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Abstract. Bulgarian solitaire is played on n cards divided into several piles; a move
consists of picking one card from each pile to form a new pile. This can be seen as
a process on the set of integer partitions of n: If sorted configurations are represented
by Young diagrams, a move in the solitaire consists of picking all cards in the bottom
layer of the diagram and inserting the picked cards as a new column. Here we consider
a generalization, L-solitaire, wherein a fixed set of layers L (that includes the bottom
layer) are picked to form a new column.

L-solitaire has the property that if a stable configuration of n cards exists it is unique.
Moreover, the Young diagram of a configuration is convex if and only if it is a stable
(fixpoint) configuration of some L-solitaire. If the Young diagrams representing card
configurations are scaled down to have unit area, the stable configurations correspond-
ing to an infinite sequence of pick-layer sets (L1, L2, . . . ) may tend to a limit shape φ. We
show that every convex φ with certain properties can arise as the limit shape of some
sequence of Ln. We conjecture that recurrent configurations have the same limit shapes
as stable configurations.

For the special case Ln = {1, 1 + b1/qnc, 1 + b2/qnc, . . . }, where the pick layers are
approximately equidistant with average distance 1/qn for some qn ∈ (0, 1], these limit
shapes are linear (in case nq2

n → 0), exponential (in case nq2
n → ∞), or interpolating

between these shapes (in case nq2
n → C > 0).

1. Introduction

The game of Bulgarian solitaire is played with a deck of n identical cards divided ar-
bitrarily into several piles. A move consists of picking a card from each pile and letting
these cards form a new pile. This move is repeated over and over again. For informa-
tion about the earlier history of the Bulgarian solitaire and a summary of subsequent
research, see reviews by Hopkins [10] and Drensky [5].

Let P denote the set of integer partitions. An integer partition of n is a λ =

(λ1, λ2, . . . , λ`) such that λ1 ≥ λ2 ≥ . . . ≥ λ` > 0 and ∑`
i=1 λi = n. For i > ` it

will be convenient to define λi = 0. The sum of the parts of λ is denoted by |λ| = n,
and the number of non-zero parts is denoted by ` = `(λ). If piles of cards are sorted
in order of decreasing size, any configuration of n cards can be regarded as an integer
partition of n. A geometric shape arises when a configuration λ is represented by a
Young diagram of unit squares in the first quadrant of a coordinate system for the real
plane, such that the ith column has height λi. A move of the Bulgarian solitaire then has
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the geometric interpretation of picking the first (i.e., bottom) layer of the diagram and
making it the new first column, left-shifting cards if needed so that the configuration
remains sorted. See Figure 1 for an example.

→ →

Figure 1. A move in Bulgarian solitaire from λ = (7, 3, 2) ∈ P(12): The
bottom layer is picked to form a new pile with three cards, higher levels
are then left-shifted.

In this paper we consider a generalization of Bulgarian solitaire, in which not only
the bottom layer (layer number 1) is picked but also some other layers. This layer-based
solitaire will be referred to as L-solitaire, where L is the set of layers to be picked. In
terms of Young diagrams, a move of an L-solitaire on n cards consists of removing
layers L = {h1 = 1, h2, h3, . . . } ⊆ {1, 2, . . . , n} of the Young diagram, counting from the
bottom, to form a new column.1 See Figure 2 for an example of a move in an L-solitaire.
A set L 3 1 of layer numbers may be referred to as a pick-layer set, and its elements as
pick layers.

h2 = 4

h1 = 1

→ →

Figure 2. A move from the partition λ = (7, 3, 2) ∈ P(12) in the {1, 4}-
solitaire in which layers number h1 = 1 and h2 = 4 are picked to form a
new pile with four cards.

1 Of course, an even wider generalization would be to pick any layers (not necessarily including the
bottom layer). However, if the bottom layer is not picked (i.e. if h1 > 1), any layer < h1 will never be
picked and therefore none of its cards will ever “rotate”, yielding a degenerate solitaire which eventually
leads to a diagram with height < h1 in which no card is picked.
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1.1. Outline of the paper. For L = {1} the L-solitaire reverts to the ordinary Bulgarian
solitaire. In Section 2 we discuss how L-solitaire relates to an even more far-reaching
generalization of Bulgarian solitaire by Olson [11].

In the remainder of the paper we shall be concerned with stable and recurrent config-
urations of the L-solitaire. These concepts can be defined as follows.

Definition 1. For a given L-solitaire, let f : P → P denote the map defined by the rules for
making a move in the solitaire. A configuration λ ∈ P is called recurrent with respect to this
solitaire if there exists a positive integer k such that f k(λ) = λ. A recurrent configuration that
satisfies the stronger condition f (λ) = λ is called stable.

Bulgarian solitaire has the property that if a stable configuration exists for a given
number of cards, it is unique [4]. In Section 3 we demonstrate that uniqueness of stable
configurations holds for any L-solitaire.

In the Bulgarian solitaire, a stable configuration exists if and only if the total number
n of cards is a triangular number, in which case the unique stable configuration is a
staircase. In Section 4 we generalize this result by characterizing stable configurations
of L-solitaires as convex, that is, satisfying the inequality λi − λi+1 ≥ λi+1− λi+2 for all
i ≥ 1.

In the Bulgarian solitaire, if n increases but the staircase shape is rescaled so that it
always has the same area, the limit shape (as n tends to infinity) becomes a straight
line segment of negative slope. In the more general case of L-solitaire we may let the
pick-layer set L change with the number of cards. In Sections 5 and 6 we define limit
shapes of stable configurations for an infinite sequence {Ln}∞

n=1 of pick-layer sets, and
we show that any convex shape can be obtained as the limit shape of such a sequence.

