
THE BLOCK ENERGY OF A GRAPH

B. Sharada1, Mohammad Issa Sowaity2 and Ahmed M. Naji2
(1) Department of Studies in Computer Science

University of Mysore, Manasagangotri
Mysuru - 570 006, INDIA
sharadab21@gmail.com

(2) Department of Studies in Mathematics
University of Mysore, Manasagangotri

Mysuru - 570 006, INDIA
mohammad_d2007@hotmail.com, ama.mohsen78@gmail.com

Abstract. In this paper, we introduce the concept block matrix (B-matrix) of a graph
G, and obtain some coefficients of the characteristic polynomial φ(G, µ) of the B-matrix
of G. The block energy EB(G) is established. Further upper and lower bounds for
EB(G) are obtained. In addition, we define a uni-block graph. Some properties and new
bounds for the block energy of the uni-block graph are presented.
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1. Introduction

In this paper, all graphs are assumed to be finite connected simple graphs. A graph
G = (V, E) is a simple graph, that is, having no loops, no multiple and directed edges.
As usual, we denote n to be the order and m to be the size of the graph G. For a vertex
v ∈ V, the open neighborhood of v in a graph G, denoted N(v), is the set of all vertices
that are adjacent to v and the closed neighborhood of v is N[v] = N(v) ∪ {v}. The
degree of a vertex v in G is d(v) = |N(v)|. A graph G is said to be k-regular graph if
d(v) = k for every v ∈ V(G). The distance d(u, v) between any two vertices u and v
in a graph G is the length of the shortest path connecting them. A vertex v of a graph
G is a cut vertex of G if the graph G − v consists of a greater number of components
than G. A block of a graph G is a maximal connected subgraph with no cut vertex -
(A subgraph with as many edges as possible and no cut vertex). The complement of
a graph G is a graph G has V(G) as its vertex set, but two vertices adjacent in G if
and only if they are not adjacent in G. All the definitions and terminologies about the
graph in this paragraph available in [8].

The concept energy of a graph introduced by I. Gutman [6], in (1978). Let G be a
graph with n vertices and m edges and let A(G) = (aij) be the adjacency matrix of G,
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where

aij =

{
1, if vivj ∈ E,
0, otherwise.

The eigenvalues λ1, λ2, ..., λn of a matrix A(G), assumed in non-increasing order, are
the eigenvalues of the graph G [11]. Let λ1 ≥ λ2 ≥ ... ≥ λs, for s ≤ n be the
distinct eigenvalues of G with multiplicities m1, m2, ..., ms, respectively. The multiset
of eigenvalues of A(G) is called the spectrum of G and denoted by

Sp(G) =

[
λ1 λ2 ... λs
m1 m2 ... ms

]
As A is real symmetric with zero trace, the eigenvalues of G are real with sum equal to
zero [14]. The energy E(G) of a graph G is defined to be the sum of the absolute values
of the eigenvalues of G [6], i.e.,

E(G) =
n

∑
i=1
|λi|.

Adiga et al. [1], introduced the concept of color energy of a graph Ec(G) and
computed the color energy Eχ(G) of few families of graphs with minimum number of
colors. It depends on the underlying graph and colors on its vertices. They established
an upper bound and a lower bound for color energy. Also, they introduced the concept
of complement of a colored graph and computed energies of complement of colored
graphs of few families of graphs.

Sharada et al. [17], introduced the Laplacian sum-eccentricity matrix LSe(G) of a
graph G. They obtained the Laplacian sum-eccentricity energy LSeE(G) of a graph
G. Upper bounds for LSeE(G) are established. They defined the Laplacian sum-
eccentricity equienergetic graph, and discussed some graphs which are Laplacian sum-
eccentricity equienergetic.

