorem 2, we propose the
following new generating function

∞

∑
n=0

δn
x1(x)Sn(1 + y + α)tn =

1− x(y + α + αy)t2 − xyα(1 + x)t3

(1− t) (1− xt) (1− yt) (1− xyt) (1− αt)(1− αxt)
.

Remark 3.1. For α = 0, we obtain the following identity of Ramanujan [12, 13]
∞

∑
n=0

δn
x1(x)Sn(1 + y)tn =

1− xyt2

(1− t) (1− xt) (1− yt) (1− xyt)
.

Case 2: Replacing p2 by (−p2) and assuming that p1p2 = 1, p1 − p2 = k in Theorem
2, we derive a new generating function of both k-Fibonacci numbers and symmetric
functions in several variables as follows

(3.3)
∞

∑
n =0

Sn(B)Fk,ntn =
1− S2(−B)t2 − kS3(−B)t3

∏ i = 13 (1− kbit− b2
i t2
) .

Replacing t by (−t) in (3.3), we have the following corollary.

Corollary 3.2. [5] We have the following generating function of both k-Fibonacci numbers at
negative indices and symmetric functions in several variables as

∞

∑
n =0

Sn(B)Fk,−ntn =
−1 + S2(−B)t2 − kS3(−B)t3

∏3
i=1
(
1 + kbit− b2

i t2
) .

• Put k = 1 in the relationship (3.3) we have
∞

∑
n =0

Sn(B)Fntn =
1 + (b1b2 + b1b3 + b2b3) t2 + b1b2b3t3

3
∏
i=1

(
1− bit− b2

i t2
) ,

representing a generating function of Fibonacci numbers and symmetric
functions in several variables [8].

Setting b3 = 0 and replacing b2 by (−b2) in (3.3), and assuming b1− b2 = k; b1b2 = 1;
we deduce the following corollary.

Corollary 3.3. [9] For n ∈ N, the generating function of the product of k-Fibonacci numbers
is given by

∞

∑
n=0

F2
k,ntn =

1− t2

1− k2t− 2(k2 + 1)t2 − k2t3 + t4 .
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Case 3: Replacing p2 by (−p2) and assuming that p1p2 = k, p1 − p2 = 2 in Theorem
2, we derive a new generating function of both k-Pell numbers and symmetric functions
in several variables as follows

(3.4)
∞

∑
n =0

Sn−1(B)Pk,ntn =
t− kS2(−B)t3 − 2kS3(−B)t4

∏3
i=1
(
1− 2bit− kb2

i t2
) .

Replacing t by (−t) in (3.4) , we have the following corollary.

Corollary 3.4. We have the following a new generating function of both k-Pell numbers at
negative indices and symmetric functions in several variables as

∞

∑
n =0

Sn−1(B)Pk,−ntn =
t− kS2(−B)t3 + 2kS3(−B)t4

∏3
i=1
(
1− 2bit− kb2

i t2
) .

• Put k = 1 in the relationship (3.4) we have

∞

∑
n =0

Sn−1(B)Pntn =
t− S2(−B)t3 − 2S3(−B)t4

∏3
i=1
(
1− 2bit− b2

i t2
) ,

which representing a new generating function of Pell numbers and symmetric
functions in several variables.

Setting b3 = 0 and replacing b2 by (−b2) in (3.4), and assuming b1− b2 = 2; b1b2 = k;
we deduce the following corollary.

Corollary 3.5. For n ∈ N, the generating function of the product of k-Pell numbers is given
by

∞

∑
n=0

P2
k,ntn =

t− k2t3

1− 4t− (2k2 + 8k)t2 − 4k2t3 + k4t4 .

We have the following theorems.

Theorem 3.3. For n ∈ N, The new generating function of the product of k-Lucas numbers is
given by

(3.9)
∞

∑
n=0

L2
k,ntn =

4− 3k2t− 4(k2 + 1)t2 − k2t3

1− k2t− 2(k2 + 1)t2 − k2t3 + t4 .

Proof. We have

Online Journal of Analytic Combinatorics, Issue 14 (2019), #03
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∞

∑
n=0

L2
k,ntn =

∞

∑
n=0

[(2 + k2)Sn(e1 + [−e2])− kSn+1(e1 + [−e2])]

×[(2 + k2)Sn(a1 + [−a2])− kSn+1(a1 + [−a2])]tn

= (2 + k2)2
∞

∑
n=0

Sn(e1 + [−e2])Sn(a1 + [−a2])tn −

k(2 + k2)
∞

∑
n=0

Sn+1(e1 + [−e2])Sn(a1 + [−a2])tn

−k(2 + k2)
∞

∑
n=0

Sn+1(a1 + [−a2])Sn(e1 + [−e2])tn +

k2
∞

∑
n=0

Sn+1(e1 + [−e2])Sn+1(a1 + [−a2])tn

= (2 + k2)2
∞

∑
n=0

F2
k,ntn − k(2 + k2)