By definition, the stable configurations constitute a subset of the recurrent config-
urations. Note that for any given n, the set of all configurations on n cards is finite.
Regardless of choice of starting configuration, the process must therefore inevitably
enter the set of recurrent configurations after a finite number of moves. In the Bulgar-
ian solitaire, recurrent configurations are close to staircase shapes and therefore have
the same linear limit shape as the stable configurations have [1, 3, 8, 9]. In Section 7
we conjecture that this equivalence between limit shapes of recurrent and stable con-
figurations holds also for sequences of L-solitaires. In Sections 8 and 9 we prove the
conjecture in the special case Ln = {1, 1 + b1/qnc, 1 + b2/qnc, . . . }, where the pick lay-
ers are approximately equidistant with average distance 1/qn for qn ∈ (0, 1]. The limit
shapes of stable and recurrent configurations are then linear in case q2

nn → 0, and
exponential in case q2

nn→ ∞, as n→ ∞.

2. L-solitaire and σ-solitaire

Olson [11] recently introduced a generalization of Bulgarian solitaire, which we call
σ-solitaire, in which the number of cards picked from a pile of size h ≥ 0 is given by
σ(h), where σ : N → N can be any function such that σ(h) ≤ h for all h ∈ N. Let
us call σ the pick function. The ordinary Bulgarian solitaire is obtained for the constant
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function σ(h) = 1. Olson studied cycle lengths, proving a general upper bound on
cycle lengths for any specification of σ.

Clearly, any L-solitaire is a σ-solitaire for some unique σ. Let us denote by σL the
pick function that corresponds to a given pick-layer set L.

Observation 1. The pick function corresponding to L is given by σL(h) = |L∩ {1, 2, . . . , h}|,
the number of picked layers up to and including layer h.

It is not true that every σ-solitaire is an L-solitaire. The properties that a pick function
must have to correspond to a pick-layer set is that (1) from a pile with just a single card,
you pick that card; (2) you never pick fewer cards from a larger pile than from a smaller
pile; and (3) the number of unpicked cards are never fewer in the larger pile than in a
smaller pile. Formally:

Theorem 1. Let σ be a pick function. Then σ = σL for some pick-layer set L if and only if

(1) σ(1) = 1,
(2) σ(h) is a weakly increasing function of h, and
(3) the “non-pick” function σ̄(h) := h− σ(h) is a weakly increasing function of h.

Proof. Let us first prove that any σL fulfills the three conditions. Condition 1 follows
from the assumption that 1 ∈ L. Condition 2 follows from the fact that a layer that is
picked from a pile of size h is also picked from a pile of size greater than h. Condition
3 follows from the fact that a layer that is not picked from a pile of size h is also not
picked from a pile of size greater than h.

Assuming that the three conditions are satisfied for some σ, we shall find a corre-
sponding L. First note that conditions 2 and 3 together are equivalent to the condition
that for all pile sizes h > 0 the difference ∆σ(h) := σ(h)− σ(h− 1) equals either 1 or 0.
By choosing the pick layer

L = {h > 0 : ∆σ(h) = 1}
it is straightforward to see that we obtain σL = σ. �

The aim of the present paper is to show that several interesting properties of Bul-
garian solitaire generalize to all L-solitaires, although they do not generalize to all
σ-solitaires.

As an illustration, consider the following dominance preserving property. Say that
λ ≤ κ if the configuration λ is dominated by configuration κ in the sense that λi ≤ κi
holds for all i. If one move of σ-solitaire is played in parallel from two configurations
λ and κ, let λnew and κnew denote the new configurations thereby reached. In the
special case of ordinary Bulgarian solitaire, it is obvious that a dominance relation is
always preserved, that is, λ ≤ κ implies λnew ≤ κnew. This dominance preserving
property does not hold for σ-solitaire in general. A simple counter-example is obtained
by defining σ(3) = 0 and σ(4) = 2, and setting λ = (3) and κ = (4). We then obtain
λnew = (3) and κnew = (2, 2).
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Theorem 2. The implication λ ≤ κ ⇒ λnew ≤ κnew holds in σ-solitaire if both σ and σ̄ are
weakly increasing functions. In particular, the implication holds for any L-solitaire.

Proof. If σ̄ is weakly increasing, what remains of the old piles of λ will be dominated
by what remains of the old piles of κ. If σ is weakly increasing, the new pile formed
from λ will be dominated by the new pile formed from κ. This pilewise dominance
clearly remains when the piles in each configuration are sorted by size. By Theorem 1,
for any L-solitaire with pick-layer set L, σL has the property that both σL and σ̄L are
weakly increasing functions. �

3. Uniqueness of stable configurations

Uniqueness of stable configurations does not generally hold for the σ-solitaire; a
simple counter-example is obtained by defining σ(1) = 1, σ(2) = 1, and σ(3) = 3, in
which case both (2, 1) and (3) are stable configurations of three cards. Note that this
pick function σ violates condition 3 in Theorem 1, and therefore does not define an L-
solitaire. Here we show that uniqueness of stable configurations holds for L-solitaires.

Lemma 1. Let σ be a pick function such that σ̄ is weakly increasing and σ(h) > 0 for any
h > 0 (e.g., σ could be σL for any pick-layer set L). Then λ is a stable configuration of the
σ-solitaire if and only if λi+1 = σ̄(λi) for all i ≥ 1.

