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Abstract. We consider analogs of several classical diophantine equations, such as Fer-
mat’s last theorem and Catalan’s conjecture, for certain classes of analytic functions.
We give simple direct proofs avoiding use of deep theorems in complex analysis. As
a byproduct of our results, we obtain new proofs for the corresponding results over
polynomials.

1. Introduction

The polynomial analog of Fermat’s last theorem and Catalan’s conjecture have sim-
ple short proofs based on Mason’s theorem (see [2, Theorems 4.3.3 & 4.3.5]). Recall
that, Mason’s theorem asserts that if p, q and r are polynomials such that p + q = r,
then deg(r) ≤ deg(rad(pqr))− 1. So the number of roots of r (the degree) is controlled
by deg(rad(pqr)) (the number of distinct roots of p, q, r together). A simple analog of
Mason’s theorem for analytic functions that “controls” the roots is unsustainable as
we can have equations such as eg + eh = k, where g and h are linearly independent
and so we have a case where each term in the LHS does not vanish while k has infin-
itely many zeroes (a simple consequence of little Picard theorem). In spite of this, as
we see in this paper, we still can have analogs of Fermat’s last theorem and Catalan’s
conjecture for certain families of analytic functions. Since our method of proof avoids
Mason’s theorem as a byproduct we obtain new proof for polynomial case. We con-
clude with a study of Waring type problems for analytic functions. The analog problem
for polynomials is discussed in [2, Theorem 4.3.6] and for finite fields in [1].

We need the following lemma in our arguments throughout the paper.

Lemma 1.1. Suppose that f is an entire function that does not take the value 0, then there
exists an entire function ψ(z), such that f (z) = eψ(z).

Proof. Let h(z) :=
z∫

0

f ′(τ)
f (τ) dτ and g(z) := eh(z)

f (z) . Then it can be seen that h is an entire

function and h′(z) = f ′(z)
f (z) . We have that

g′(z) =
eh(z)(h′(z) f (z)− f ′(z))

f 2(z)
= 0.

Therefore g is a constant function which implies f (z) = ceh(z) = eh(z)+ln c. �
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2. Main Results

We first study Fermat’s last theorem for analytic functions. The following lemma is
needed for our proof.

Lemma 2.1. Suppose that h is an entire function such that for a natural number m, hm(z) =
n
∏
j=1

f j(z),

where f j’s are all entire functions with no common zeros. Then, there exist entire functions
h1, h2, . . . , hn such that f j(z) = hm

j (z), j ∈ 1, n.

Proof. Let f j0 , 1 ≤ j0 ≤ n, be given. Suppose that a1, a2, a3, . . . is the sequence of (dis-

tinct) zeros of f j0 of multiplicity m1, m2, m3, . . . , respectively. Then since hm(z) =
n
∏
j=1

f j(z)

each mk is divisible by m, therefore there exist integers m′1, m′2, m′3, . . . such that mk =
m ·m′k (k ∈N). By Weierstrass factorization theorem, we can find an entire function gj,

with zeros a1, a2, a3, . . . of multiplicity m′1, m′2, m′3, . . . . Let f̃ j(z) :=
f j(z)

gj(z)m . Since f̃ j(z) is
an entire function with no zeros from lemma 1.1 there exist an entire function φj such

that f̃ j(z) = eφj(z). Now take hj(z) := gj(z)e
φj(z)

m and observe that f j(z) = hm
j (z). �

Theorem 2.2 (Fermat’s last theorem for entire functions). Suppose, n ≥ 3 and f , g and
h are entire functions that do not have common zeros. Moreover, assume that at least one
of them has finitely many zeros. If f n(z) + gn(z) = hn(z), then f (z) = a · eφ(z), g(z) =

b · eφ(z), h(z) = c · eφ(z), for an entire function φ(z) and complex numbers a, b, and c with
an + bn = cn.

Proof. We distinguish two cases:
Case 1. Assume that h(z) does not have zeros. Divide both sides by gn(z) to get(

f (z)
g(z)

)n

+ 1 =
hn(z)
gn(z)

.

The right hand side is a meromorphic function, that does not take the value 0. This
implies, that the left hand side does not take zero as well. In other words, the function
f (z)
g(z) omits all values of the form n

√
−1. Since n ≥ 3, little Picard theorem implies that

f (z)
g(z)

is constant which in turn leads to a solution of desirable form for our equation. If

f (z) or g(z) does not have zeros, a similar argument shows that the result holds.
Case 2. Assume that each of the functions f , g and h has at least one zero. Out of

all triples of functions ( f (z), g(z), h(z)) satisfying f n(z) + gn(z) = hn(z) we choose the
one, for which h(z) has the least number of zeros. We now rewrite our equation in the
form

hn(z) =
n

∏
j=1

( f (z)− ε jg(z)),
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where ε1, ε2, . . . , εn are n−th roots of unity. We note that all terms on the right hand side
are entire functions with no common zeros. By Lemma 2.1, there exist entire functions

h1, h2, . . . , hn such that
n
∏
j=1

hj(z) = h(z) and f (z)− ε jg(z) = hn
j (z), j ∈ 1, n. Since h(z)

has at leas one complex zero, at least one of the hj(z) has a zero. We can assume that
this function is h1(z). We now write an analogous system of equations for the functions
h1(z), h2(z) and h3(z) 

f (z)− ε1g(z) = hn
1(z)

f (z)− ε2g(z) = h2(z)n

f (z)− ε3g(z) = hn
3(z)

.