Sowaity et al. [18], introduced the eccentricity extended matrix Aeex(G), so that its
(i,j)-entry is equal to 1

2(
ei
ej
+

ej
ei
) for vivj ∈ E and 0 otherwise. Some properties of the

eccentricity extended spectral radius are obtained. The eccentricity extended energy
Eeex(G) of G is defined. Upper and lower bounds for Eeex(G) are established.
For more details on the mathematical aspects of the theory of graph energy we refer to
[3, 5, 11, 12, 19] and the references therein.

Motivated by these works we introduce the concept of block matrix (B-matrix) of a
graph G, and obtain some coefficients of the characteristic polynomial of the B-matrix
of G. The block energy EB(G) is established. Upper and lower bounds for EB(G) are
obtained. We define a uni-block graph. Some properties and new bounds for the block
energy of the uni-block graph are presented.
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2. The B-matrix of graphs

If a graph G contains t blocks, B1, B2, , ..., Bt, then we call Br the rth block of G. If
two vertices vi and vj lies in the same block, we call vivj ∈ Br.

Definition 2.1. Let G be a graph with n vertices. Then the block matrix (B-matrix) of a graph
G denoted by B(G), is defined as B(G) = (bij), where

bij =


2, if vivj ∈ E and vivj ∈ Br,
1, if vivj /∈ E and vivj ∈ Br,
0, otherwise.

The characteristic polynomial of B(G) is defined by

φ(G, µ) = det(µI − B(G)),

where I is the unit matrix of order n. The eigenvalues of B(G) are the roots of the
characteristic polynomial φ(G, µ).
Since B(G) is real symmetric with zero trace, it follows that its eigenvalues must be real
with sum equal to zero, i.e., trace(B(G)) = 0. We label the eigenvalues µ1, µ2, ..., µn in
a non-increasing manner µ1 ≥ µ2 ≥ ... ≥ µn. The block energy of a graph G is denoted
by EB(G) and is defined as the summation of the absolute values of the eigenvalues

EB(G) =
n

∑
i=1
|µi|.

The following examples explain the concept.

Example 2.2. Let G1 be the graph as in Figure 1.
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Figure 1: Graph G1 with 3 blocks
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Then the B-matrix of G1 is

B(G1) =



0 2 2 0 0 0 0
2 0 2 0 0 0 0
2 2 0 2 0 0 0
0 0 2 0 2 1 2
0 0 0 2 0 2 1
0 0 0 1 2 0 2
0 0 0 2 1 2 0


The characteristic polynomial of B(G1) is

φ(G1, µ) = |µIn − B(G1)|
= µ7 − 34µ5 − 48µ4 + 253µ3 + 704µ2 + 548µ + 112.

The block eigenvalues of G1 are
µ1 = 5.386, µ2 = 3.889, µ3 = −0.3202, µ4 = −1, µ5 = −2, µ6 = −2.2582, µ7 = −3.6966.
Therefore the block energy of G1 is

EB(G1) = 18.55.

Example 2.3. Let G2 be the K4 graph.

Then the B-matrix of G2 is

B(G2) =


0 2 2 2
2 0 2 2
2 2 0 2
2 2 2 0


The characteristic polynomial of B(G2) is

φ(G2, µ) =

∣∣∣∣∣∣∣∣
µ −2 −2 −2
−2 µ −2 −2
−2 −2 µ −2
−2 −2 −2 µ

∣∣∣∣∣∣∣∣
= µ4 − 24µ2 − 64µ− 48

= (µ + 2)3(µ− 6).

The block eigenvalues of G2 are µ1 = 6, µ2 = −2, µ3 = −2, µ4 = −2.
Therefore the block energy of G2 is EB(G2) = 12.

3. Block energy for some standard graphs

In this section we present and derive the block energy EB(G), for some well-known
graphs. We need the following Lemma to proof our main result.
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Lemma 3.1. [11] The energy of the path Pn, n ≥ 2, is given by

E(Pn) =


2

sin( π
2(n+1))

− 2, if n ≡ 0(mod2),

2cos( π
2(n+1))

sin( π
2(n+1))

− 2, if n ≡ 1(mod2).
(3.1)

Theorem 3.2. (1) The block eigenvalues of a complete graph Kn are −2 and 2(n− 1), with
multiplicities (n− 1) and 1 respectively, and the block energy for Kn is

EB(Kn) = 4(n− 1) = 2E(Kn).