Proof. A move of the σ-solitaire decreases the size of any nonempty pile from λi to
σ̄(λi) and then creates a new pile such that the sum of all pile sizes stays constant at n,
the total number of cards. Because σ̄ is assumed to be a weakly increasing function, the
decreased piles will still satisfy σ̄(λi) ≥ σ̄(λi+1) for all i ≥ 1, that is, they will not need
to be reordered. Therefore λ is a stable configuration if σ̄(λi) = λi+1 for all i ≥ 1, as the
new pile will then automatically have size λ1. Conversely, if λ is a stable configuration,
then, since the size of any nonempty pile decreases, the new pile must have size λ1,
and the decreased piles must match the rest of the original piles, that is, σ̄(λi) = λi+1
for all i ≥ 1. �

Theorem 3 (Uniqueness of stable configurations). Let σ be a pick function such that σ̄ is
weakly increasing and σ(h) > 0 for any h > 0 (e.g., σ could be σL for any pick-layer set L).
Then (a) for each possible size of the first pile, λ1, there is a unique stable configuration of the
σ-solitaire, which is given by λi+1 = σ̄i(λ1) for all i > 0, and (b) there is at most one stable
configuration of the σ-solitaire on any given total number n of cards.

Proof. Part (a) of the theorem follows immediately by induction from Lemma 1. To
prove part (b), let λ be a stable configuration with n cards and consider another stable
configuration λ′ with λ1 < λ′1. Using the assumption that σ̄ is weakly increasing, it
follows immediately by induction that λi ≤ λ′i for all i ≥ 1, and consequently that the
total number of cards in these two configurations are different. �

So, for a fixed L-solitaire and a fixed total number of cards, there is either exactly
one stable configuration or none at all. Next we shall bound the difference in the total
number of cards between consecutive stable configurations of a fixed L-solitaire.
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Corollary 1. Fix an L-solitaire and let λ and λ′ be the stable configurations determined by first
piles of size λ1 and λ′1 = λ1 + 1, respectively. Then the difference in the total number of cards
between λ′ and λ is at most `(λ) + 1.

Proof. As we noted in the proof of Theorem 1, the assumption that both σL and σ̄L are
weakly increasing functions implies that for any pile size h we have that σL(h + 1)− σL(h)
equals either 1 or 0. Starting from the relation λ′1 = λ1 + 1, it follows immediately by
induction that as long as σL(λi + 1) − σL(λi) = 0 we will also have λ′i+1 = λi+1 + 1.
The first time we instead have σL(λi + 1)− σL(λi) = 1, we will obtain λ′i+1 = λi+1, and
from that point on the pile sizes will be identical in the two configurations. Thus, the
difference in the total number of cards is equal to the number of piles that differed in
size, which is at most the number of piles in the larger configuration λ′. Because each
of its piles is at most one larger than the corresponding piles in the smaller configura-
tion λ, it can have at most one pile more. Hence, the difference in the total number of
cards is bounded by `(λ) + 1. �

4. Convexity of stable configurations

We shall now characterize what stable configurations of L-solitaires look like. Define
a configuration λ as convex if λi − λi+1 ≥ λi+1 − λi+2 for all i ≥ 1.

Lemma 2. A configuration λ is convex if and only if it is a stable configuration of an L-solitaire
for some pick-layer set L.

Proof. First assume that λ is a stable configuration of an L-solitaire. Then Lemma 1
(together with Theorem 1) says that λi − λi+1 = σL(λi) for all i ≥ 1. As σL is weakly
increasing, this inequality implies that λ is convex.

To prove the converse, assume that λ is a convex configuration with ` nonzero piles.
Then for each i ≥ 1 we can choose a subset of (λi − λi+1) − (λi+1 − λi+2) layers in
the interval of layers (λi+1, λi]. Note that this means all layers in the interval (0, λ`]
are chosen, in particular layer 1. The union of these subsets therefore constitutes a
pick-layer set L. Moreover, for all i ≥ 1 the corresponding pick function σL will (by
Observation 1) satisfy σL(λi) = λi − λi+1, as the latter expression equals the number of
picked layers up to layer λi. Thus, λ is a stable configuration of this L-solitaire. �

5. The concept of limit shapes of stable and recurrent configurations

We shall now define what we mean by limit shapes of stable or recurrent configu-
rations, given an infinite sequence L1, L2, . . . of pick-layer sets. We first need to define
the limit shape of an infinite sequence of Young diagrams.

5.1. Downscaling of diagram-boundary functions. For any partition λ, define its diagram-
boundary function as the nonnegative, weakly decreasing and piecewise constant func-
tion ∂λ : R≥0 → R≥0 given by

∂λ(x) = λbxc+1.
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To illustrate, Figure 3 depicts the function graph y = ∂λ(x) for the partition λ =
(4, 4, 2, 1, 1).
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Figure 3. Function graph y = ∂λ(x) for the partition λ = (4, 4, 2, 1, 1) ∈ P(12).

To achieve limiting behavior of such function graphs as |λ| grows we need to rescale
the diagrams. Following [7] and [14] we apply a scaling factor a > 0 such that all row
lengths are multiplied by 1/a and all column heights are multiplied by a/|λ|, yielding
a constant area of 1. Thus, given a partition λ and a scaling factor a > 0, we define the
a-downscaled diagram-boundary function of λ as the nonnegative, real-valued, weakly
decreasing and piecewise constant function ∂aλ : R≥0 → R≥0 given by

(1) ∂aλ(x) =
a
|λ|∂λ(ax) =

a
|λ|λbaxc+1.