×
[

k + (a1 − a2)t
1− k(a1 − a2)t− [(a1 − a2)2 + 2a1a2 + k2a1a2]t2 − k(a1 − a2)a1a2t3 + a2

1a2
2t4

]

−k(2 + k2)

[
k + (e1 − e2)t

1− k(e1 − e2)t− [(e1 − e2)2 + 2e1e2 + k2e1e2]t2 − k(e1 − e2)e1e2t3 + e2
1e2

2t4

]

+k2

[
k(a1 − a2) + [(a1 − a2)

2 + a1a2 + k2a1a2]t + ka1a2(a1 − a2)t2 − a2
1a2

2t3

1− k(a1 − a2)t− [(a1 − a2)2 + 2a1a2 + k2a1a2]t2 − k(a1 − a2)a1a2t3 + a2
1a2

2t4

]
.

Since
∞

∑
n=0

F2
k,ntn =

1− t2

1− k2t− 2(k2 + 1)t2 + k2t3 + t4 .

Therefore
∞

∑
n=0

L2
k,ntn =

4− 3k2t− 4(k2 + 1)t2 − k2t3

1− k2t− 2(k2 + 1)t2 − k2t3 + t4 .

This completes the proof. �

Theorem 3.4. For n ∈N, The new generating function of the product of k-Pell Lucas numbers
is given by

(3.10)
∞

∑
n=0

Q2
k,ntn =

4− 12t− 4(4k + k2)t2 − 4k2t3

1− 4t− 2(4k + k2)t2 − 4k2t3 + k4t4 .
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Proof. We have

∞

∑
n=0

Q2
k,ntn =

∞

∑
n=0

[Sn+1(e1 + [−e2])− (k + 2)Sn−1(e1 + [−e2])]

×[Sn+1(a1 + [−a2])− (k + 2)Sn−1(a1 + [−a2])]tn

=

(
∞

∑
n=0

Sn+1(e1 + [−e2])Sn+1(a1 + [−a2])tn − (k + 2)

)
×(

∞

∑
n=0

Sn+1(e1 + [−e2])Sn−1(a1 + [−a2])tn

)

−(k + 2)
∞

∑
n=0

Sn+1(a1 + [−a2])Sn−1(e1 + [−e2])tn+

(k + 2)2
∞

∑
n=0

Sn−1(e1 + [−e2])Sn−1(a1 + [−a2])tn

=

[
2(a1 − a2) +

[
k(a1 − a2)

2 + ka1a2 + 4a1a2
]

t + 2ka1a2(a1 − a2)t2 − k2a2
1a2

2t3

1− 2(a1 − a2)t− [k(a1 − a2)2 + 2ka1a2 + 4a1a2] t2 − 2k(a1 − a2)a1a2t3 + k2a2
1a2

2t4

]

−(k+ 2)

[
(k + 4)t + 2k(a1−a2)t2 − k2a1a2t3

1− 2(a1 − a2)t− [k(a1 − a2)2 + 2(k + 2)a1a2] t2 − 2k(a1 − a2)a1a2t3 + k2a2
1a2

2t4

]

−(k + 2)

[
(k + 4)t + 2k(e1−e2)t2 − k2e1e2t3

1− 2(e1 − e2)t− [k(e1 − e2)2 + 2(k + 2)e1e2] t2 − 2k(e1 − e2)e1e2t3 + k2e2
1e2

2t4

]

+(k + 2)2
∞

∑
n=0

P2
k,ntn.

Since
∞

∑
n=0

P2
k,ntn =

t− k2t3

1− 4t− 2(4k + k2)t2 − 4k2t3 + k4t4 .

Therefore

∞

∑
n=0

Q2
k,ntn =

4− 12t− 4(4k + k2)t2 − 4k2t3

1− 4t− 2(4k + k2)t2 − 4k2t3 + k4t4 .

This completes the proof. �

Case 4: Replacing p1 by 2p1 and p2 by (−2p2), and assuming that 4p1p2 = −1 in
Theorem 2 allows us to deduce the Chebyshev polynomials of second kind and the
symmetric functions in several variables, as follows for y = p1 − p2,

(3.5)
∞

∑
n=0

Sn(B)Un(y)tn =
1− S2(−B)t2 − S3(−B)t3(

1− 2b1yt− b2
1t2
) (

1− 2b2yt− b2
2t2
) (

1− 2b3yt− b2
3t2
) .
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Theorem 3.5. The new generating function of the product of Chebyshev polynomials of first
kind and the symmetric functions in several variables as

(3.6)
∞

∑
n=0

Sn(B)Tn(y)tn =
1− yS1(−B)t + S2(−B)(2y2 − 1)t2 + S3(−B)(y− 4y3 − 1)t3(

1− 2b1yt− b2
1t2
) (

1− 2b2yt− b2
2t2
) (

1− 2b3yt− b2
3t2
) .