(2) The block energy for The star K1,n−1, is

EB(k1,n−1) = 4
√

n− 1.

(3) The block energy of a path Pn, n ≥ 3 is given by

EB(Pn) =


4

sin( π
2(n+1))

− 4, if n ≡ 0(mod2),

4cos( π
2(n+1))

sin( π
2(n+1))

− 4, if n ≡ 1(mod2).
(3.2)

Proof. The proof of parts (1) and (2) are similar to the proof of Theorem 4.2 in [19] and
Theorem 2.6 in [16], respectively.
To show (3), we will start the proof by comparing the matrices B(Pn) and A(Pn). For
the path Pn, we have

B(Pn) =



0 2 0 0 . . . 0 0
2 0 2 0 . . . 0 0
0 2 0 2 . . . 0 0
...

...
...

... . . .
...

...
0 0 0 0 . . . 0 2
0 0 0 0 . . . 2 0


= 2A(Pn).

Hence, µi = 2λi, for 1 ≤ i ≤ n. Therefore EB(Pn) = 2E(Pn). Using Lemma 3.1, we get
the wanted result. �

4. Bounds for the block energy

We now give the explicit expression for the coefficient ci of µn−i (i = 0, 1, 2, and n)
in the characteristic polynomial of the B(G).

Theorem 4.1. Let G be a graph with n vertices, t ≥ 1, blocks and let

φ(G, µ) = c0µn + c1µn−1 + c2µn−2 + ... + cn,

be the characteristic polynomial of the B-matrix of G. Then

Online Journal of Analytic Combinatorics, Issue 14 (2019), #02
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(1) c0 = 1.
(2) c1 = 0.

(3) c2 = −(4m +
t

∑
r=1

mr),

where mr = number o f edges in the complement o f Br.

(4) for n ≥ 2 we have cn = (−1)n det(B(G)).

Proof. We prove only the equality in part (3), the proofs of equalities in parts (1), (2)
and (4) are similar to the proof of Theorem 3.1 in [19].
3. Since

c2 =

∣∣∣∣ 0 bij
bji 0

∣∣∣∣ = ∑
1≤i<j≤n

[0− (bijbji)] = − ∑
1≤i<j≤n

b2
ij

and since

bij =


2, if vivj ∈ E and vivj ∈ Br,
1, if vivj /∈ E and vivj ∈ Br,
0, otherwise.

Thus

c2 = −(4m +
t

∑
r=1

mr).

�

Example 4.2. For the graph G1 in Figure 1, the coefficient c2 of µ5 in the characteristic poly-
nomial of B(G1) is equal to

c2 = −(4m +
t

∑
r=1

mr)

= −[4× 8 + 0 + 0 + 2]
= −34.

Theorem 4.3. Let µ1, µ2, ..., µn, be the block eigenvalues of graph G. Then

n

∑
i=1

µ2
i = 8m + 2

t

∑
r=1

mr.
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Proof. The summation of squares of the eigenvalues of B(G) is just the trace of B2(G),

i.e.
n

∑
i=1

µ2
i = trace(B2(G)). Hence

n

∑
i=1

µ2
i =

n

∑
i=1

n

∑
j=1

bijbji

= ∑
i 6=j

bijbji +
n

∑
i=1

b2
ii

= 2 ∑
1≤i<j≤n

b2
ij + 0

= 2(4m +
t

∑
r=1

mr)

= 8m + 2
t

∑
r=1

mr.

�

Corollary 4.4. If µ1, µ2, ..., µn, are the block eigenvalues of a graph G, then
n

∑
i=1

µ2
i = −2c2.