5.2. Limit shapes of sequences of Young diagrams.

Definition 2. Given an infinite sequence λ(1), λ(2), . . . of Young diagrams and a sequence of
scaling factors {an}∞

n=1, we say that φ : R>0 → R≥0 is a limit shape of {λ(n)} under the
scaling {an} if the downscaled diagrams converge pointwise to φ, i.e.

(2) ∂an λ(n)(x)→ φ(x) as n→ ∞

for all x > 0.

Note that we do not require that |λ(n)| = n. (However, in all our applications we will
have |λ(n)|/n→ 1 as n→ ∞.)

5.3. Limit shapes of recurrent configurations of Ln-solitaires. Consider a sequence of
pick-layer sets {Ln}∞

n=1. By a sequence of recurrent configurations we mean a sequence
{ρ(n)}∞

n=1 of configurations such that, for any n, |ρ(n)| = n and ρ(n) is a recurrent
configuration with respect to the Ln-solitaire.

Definition 3. Given a sequence of pick-layer sets {Ln}∞
n=1 and a sequence of positive scaling

factors {an}∞
n=1, we say that φ : R>0 → R≥0 is a limit shape of recurrent configurations of

{Ln}∞
n=1 under the scaling sequence {an}∞

n=1 if φ is a limit shape of any sequence of recurrent
configurations under this scaling sequence.
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5.4. Limit shapes of stable configurations of Ln-solitaires. Again, consider a sequence
{Ln}∞

n=1 of pick-layer sets. For each value of n, consider the Ln-solitaire and, among
the stable configurations with at most n cards, let ζ(n) be the stable configuration with
the largest number of cards. This is well-defined since there always exists a stable
configuration with a single card and there is at most one stable configuration with any
given number of cards according to Theorem 3.

Definition 4. A limit shape of stable configurations of the sequence {Ln}∞
n=1 under the

scaling sequence {an}∞
n=1 is a limit shape of the sequence {ζ(n)}∞

n=1 under this scaling sequence.

In general, the stable configuration ζ(n) has fewer than n cards, but never significantly
fewer, as the following lemma asserts.

Lemma 3. |ζ(n)|/n→ 1 as n→ ∞.

Proof. By Theorem 3(a), for each n there is a unique stable configuration λ(n) with
respect to the Ln-solitaire such that the size of the first pile is λ

(n)
1 = ζ

(n)
1 + 1. According

to Corollary 1 we have

(3) |λ(n)| − |ζ(n)| ≤ `(ζ(n)) + 1.

Since |λ(n)| > |ζ(n)| it follows from the definition of ζ(n) that |λ(n)| > n, and combining
this with the inequality (3) yields

(4) |ζ(n)| ≥ n− `(ζ(n)).

Since at least one card is removed from each non-zero pile in each move, it follows from
Theorem 3(a) that the sequence of piles of the stable configuration ζ(n) decreases by at
least one card per pile. Thus, |ζ(n)| ≥ 1 + 2 + · · ·+ `(ζ(n)) = `(ζ(n))

(
`(ζ(n)) + 1

)
/2 >

`(ζ(n))2/2 and hence `(ζ(n)) <
√

2|ζ(n)| ≤
√

2n. Combining this with the inequality (4)

yields |ζ(n)| > n−
√

2n and the lemma follows. �

6. Characterization of limit shapes of stable configurations of Ln-solitaires

It is well known [4] that the Bulgarian solitaire has a stable configuration if and only
if the total number of cards in the deck is a triangular number, n = 1 + 2 + · · ·+ k for
some positive integer k, in which case the unique stable configuration has one pile of
each integer size from k down to 1. Thus, the Young diagrams of stable configurations
are staircase-shaped. After scaling by an =

√
n the staircase has unit area. As n tends

to infinity the downscaled staircases converge to a limit shape that is a line with slope
−1, from (0,

√
2) to (

√
2, 0).

When generalizing from ordinary Bulgarian solitaire to L-solitaire, the limit shapes
that arise will not necessarily be linear. Indeed, in Theorem 4 we prove that essen-
tially any convex shape can be obtained as the limit shape of a suitably chosen infinite
sequence of pick-layer sets {Ln}∞

n=1.
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It is a well known fact that a convex function on the real line has left and right
derivatives everywhere and that these derivatives coincide at all but a finite or count-
ably infinite number of points. We will also need two elementary lemmas on convex
functions that we have not found in any textbook. The first one is due to Tsuji [13,
Lemma 1] and a proof for the second one can be found in [2, Theorem 6].

Lemma 4 (Tsuji 1952). Let fn : R>0 → R be convex functions for n = 1, 2, . . . , and suppose
there is a function f : R>0 → R such that limn→∞ fn(x) = f (x) for any x > 0. Then we
also have pointwise convergence of derivatives wherever they are defined: For any x > 0 such
that f ′(x) exists and f ′n(x) exists for all n, we have limn→∞ f ′n(x) = f ′(x).

Lemma 5. The right derivative of a convex function is right continuous.

Theorem 4. Let φ : R>0 → R≥0 be a function and let a1, a2, . . .→ ∞ be any (positive) scaling
factors such that a2

n/n converges to some c ≥ 0 as n→ ∞. Then the following are equivalent.
(a) There is a sequence {Ln}∞

n=1 of pick-layer sets such that φ is a limit shape of stable
configurations of {Ln}∞

n=1 under the scaling sequence {an}∞
n=1.

(b) φ is convex with
∫ ∞

0 φ(x) dx ≤ 1, and if c > 0 the right derivative φ′R(x) is an integer
multiple of c for any x > 0.