Proof. We have

∞

∑
n=0

Sn(B)Tn(y)tn =
∞

∑
n=0

Sn(B)(Sn((2p1) + (−2p2))− ySn((2p1) + (−2p2))tn

=
∞

∑
n=0

Sn(B)Sn((2p1) + (−2p2))tn −

y
∞

∑
n=0

Sn(B)Sn((2p1) + (−2p2)tn

=
∞

∑
n=0

Sn(B)Un(y)tn − y
2(p1 + p2)

∞

∑
n=0

Sn(B)((2p1)
n − (−2p2)

n)tn.

Since

∞

∑
n=0

Sn(b1 + b2 + b3)tn =
1

∏b∈B(1− bt)
,

Therefore

∞

∑
n=0

Sn(B)Tn(y)tn =
∞

∑
n=0

Sn(B)Un(y)tn − y
2(p1 + p2)

[
1

∏b∈B(1− 2p1bt)
− 1

∏b∈B(1 + 2p2bt)

]
=

1− yS1(−B)t + S2(−B)(2y2 − 1)t2 + S3(−B)(y− 4y3 − 1)t3(
1− 2b1yt− b2

1t2
) (

1− 2b2yt− b2
2t2
) (

1− 2b3yt− b2
3t2
) .

This completes the proof. �

• Let b3 = 0, by making the following restrictions: p1 − p2 = k, p1p2 = 1,
4b1b2 = −1, and by replacing (b1 − b2) by 2(b1 − b2) in (3.2), we get a new
generating function, involving the product of k-Fibonacci numbers with Cheby-
shev polynomial of second kind as follows

∞

∑
n=0

Sn(2b1 + [−2b2])Sn(p1 + [−p2])tn

=
1 + t2

1− 2k(b1 − b2)t− (4(b1 − b2)2 − (k2 + 2))t2 + 2k(b1 − b2)t3 + t4 .

Thus we conclude with the following corollary.
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Corollary 3.6. We have the following a new generating function of the product of k-Fibonacci
numbers and Chebyshev polynomials of second kind as
(3.7)

∞

∑
n=0

Fk,nUn(b1− b2)tn =
1 + t2

1− 2k(b1 − b2)t− (4(b1 − b2)2 − (k2 + 2))t2 + 2k(b1 − b2)t3 + t4 .

Put k = 2 in the relationship (3.7) we get

∞

∑
n=0

PnUn−1(b1 − b2)tn =
t + t3

1− 4(b1 − b2)t + (6− 4(b1 − b2)2)t2 + 4(b1 − b2)t3 + t4 ,

which represents a new generating function, involving the product of Pell numbers
with Chebyshev polynomials of second kind.

Theorem 3.6. For n ∈ N, The new generating of the product of k−Fibonacci numbers and
Chebyshev polynomials of first kind as

(3.8)
∞

∑
n=0

Fk,nTn(b1− b2)tn =
1− k(b1 − b2)t + (1− 2(b1 − b2)

2)t2

1− 2k(b1 − b2)t− (4(b1 − b2)2 − (k2 + 2))t2 + 2k(b1 − b2)t3 + t4 .

Proof. We have

∞

∑
n=0

Fk,nTn(b1 − b2)tn =
∞

∑
n=0

Fk,n(Sn(2b1 + [−2b2])− (b1 − b2)Sn−1(2b1 + [−2b2]))tn

=
∞

∑
n=0

Fk,nSn(2b1 + [−2b2])tn − (b1 − b2)
∞

∑
n=0

Fk,nSn−1(2b1 + [−2b2])tn

=
∞

∑
n=0

Fk,nUn(b1 − b2)tn − (b1 − b2)

2(b1 + b2)

∞

∑
n=0

Fk,n((2b1)
n − (−2b2)

n)tn.

Since

∞

∑
n=0

Fk,ntn =
1

1− kt− t2 ,

Therfore

∞

∑
n=0

Fk,nTn(b1− b2)tn =
1− k(b1 − b2)t + (1− 2(b1 − b2)

2)t2

1− 2k(b1 − b2)t− (4(b1 − b2)2 − (k2 + 2))t2 + 2k(b1 − b2)t3 + t4 .

This completes the proof. �
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Put k = 2 in the relationship (3.7) we get

∞

∑
n=0

PnTn−1(b1 − b2)tn =
t− k(b1 − b2)t2 + (1− 2(b1 − b2)

2)t3

1− 4(b1 − b2)t + (6− 4(b1 − b2)2)t2 + 4(b1 − b2)t3 + t4 .

which represents a new generating function, involving the product of Pell with
Chebyshev polynomial of first kind.

4. Conclusion

In this paper, a new theorem has been proposed in order to determine the generating
functions. The proposed theorem is based on the symmetric functions. The obtained
results agree with the results obtained in some previous works.

Acknowledgments. The authors would like to thank the anonymous referees for
reading carefully the paper and giving helpful comments and suggestions.
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