Example 4.5. If G = Kn, n ≥ 1, then c2 = −2n(n− 1).

Proof. Since c2 = −(4m +
t

∑
r=1

mr), for any graph G, and since for the complete graph

Kn, m = n(n−1)
2 , and

t
∑

r=1
mr = 0, it follows that

c2 = −2n(n− 1).

�

Example 4.6. In the graph G2 = K4, the coefficient c2 of µ2 in the characteristic polynomial of
B(G2) is −2(4)(3) = −24.

Example 4.7. For the complete graph Kn, we have
n

∑
i=1

λ2
i = 4n(n− 1).

Theorem 4.8. Let G be a graph with n vertices, m edges and t ≥ 1, blocks. If L =
n

∏
i=1

µi. Then√√√√2(4m +
t

∑
r=1

mr) + n(n− 1)L
2
n ≤ EB(G) ≤

√√√√n(4m +
t

∑
r=1

mr).

Online Journal of Analytic Combinatorics, Issue 14 (2019), #02
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Proof. We have

E2
B(G) = (

n

∑
i=1
|µi|)2

=
n

∑
i=1
|µi|2 + ∑

i 6=j
|µi||µj|.

Employing the inequality between the Arithmetic mean, Geometric mean and bring in
mind Theorem 4.3 we obtain

EB(G) ≥

√√√√2(4m +
t

∑
r=1

mr) + n(n− 1)L
2
n .

On the other hand, using the Cauchy Schwartz inequality

n

∑
i=1
|µi| ≤

√
n(

n

∑
i=1

µ2
i )

=

√√√√n(4m +
t

∑
r=1

mr).

Hence

EB(G) ≤

√√√√n(4m +
t

∑
r=1

mr).

�

5. The uni-block graph

For t ≥ 1, if B1, B2, , ..., Bt are the blocks of a graph G, then we define Gb, to be the

union of the blocks of G, i.e. Gb =
t⋃

r=1

Br, and nb, to be the number of vertices in Gb, i.e.

nb = |V(Gb)|.

Definition 5.1. A graph G with n vertices and m edges is a uni-block graph if G has no blocks
other than itself (or Gb

∼= G).

Remark 5.2. For any graph G, we have
(1) nb = n + t− 1.
(2) nb = n if and only if G is a uni-block graph.
(3) |E(Gb)| = |E(G)|.

In the following results, we present the relationship between the B-matrix B(G)
and the adjacency matrix of a graph A(G).
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Proposition 5.3. Let G be a uni-block graph with n vertices and m edges. Then

B(G) = A(G) + A(Kn)

= 2A(G) + A(G).

Lemma 5.4. Let G be a graph with n vertices and let H be a proper subgraph of G. Then

EB(H) ≤ EB(G).

Theorem 5.5. For a graph G with n vertices and t blocks. Then
t

∑
r=1

EB(Br) ≤ tEB(G).

Proof. We know that each block of G is a subgraph with a smaller number of vertices.
Using Lemma 5.4, we get

EB(Br) ≤ EB(G), r = 1, 2, ..., t.

hence
t

∑
r=1

EB(Br) ≤ tEB(G).

�

The following fundamental results will be used to prove our main results.

Lemma 5.6. (Weyl’s inequality)[13] Let A and B be hermitian n× n matrices, if 1 ≤ i ≤ n
and λ(A), λ(B), λ(A + B) are the eigenvalues of A, B, A + B respectively. Then

λi(A) + λn(B) ≤ λi(A + B) ≤ λi(A) + λ1(B).

Lemma 5.7. [9] Let G be a connected graph of order n and size m. Then

λ1 ≤
√

2m− n + 1

with equality holding if and only if G ∼= Kn or G ∼= K1,n−1.

Lemma 5.8. [3] The graph G is bipartite if and only if its eigenvalues are symmetric with
respect to the origin.