Proof. To prove that (a) implies (b), suppose φ is a limit shape of stable configurations
of {Ln} under the scaling {an}.

For each n, define a piecewise linear function φn : R>0 → R≥0 as the function
whose graph joins the inner corners of the downscaled Young diagram of the stable
configuration ζ(n) using the scaling factor an. In other words,

φn(x) =
an

|ζ(n)|
(
(1− t(x))ζ(n)banxc+1 + t(x)ζ(n)banxc+2

)
,

where t(x) := anx − banxc. By Lemma 2, ζ(n) is convex, and therefore also φn. Since
φ is weakly decreasing, its set D of discontinuity points is finite or countable. By the
construction of φn it is clear that φn(x) → φ(x) for any x outside D. Thus, since each
φn is convex, so is φ, and it follows that D is empty and that φn(x)→ φ(x) everywhere.
By Fatou’s lemma ∫ ∞

0
φ(x) dx ≤ lim inf

n→∞

∫ ∞

0
φn(x) dx ≤ 1.

Now suppose c > 0. It is a well known fact that a convex function is differentiable
almost everywhere2, so by Lemma 4, for almost every x > 0 we have φ′n(x) → φ′(x)
and hence, by Lemma 3,

φ′n(x)
a2

n/|ζ(n)|
→ φ′(x)/c

2From here on, we will use the term “almost everywhere” as a synonym for “everywhere except on a
finite or countably infinite set”
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as n→ ∞. But for the right derivative we have that

(φn)′R(x)
a2

n/|ζ(n)|
= ζ

(n)
banxc+2 − ζ

(n)
banxc+1,

which is an integer, so it follows that φ′(x)/c is an integer almost everywhere. From
Lemma 5 it follows that φ′R(x)/c is an integer everywhere.

For the other direction, suppose (b) holds true and that c = 0. Since φ is convex and∫ ∞
0 φ(x) dx is bounded, we know that φ is weakly decreasing and that limx→∞ φ(x) = 0.

It also follows that φ has a nonpositive and weakly increasing right derivative φ′R.
Let s1, s2, . . . be a sequence of positive real numbers such that sn → ∞ but sna2

n/n→ 0
as n→ ∞, and such that snan is an integer for any n.

Define a convex partition λ(n) by letting

(5) λ
(n)
k =

snan

∑
i=k+1

⌊
− n

a2
n

φ′R(i/an)
⌋

for k = 1, 2, . . . . Since φ′R is a weakly increasing function, the sum above can be esti-
mated by integrals:

λ
(n)
k ≤ − n

an

∫ ∞

k/an
φ′R(x) dx,

λ
(n)
k ≥ − n

an

∫ sn

(k+1)/an
φ′R(x) dx− snan,

where the last term snan stems from the floor function in (5). By the fundamental
theorem of calculus, the integrals can be expressed in terms of values of φ, and we
obtain

λ
(n)
k ≤ n

an
φ(k/an),(6)

λ
(n)
k ≥ n

an

(
φ((k + 1)/an)− φ(sn)

)
− snan.(7)

From the first of these inequalities, and from the fact that φ is weakly decreasing, it
follows that

∞

∑
k=1

λ
(n)
k ≤ an

∫ ∞

0

n
an

φ(x) dx ≤ n,

where the last inequality uses the assumption that
∫ ∞

0 φ(x) dx ≤ 1.

Now, let µ
(n)
k = λ

(n)
k for k = 2, 3, . . . but choose µ

(n)
1 so that µ

(n)
1 + µ

(n)
2 + · · · = n.

Since λ(n) is convex, clearly µ(n) is too, so by Lemma 2, µ(n) is a stable configuration of
the Ln-solitaire for some pick-layer set Ln.

By (6) and the facts that φ is continuous and an → ∞, it follows that, for any x > 0,

(8)
an

n
λbanxc+1 ≤ φ((banxc+ 1)/an)→ φ(x).
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Similarly, by (7) and the facts that φ(sn) → 0 and sna2
n/n → 0 we obtain for any x > 0

that

(9)
an

n
λbanxc+1 ≥ φ((banx + 1c+ 1)/an)− φ(sn)−

sna2
n

n
→ φ(x).

From (8) and (9) it follows that an
n λbanxc+1 → φ(x) and hence an

n µbanxc+1 → φ(x) for any
x > 0, establishing that φ is the desired limit shape.

Now suppose (b) holds true and c > 0. Define a convex partition λ(n) by letting

λ
(n)
k = −1

c

∞

∑
i=k+1

φ′R(i/
√

cn)

for k = 1, 2, . . . .
The remaining reasoning is completely analogous to the previous case. Since φ′R is

weakly increasing, we have

λ
(n)
k ≤ −

√
cn
c

∫ ∞

k/
√

cn
φ′R(x) dx =

√
n
c

φ(k/
√

cn),

λ
(n)
k ≥ −

√
cn
c

∫ ∞

(k+1)/
√

cn
φ′R(x) dx =

√
n
c

φ((k + 1)/
√

cn).

From the first of these inequalities it follows that
∞

∑
k=1

λ
(n)
k ≤

√
cn
∫ ∞

0

√
n
c

φ(x) dx ≤ n.