From these equations we obtain

g(z) =
hn

1(z)− hn
2(z)

ε2 − ε1
=

hn
2(z)− hn

3(z)
ε3 − ε2

.

Multiplying through by the denominators and collecting the corresponding terms,

(ε3 − ε2)hn
1(z) + (ε1 − ε3)hn

2(z) + (ε2 − ε1)hn
3(z) = 0.

So, if we let h̃1(z) = n
√

ε3 − ε2h1(z), h̃2(z) = n
√

ε1 − ε3h2(z) and h̃3(z) = n
√

ε1 − ε2h3(z),
we have

(1) h̃1
n
(z) + h̃2

n
(z) = h̃3

n
(z).

If at least one of the functions h2(z) and h3(z) does not have a zero, say h3(z), then from
case 1, it follows that there exists entire φ(z) and complex numbers a1, a2, a3 ∈ C such
that h̃j(z) = ajeφ(z), j = 1, 2, 3. This contradicts the assumption that h1(z) has at least
one zero. Thus, both functions h2(z) and h3(z) have complex zeros. WLOG, we may
assume that among h1(z), h2(z), h3(z) the function h3(z) has least number of zeros.
Then, the number of zeros of h̃3(z) has to be smaller than the number of zeros of h(z).

But then since h(z) =
n
∏
j=1

hj(z) and the functions h2(z) and h3(z) have at least one zero

each, this contradicts the assumption that h(z) has the least number of zeros among all
triples of functions ( f (z), g(z), h(z)) that satisfy Fermat equation. �

Corollary 2.3 (Fermat’s last theorem for polynomials). Suppose, n ≥ 3 and p, q and r are
nonzero and relatively prime polynomials satisfying pn + qn = rn, then p, q and r are constant.

The following lemma studies the case n = 2 in Fermat’s equation.

Lemma 2.4. Suppose that f , g and φ are entire functions and P is a polynomial. Then the
equation f 2 + g2 = P(z)eφ(z) has infinitely many solutions in the class of analytic functions
that can be completely parametrized as follows: f (z) = 1/2eφ(z)

(
P1(z)eψ(z) + P2(z)e−ψ(z)

)
g(z) = −i/2eφ(z)

(
P1(z)eψ(z) − P2(z)e−ψ(z)

) ,
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where P1(z) and P2(z) are any polynomials such that P1(z)P2(z) = P(z) and ψ is an entire
function.

Proof. We factorize f 2(z) + g2(z) to get

P(z)eφ(z) = f 2(z) + g2(z) = ( f (z) + ig(z)) ( f (z)− ig(z)) .

Let f1 :=
f

eφ(z)
and g1 :=

f
eφ(z)

. Then we have that

P(z) = ( f1(z) + ig1(z)) ( f1(z)− ig1(z)) .

Since the left hand side has only finite number of roots we have that f1 + ig1 = eφ1 P1(z)
and f1(z)− ig1(z) = eφ2(z)P2(z). Now since ( f1 + ig1) ( f1 − ig1) = P(z) we must have
that P1(z)P2(z) = P(z) and φ1(z) = −φ2(z). Consider the following system of equa-
tions

(2)
{

f1(z) + ig1(z) = eφ1(z)P1(z)
f1 − ig1 = e−φ1(z)P2(z)

and observe that  f1(z) = 1/2
(

P1(z)eφ1(z) + P2(z)e−φ1(z)
)

g1(z) = −i/2
(

P1(z)eφ1(z) − P2(z)e−φ1(z)
)

and so the result follows. �

The following proposition is an auxiliary result in the proof of Catalan’s conjecture
for rational functions.

Proposition 2.5. Let f (z) and g(z) be nonconstant meromorphic functions over C. Assume
that f (z) has finitely many zeros. If m ≥ n ≥ 2, then

(3) f m(z)− gn(z) = 1

implies that m = n = 2.

Proof. Suppose m > 2. Since f (z) and g(z) are meromorphic functions, we can write
f (z) = f1(z)

f2(z)
, g(z) = g1(z)

g2(z)
, where f j(z), gj(z), j = 1, 2, are entire functions, f1(z) and

f2(z) do not have common zeros, and g1(z) and g2(z) do not have common zeros. We
now substitute these expression into (3) and multiply by f m

2 (z)gn
2 (z) to get

(4) f m
1 (z)gn

2 (z)− gn
1 (z) f m

2 (z) = f m
2 (z)gn

2 (z).