Lemma 5.9. [15] Let A and B be two real square matrices of order n. Let C = A + B. Then

E(C) ≤ E(A) + E(B).

From Proposition 5.3, and bring in mind that E(G) ≤ 2m, [11], since E(Kn) =
2(n− 1), we get the following result.

Theorem 5.10. Let G be a uni-block graph with n vertices and m edges. Then

EB(G) ≤ 2(m + n− 1),

with equality holds if and only if G ∼= K2.

Online Journal of Analytic Combinatorics, Issue 14 (2019), #02
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Theorem 5.11. Let G be a uni-block graph with n vertices. Then

EB(G) ≤ 5n
2

+
n
√

n
2
− 2.

Proof. Using Proposition 5.3, we have

B(G) = A(G) + A(Kn).

Using Lemma 5.9, we get

EB(G) ≤ E(G) + E(Kn)

= E(G) + 2(n− 1).

Bringing in mind that E(G) ≤ n
2 (
√

n + 1), [11], we get

EB(G) ≤ n
2
(1 +

√
n) + 2(n− 1)

=
5n
2

+
n
√

n
2
− 2.

�

Theorem 5.12. Let G be a bipartite uni-block graph with n vertices and m edges. Then

EB(G) ≤ 2(n− 1) + n
√

2m− n + 1.

Proof. We will start the proof from Proposition 5.3, which gives

B(G) = A(G) + A(Kn).

Let λ1 ≥ λ2 ≥ ... ≥ λn, be the eigenvalues of the adjacency matrix A(G). Using Lemma
5.6, we get

λi(A(Kn)) + λn(A(G)) ≤ µi ≤ λi(A(Kn)) + λ1(A(G)).

For the bipartite graph, using Lemma 5.8, we have λ1(A(G)) = −λn(A(G)), which
implies

λi(A(Kn))− λ1(A(G)) ≤ µi ≤ λi(A(Kn)) + λ1(A(G)).

Hence

|µi| ≤ max{|λi(A(Kn))− λ1(A(G))|, |λi(A(Kn)) + λ1(A(G))|}.

But λi(A(Kn)) = −1, n− 1, with multiplicities n− 1, 1, respectively. So

max{|λi(A(Kn))− λ1(A(G))|, |λi(A(Kn)) + λ1(A(G))|} =
{

1 + λ1(A(G)), if λi(A(Kn)) = −1,
n− 1 + λ1(A(G)), if λ1(A(Kn)) = n− 1.
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Hence
n

∑
i=1
|µi| =

n−1

∑
i=1
|µi|+ |µn|

≤
n−1

∑
i=1

[(1 + λ1(A(G))] + n− 1 + λ1(A(G))

= n− 1 + (n− 1)λ1(A(G)) + n− 1 + λ1(A(G))

= 2(n− 1) + nλ1(A(G)).

Hence
EB(G) ≤ 2(n− 1) + nλ1(A(G)).

Using Lemma 5.7, we get

EB(G) ≤ 2(n− 1) + n
√

2m− n + 1.

�

Theorem 5.13. Let G be a bipartite uni-block graph of order n and size m. Then

EB(G) ≤ n(n− 1 +
√

2m− n + 1).

Proof. Let G be a bipartite uni-block graph with n vertices and m edges, if we exchange
the matrices A(G) and A(Kn) in Lemma 5.6, we get

λi(A(G)) + λn(A(Kn)) ≤ µi ≤ λi(A(G)) + λ1(A(Kn)).

Using the eigenvalues λi = n− 1, −1,of the complete graph, we get

λi(A(G))− 1 ≤ µi ≤ λi(A(G)) + n− 1.

Using Lemma 5.8, we get

−λ1(A(G))− 1 ≤ µi ≤ λ1(A(G)) + n− 1.

Hence

|µi| ≤ max{| − λ1(A(G))− 1|, |λ1(A(G)) + n− 1|}
= max{λ1(A(G)) + 1, λ1(A(G)) + n− 1}.