Now, as before, let µ
(n)
k = λ

(n)
k for k = 2, 3, . . . but choose µ

(n)
1 so that µ

(n)
1 + µ

(n)
2 +

· · · = n. Again, µ(n) is convex, so by Lemma 2 it is a stable configuration for some
pick-layer set Ln. Finally, since a2

n/n → c as n → ∞, and since φ is continuous, for any
x > 0 we have

φ(x)← an√
cn

φ

(
banx + 1c+ 1√

cn

)
≤ an

n
λbanxc+1 ≤

an√
cn

φ

(
banxc+ 1√

cn

)
→ φ(x).

Thus, an
n µbanxc+1 → φ(x) for any x > 0, and φ is the desired limit shape. �

Note that a downscaled Young diagram will have unit area. The reason for the
inequality

∫ ∞
0 φ(x) dx ≤ 1 in Theorem 4 is that the largest pile (or a few of the largest

piles) may be arbitrarily large without affecting the limit shape φ. By Definition 2, the
limit shape does not include x = 0, which allows for limx→0+ φ(x) to be infinite.

7. A conjecture on limit shapes of recurrent configurations of L-solitaires

The ordinary Bulgarian solitaire has the property that when a stable configuration
exists (i.e., when the total number of cards is a triangular number), it will eventually be
reached from any starting configuration. This property does not hold for L-solitaires

Online Journal of Analytic Combinatorics, Issue 15 (2020), #10



12 KIMMO ERIKSSON, MARKUS JONSSON, AND JONAS SJÖSTRAND

in general. A counter-example is given by the {1, 4}-solitaire on n = 11 cards, which
allows both a stable configuration (5, 3, 2, 1) and a non-trivial cycle

(6, 2, 2, 1) 7→ (5, 4, 1, 1) 7→ (6, 3, 2) 7→ (4, 4, 2, 1) 7→ (6, 2, 2, 1).

However, it is worth noting that the pile sizes in these recurrent configurations never
deviate by more than one card from the corresponding pile sizes in the stable configu-
ration.

This is akin to the ordinary Bulgarian solitaire in the case when no stable configura-
tion exists. The game will then eventually reach a cycle of recurrent configurations that
are close to staircase-shaped (namely, they can be constructed by starting with some
staircase configuration (k, k − 1, . . . , 1) and adding at most one card to each pile, and
possibly adding one more pile of size 1) [1, 3, 8, 9]. As n grows to infinity and the
diagram is rescaled to unit area using scaling factor an =

√
n, the deviation of recur-

rent configurations from the perfect staircase tends to zero. Thus, the limit shape of
recurrent configurations of the ordinary Bulgarian solitaire exists and is the same as
the limit shape for stable configurations (namely, a line segment with negative slope).
We believe that the same holds true for L-solitaire in general:

Conjecture 1. If φ is a limit shape of the stable configurations for the sequence of pick-layer
sets {Ln}∞

n=1 under the scaling sequence {an}∞
n=1, then φ is also a limit shape of recurrent

configurations under the same scaling.

For L-solitaire in general we leave this conjecture as an open problem. Below we
shall prove the conjecture for a special class of L-solitaires for which we can determine
the exact form of limit shapes.

8. Limit shapes of stable configurations of q-proportion solitaire

Choose a q ∈ (0, 1] and consider the L-solitaire defined by a pick-layer set with the
distance between adjacent pick layers being approximately 1/q:

L = {1 + bi/qc : i = 0, 1, 2, . . . }.

Using Observation 1, it follows that the corresponding pick function is

σL(h) = dqhe.

This pick function means that from each pile we pick a number of cards given by the
proportion q of the pile size, rounded upward to the closest integer. We refer to this
special case of L-solitaire as q-proportion solitaire.

We may let the choice of q depend on the total number of cards n, in which we write
qn. Note that for qn ≤ 1/n only one card is picked in any pile. Thus by choosing
qn ≤ 1/n we obtain ordinary Bulgarian solitaire.

Thanks to Lemma 1, all stable configurations of a q-proportion solitaire are deter-
mined by first choosing the size of the largest part and then repeatedly applying the
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function σ̄(h) = h− dqhe to that part to obtain the remaining parts of the configura-
tion. From this description of the stable configurations we will be able to determine
their limit shapes.

8.1. Three regimes of limit shapes. There will be three different regimes of limit
shapes defined by the asymptotic behavior of nq2

n, as described in the following theo-
rem and illustrated in Figure 4.

(a) (b)

(c)

Figure 4. The three cases of limit shapes in Theorem 5: (a) triangular, (b)
exponential, and (c) interpolating with Z linear sections, here illustrated
for Z = 3.

Theorem 5. There are three cases for limit shapes of stable configurations of q-proportion Bul-
garian solitaire, depending on the asymptotic behavior of nq2

n as n tends to infinity:
(a) In case nq2

n → 0, the scaling sequence an =
√

n/2 yields the linear limit shape φ(x) =
max{0, 1− x

2}.
(b) In case nq2

n → ∞ and qn → 0, the scaling sequence an = 1/qn yields the exponential
limit shape φ(x) = e−x.

(c) Interpolating between the two previous cases is the case nq2
n → C > 0. Define z > 0 by

the equation

2C =
z2 + dze2
dze −

dze−1

∑
i=0

1
dze − i

and set W0 = z
C

1+z−dze
dze and Wk = z

C
1

dze−k for 1 ≤ k ≤ dze − 1. Then there is a limit
shape under the scaling an = nqn/z. This shape approximates the exponential shape
using Z := dze linear segments such that the first segment has width W0 and every
subsequent segment, numbered k = 1, 2, . . . , Z− 1, has width Wk. The slope of the kth
segments is −C(Z−k)

z2 for all k = 0, 1, . . . , Z− 1.