Since f1(z) and f2(z) do not have common zeros and g1(z) and g2(z) do not have com-
mon zeros, we deduce that f2(z) and g2(z) have the same zeros, possibly with different
multiplicities. Let a be the common root, of multiplicity k for f2(z) and multiplicity l
for g2(z). Then equation (4) implies that mk = nl. By Weierstrass factorization theorem,
we construct the function h(z) such that f2(z) = hn(z) f̃2(z), g2(z) = hm(z)g̃2(z), and
f̃2(z) and g̃2(z) do not have zeros. By Lemma 1.1, there exist entire functions φ(z) and
ψ(z) such that f̃2(z) = eφ(z), g̃2(z) = eψ(z), and so f2(z) = hn(z)eφ(z), g2(z) = hm(z)eψ(z).
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We now plug in the expressions for f2(z) and g2(z) into (4) and cancel out hnm(z) to
obtian:

f m
1 (z)enψ(z) − gn

1 (z)e
mφ(z) = hnm(z)enψ(z)+mφ(z).

Let f̃1(z) = f1(z)e
nψ(z)

m , g̃1(z) = g1(z)e
mφ(z)

n and h̃(z) = h(z)e
nψ(z)+mφ(z)

nm . In terms of
these functions the last equation can be rewritten as f̃1

m
(z) = g̃1

n(z) + h̃nm(z) and so
factorize as

f̃1
m
(z) =

n

∏
j=1

(g̃1(z)− ε jh̃m(z)),

where ε1, ε2, . . . , εn are the n−th root of −1. Observe that different brackets in the right
hand side do not have common zeros. An argument similar to that in the proof of
Theorem 2.2, leads us to the Fermat’s equation

ĥm(z) = ĥ1
m
(z) + ĥ2

m
(z),

where ĥ(z) = m
√

ε2 − ε1h̃(z), ĥ1(z) = h1(z), and ĥ2(z) = m
√
−1h2(z). Note, that each

ĥ1(z) and ĥ2(z) have finite number of zeros, because
n
∏
j=1

hj(z) = f̃1(z), and f̃1(z) and

f1(z) have finitely many zeros. Since m > 2, we can apply Theorem 2.2 and conclude
that both ĥ(z) and ĥ1(z) do not have zeros. Consequently, f (z) and g(z) have to be
both entire functions, and since f1(z) does not have zeros, f (z) also does not have
zeros. Lemma 1.1, now impies that there exists θ(z), such that f (z) = eθ(z). Plugging
into (3),we get the equation emθ(z) − gn(z) = 1, that can be rewritten as(

e
mθ(z)

n

)n
− gn(z) = 1.

If n > 2, Theorem 2.2, implies that the solutions are constant. If n = 2, Lemma 2.4
implies an existence of entire ϑ(z),

e
mθ(z)

n =
eϑ(z) + e−ϑ(z)

2
.

The last equality is impossible, since the left hand side omits value 0, while the right
hand side takes this value infinitely often. �

Corollary 2.6 (Catalan’s equation for rational functions). If f (z) and g(z) are non constant
rational functions and m, n ≥ 2, then the Catalan’s equation

f m(z)− gn(z) = 1

has solutions only for m = n = 2.

We now proceed with studying Waring type problems for analytic functions. Classi-
cal Waring problem for polynomials looked over additive decomposition of polynomi-
als as sums of n-th powers of polynomials.
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Theorem 2.7. Let P[(z)] ∈ C[z] be a polynomial of degree n. Then for any entire function f
there exist entire functions f1(z), f2(z), ... fk(z) and a natural number k = k(P) such that

f (z) =
k

∑
i=1

P( fi(z)).

Proof. For each polynomial Q(z) ∈ C[z] of degree m ≥ 0, define ∆1(Q(z)) := Q(z +
1)−Q(z). Observe that ∆1(Q(z)) is a polynomial of degree m− 1 that is ∆1 reduces the
degree of Q by exactly one degree. You can now define the operator ∆n : C[z] → C[z]
recursively where ∆n(Q(z)) := ∆1(∆n−1(Q(z))). Observe that for each polynomial
Q(z)

deg(∆n(Q(z))) =
{

m− n if m ≥ n
0 otherwise

Suppose that P[(z)] ∈ C[z] is a polynomial of degree n. Then by the above ob-
servation ∆n−1(P(z)) = a0z + b0 is a polynomial of degree 1. Now for any entire
function f the desired representation is obtained by taking z = f (z)−b0

a0
in ∆n−1(P(z)) =

a0z + b0. �

Remark 2.8. Lemma 2.7 is also true for multivariable polynomials P(z1, z2, ..., zn). To see
this note that by taking (α1, α2, ..., αn) such that P(α1, α2, ..., αn) 6= 0 and performing the
substitution z1 := α1z, z2 := α2z,...zn := αnz we can derive a one variable non-zero poly-
nomial. Now we can apply theorem 2.7 to get the entire functions f1(z), f2(z), ... fk(z).
We have that

f (z) =
k

∑
i=1

P(α1 fi(z), α2 fi(z), ..., αn fi(z)).
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