For n ≥ 2, we get

|µi| ≤ λ1(A(G)) + n− 1

≤
√

2m− n + 1 + n− 1,

by Lemma 5.7.
So

n

∑
i=1
|µi| ≤ n(n− 1 +

√
2m− n + 1).

Hence
EB(G) ≤ n(n− 1 +

√
2m− n + 1).

Online Journal of Analytic Combinatorics, Issue 14 (2019), #02
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�

Clearly if we compare the bounds in Theorem 5.12, and Theorem 5.13, we can
easily get that the bound in Theorem 5.12 is more efficient and smaller than that in
Theorem 5.13.

Acknowledgement

The authors would like to thank the reviewer and the editor for their suggestions
and comments.

References

[1] C. Adiga, E. Sampathkumar, M. A. Sriraj and A. S. Shrikanth, Color energy of a graph, Jangjeon Math.
Society, 16 (2013), No. 3, 335-351.

[2] R. Balakrishnan, The energy of a graph, Linear Alg. Appl., 387 (2004), 287-295.

[3] R. B. Bapat, Graphs and Matricies, Hindustan Book Agency, 2011.

[4] D. Cherny, T. Denton, R. Thomas and A. Waldron, Linear Algebra, Edited by Katrina Glaeser and
Travis Scrimshaw First Edition. Davis California, 2013.

[5] I. Gutman, X. Li and J. Zhang, Graph energy, (Ed-s: M. Dehmer, F. Emmert), Streib. Analysis of Complex
Networks, From Biology to Linguistics, Wiley-VCH, Weinheim, (2009), 145-174.

[6] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forsch. Graz, 103 (1978), 1-22.

[7] K.P. Hadeler, On copositive matrice, Lin. Alg. Appl., 49 (1983), 79-89.

[8] F. Harary, Graph Theory, Addison-Wesley Publishing Co., Reading, Mass. Menlo Park, Calif. London,
1969.

[9] Y. Hong, Bounds of eigenvalues of graphs, Descrete Maths., 123 (1993), 65-74.

[10] J. H. Koolen and V. Moulton, Maximal energy graphs, Advanced in App. Maths., 26 (2001), 47-52.

[11] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, 2012.

[12] V. Mathad, S. I. Khalaf, S. S. Mahdi and I. Gutman, Average degree-eccentricity of graphs, Math. Inter-
disc. Res., 2 (2018), 45-54.

[13] J. K. Merikoski and R. Kumar, Inequalities for spreads of matrix sums and products, app. maths. E-Notes,
4 (2004), 150-159.

[14] A. M. Naji and N. D. Soner, The maximum eccentricity energy of a graph, Int. J. Sci. Engin. Research, 7
(2016), 5-13.

[15] M. Robbiano and R. Jimenez, Applications of theorem by ky fan in the theory of laplacian energy of graphs,
MATCH Commun. Math. Comput. Chem., 62 (2009), 537-552.

[16] B. Sharada and M. I. Sowaity, On the sum-eccentricity energy of a graph, Int. J. of App. Graph Theory,
22 (2018), 1-8.

[17] B. Sharada, M. I. Sowaity and I. Gutman, Laplacian sum-eccentricity energy of a graph, Maths. Interdisc.
Res., 2 (2017), 209-220.

[18] M. I. Sowaity, B. Sharada and A. M. Naji, The eccentricity extended energy of a graph, Jangjeon Math.
Society, accepted.



THE BLOCK ENERGY OF A GRAPH 13

[19] M. I. Sowaity and B. Sharada, The sum-eccentricity energy of a graph, Int. J. on Recent Innovation
Trends in Computing and Comunication, 5 (2017), 293-304.

Online Journal of Analytic Combinatorics, Issue 14 (2019), #02


	1. Introduction
	2. The B-matrix of graphs
	3. Block energy for some standard graphs
	4. Bounds for the block energy
	5. The uni-block graph
	Acknowledgement
	References