Proof. Let us treat one regime at a time.
(a) In case nq2

n → 0 the effect of rounding turns out to dominate in a move from the
stable configuration. Specifically, for all sufficiently large n we have qnd

√
2ne < 1 and

hence dqnhe = 1 for all 0 < h ≤ d
√

2ne. Consider such a large n, and let λ be a stable
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configuration of the qn-proportion solitaire such that λ1 ≤ d
√

2ne. Then λ is a staircase
configuration with |λ| = λ1(λ1 + 1)/2 cards. If λ1 = d

√
2ne, we would have |λ| > n,

so ζ
(n)
1 < d

√
2ne. Hence ζ(n) is a staircase configuration and we obtain the same linear

limit shape as in the case of Bulgarian solitaire.
(b) In case nq2

n → ∞ and qn → 0 the effect of rounding turns out to be negligible in
a move from the stable configuration ζ(n). By repeated application of Lemma 1, we see
that, for any k,

(10) ζ
(n)
1 (1− qn)

k−1 − (k− 1) ≤ ζ
(n)
k ≤ ζ

(n)
1 (1− qn)

k−1,

where the term −(k− 1) on the left-hand side is the contribution from rounding down-
wards in each move.

Let sn be a sequence of positive real numbers such that sn → ∞ but s2 / nq2
n → 0 as

n → ∞, and such that sn/qn is an integer for any n. By summing the inequalities (10),
we can estimate the total number of cards |ζ(n)|:

sn/qn

∑
k=1

(
ζ
(n)
1 (1− qn)

k−1 − (k− 1)
)
≤

sn/qn

∑
k=1

ζ
(n)
k ≤ |ζ(n)| ≤

∞

∑
k=1

ζ
(n)
1 (1− qn)

k−1.

This can be written as

ζ
(n)
1

1− (1− qn)sn/qn

qn
−
(

sn/qn

2

)
≤ |ζ(n)| ≤ ζ

(n)
1 /qn,

and it follows that |ζ(n)| = (1− o(1))ζ(n)1 /qn, and thus, by Lemma 3, that

(11) ζ
(n)
1 = (1 + o(1))nqn.

Now, for any fixed x > 0, it follows from (10) and (11) that

∂an ζ(n)(x) =
1

nqn
ζ
(n)
bx/qnc+1 =

1
nqn

(
ζ
(n)
1 (1− qn)

bx/qnc −O(1/qn)
)

= e−x(1 + o(1))−O(1/nq2
n),

which tends to e−x since nq2
n → ∞.

(c) For the remaining case, the crucial observation is that the rate by which a pile
melts away depends on how the pile size relates to multiples of 1/qn. Any pile size
can be expressed in the form y/qn for some y > 0. From a pile of that size, a move
will take away the amount dye. Thus, a pile starting at a size of z/qn will initially melt

away at a slope of Z = dze per move for B0 =
⌈

1+z−Z
Zqn

⌉
moves, i.e. until the pile size

reaches the threshold (Z− 1)/qn. At this point the slope decreases to Z− 1 per move
for B1 (possible zero) moves until the pile size reaches the next threshold, (Z− 2)/qn,
etc. This pattern ends with a section of slope 1 per move for BZ−1 moves. See Figure 5.
By Lemma 1 this sequence of pile sizes constitutes a stable configuration λ(n).
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B0 B1 BZ−1

0

1
qn

Z−2
qn

Z−1
qn

z
qn

slope Z

slope Z− 1

slope 1

Figure 5. The stable configuration λ(n) in case (c) of the proof of Theorem 5.

For a moment, fix k ∈ {1, 2, . . . , Z − 1} and consider only the k-th segment of λ(n),
that is, the piles in λ(n) of sizes between (Z − k − 1)/qn (exclusive) and (Z − k)/qn
(inclusive). The number of such piles, Bk, is approximately 1

qn(Z−k) , and it is easy to see
that the error in that approximation is at most 1, so

(12) Bk =
1 + o(1)

qn(Z− k)
.

The average size among those piles, Ak, is approximately 1
2

(
Z−k

qn
+ Z−k−1

qn

)
, and it is

easy to see that ∣∣∣∣∣Ak −
Z− k− 1

2
qn

∣∣∣∣∣ ≤ Z− k
2

,

and hence

(13) Ak = (1 + o(1))
Z− k− 1

2
qn

.

By combining (12) and (13), we can estimate the total number of cards in the k-th
segment of λ(n):

AkBk =
1 + o(1)

2q2
n

(
2− 1

Z− k

)
.

The average number of cards A0 in the first B0 piles of λ(n) is approximately 1
2

(
z

qn
+ Z−1

qn

)
,

and it is easy to see that ∣∣∣∣A0 −
z + Z− 1

2qn

∣∣∣∣ ≤ Z
2
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and hence

A0 = (1 + o(1))
z + Z− 1

2qn
.

It follows that the total number of cards in those piles is

A0B0 = A0

⌈
1 + z− Z

Zqn

⌉
= (1 + o(1))

z2 − (Z− 1)2

2q2
nZ

.

The total number of cards in λ(n) is thus

|λ(n)| =
Z−1

∑
k=0

AkBk =
1 + o(1)

2q2
n

(
z2 − (Z− 1)2

Z
+

Z−1

∑
k=1

(
2− 1

Z− k

))
(14)

=
1 + o(1)

2q2
n

(
z2 + Z2

Z
−

Z−1

∑
k=0

1
Z− k

)
(15)

=
1 + o(1)

2q2
n

ψ(z),(16)

where we define the real function ψ on R>0 by

ψ(y) =
y2 + dye2
dye −

dye−1

∑
i=0

1
dye − i

.

Since q2
nn → C, it follows from (16) that |λ(n)|/n → ψ(qnλ

(n)
1 )/2C. By Lemma 3, we

know that |ζ(n)|/n → 1, so it follows that ψ(qnζ
(n)
1 ) → 2C. It is easy to check that ψ is

continuous and strictly increasing and that limy→0 ψ(y) = 0 and limy→∞ ψ(y) = ∞, so

ψ has a continuous inverse ψ−1 defined on R>0. It follows that qnζ
(n)
1 → ψ−1(2C), and

from now on we let z = ψ−1(2C) in accordance with the definition in the theorem.
Let Wk be the length of the k-th section, 0 ≤ k ≤ Z− 1, after downscaling ζ(n). Then

W0 =
z

nqn

⌈
1 + z− Z

qnZ

⌉
→ z(1 + z− Z)

CZ
and

Wk =
z

nqn
Bk =

z
nqn
· 1 + o(1)

qn(Z− k)
→ z

C(Z− k)
, 1 ≤ k ≤ Z− 1

as n→ ∞. The proposed slopes of the sections follow immediately. Analogously to the
proof in case (a), it follows that the above describes the limit shape. �

9. Limit shapes of recurrent configurations of qn-proportion solitaire

Although we have not been able to prove Conjecture 1 in full generality, we can prove
the conjecture in the two main regimes of q-proportion solitaire.

Lemma 6. After n moves of qn-proportion solitaire on n cards there are at most 2
√

n nonempty
piles and the largest pile has size nqn + O(

√
n).
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Proof. Every nonempty pile decreases by at least one card in each move. As all pile
sizes are bounded by n, all original piles must have died out after n moves. Moreover,
because there are n cards in total there are always at most

√
n piles of size greater than√

n. After
√

n moves all other piles will have died and
√

n new piles will have been
created, hence there will then be at most 2

√
n nonempty piles. From then on, when

new piles are formed they will have size nqn + O(
√

n), where the latter term is the
contribution from the number of picked cards in each pile being rounded upwards to
the closest integer. �

9.1. The limit shape of recurrent configurations in the case q2
nn → 0. In case q2

nn →
0, Lemma 6 implies that after n moves the largest pile size is O(

√
n) (since nq =√

n(q2
nn) = o(

√
n)). Then the number of picked cards in each pile is bounded by

dqnO(
√

n)e. This number equals 1 for sufficiently large n. From then on the solitaire is
therefore equivalent to Bulgarian solitaire. As the recurrent configurations of Bulgarian
solitaire are known to converge to a linear limit shape under appropriate choice of
scaling, it follows that the recurrent configurations of qn-proportion solitaire do too in
this case.

9.2. The limit shape of recurrent configurations in the case q2
nn → ∞. Finally, we

shall prove that in the case q2
nn → ∞ and qn → 0, the recurrent configurations of qn-

proportion solitaire have an exponential limit shape under the scaling an = 1/qn. We do
this by showing that regardless of which configuration we start at we must eventually
reach configurations that are close to the exponential shape. Our proof works with
piles sorted by time of creation rather than by size. Thus, as mathematical objects the
configurations are then compositions rather than partitions. However, as we prove in
[6, Lemma 2], if a sequence of compositions has a decreasing limit shape then the same
limit shape is obtained by the corresponding partitions.

Lemma 6 implies that after n moves the largest pile is always of size nqn +O(
√

n) =
nqn(1 + o(1)) and that after an additional 2

√
n moves all nonempty piles will be stem-

ming from piles of that size. At this point, let αk denote the current size of the pile that
was created k moves ago (k = 1, 2, . . . ) and has since been decreased k− 1 times. Thus
αk = (1− qn)k−1nqn(1 + o(1)) −O(k) where the latter term is the contribution from
rounding downward in each move.

After downscaling with an = 1/qn:

∂an α(x) =
1

qnn
αbanxc+1 =

(1− qn)x/qn qnn(1 + o(1))−O(1/qn)

qnn

= (1 + o(1))(1− qn)
x/qn −O

( 1
q2

nn
)

= (1− qn)
x/qn − o(1),

where we used q2
nn → ∞ as n → ∞ in the last step. Since qn → 0 as n → ∞, we have

(1− qn)x/qn → e−x and thus ∂an α(x)→ e−x for any x > 0.
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Finally, thanks to the abovementioned result from [6, Lemma 2], the same limit shape
is obtained when the piles of the weak compositions are reordered to form partitions.
(Note that in our earlier work [6] we require uniform convergence to the limit shape,
but by Dini’s theorem this distinction does not matter in this case, since the limit shape
is continuous and the downscaled Young diagrams are bounded.)

10. Discussion

In this paper we have introduced L-solitaire, a generalization of Bulgarian solitaire,
and proved that some well-known results for the Bulgarian solitaire generalize nicely
to L-solitaire. Our main focus was limit shape results for stable and recurrent config-
urations. For a subclass of L-solitaires, called q-proportion solitaire, we found explicit
limit shapes.

One may also consider limit shapes of random versions of Bulgarian solitaire. Popov
[12] studied the limit shape of the configurations drawn from the stationary distribution
of a random version of Bulgarian solitaire, in which a card is picked from a pile only
with probability p (and independently of other piles). He found that also this random
version yields a linear limit shape, in the sense that the probability of deviations larger
than some ε > 0 tends to zero as n tends to infinity. See our other paper [6] for related
work on random versions of q-proportion solitaire.
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