
A COMBINATORIAL CHARACTERIZATION
OF THE GENERALIZED EXPONENTIAL AND FUBINI POLYNOMIALS

EMANUELE MUNARINI

Abstract. In this paper, we show that the generalized exponential polynomials and
the generalized Fubini polynomials satisfy certain binomial identities and that these
identities characterize the mentioned polynomials (up to an affine transformation of the
variable) among the class of the normalized Sheffer sequences.

1. Introduction

The generalized exponential polynomials S(ν)
n (x) are defined by the exponential generat-

ing series

(1) S(ν)(x; t) = ∑
n≥0

S(ν)
n (x)

tn

n!
= eνtex(et−1)

and can be written explicitly as

S(ν)
n (x) =

n

∑
k=0

S(ν)
n,k xk

where the coefficients S(ν)
n,k are the generalized Stirling numbers of the second kind. For

ν = r ∈N, we have the r-exponential polynomials [7], whose coefficients are the r-Stirling
numbers of the second kind [2]. In particular, for ν = 0, we have the ordinary exponential
polynomials Sn(x) [15, p. 63]. From series (1), we have that the generalized exponen-
tial polynomials can be expressed in terms of the ordinary exponential polynomials,
namely

S(ν)
n (x) =

n

∑
k=0

(
n
k

)
νn−k Sk(x) .

The generalized Bell numbers b(ν)n are defined by setting x = 1 in the generalized expo-
nential polynomials, i.e. b(ν)n = S(ν)

n (1) = ∑n
k=0 S(ν)

n,k , and consequently have exponential
generating series

(2) ∑
n≥0

b(ν)n
tn

n!
= eνteet−1 .
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2 EMANUELE MUNARINI

For ν = r ∈ N, we have the r-Bell numbers [7], and, in particular, for ν = 0, we have
the ordinary Bell numbers bn [4, p. 210] [18, A000110]. Notice that the generalized Bell
numbers can be expressed in terms of the ordinary Bell numbers:

b(ν)n =
n

∑
k=0

(
n
k

)
νn−kbk .

The generalized Fubini polynomials F(ν)
n (x) are defined by the exponential generating

series

(3) F(ν)(x; t) = ∑
n≥0

F(ν)
n (x)

tn

n!
=

eνt

1− x(et − 1)

and can be written explicitly as

F(ν)
n (x) =

n

∑
k=0

S(ν)
n,k k! xk .

For ν = r ∈ N, we have the r-Fubini polynomials [8, 9] and, in particular, for ν = 0, we
have the ordinary Fubini polynomials Fn(x) [19] (or ordered Bell polynomials, or De Morgan
polynomials [5, 11]). From series (3), we have that the generalized Fubini polynomials
can be expressed in terms of the ordinary Fubini polynomials, namely

F(ν)
n (x) =

n

∑
k=0

(
n
k

)
νn−k Fk(x) .

The generalized Fubini numbers F(ν)
n are defined by setting x = 1 in the generalized Fu-

bini polynomials, i.e. F(ν)
n = F(ν)

n (1) = ∑n
k=0 S(ν)

n,k k!, and consequently have exponential
generating series

(4) ∑
n≥0

F(ν)
n

tn

n!
=

eνt

2− et .

For ν = r ∈ N, we have the r-Fubini numbers [9], and, in particular, for ν = 0, we have
the ordinary Fubini numbers Fn [3] [4, p. 228] [6] [18, A000670], or ordered Bell numbers
[10]. Notice that the generalized Fubini numbers can be expressed in terms of the
ordinary Fubini numbers:

F(ν)
n =

n

∑
k=0

(
n
k

)
Fn−kνk .

A Sheffer sequence [1, 15, 16, 17] is a polynomial sequence {sn(x)}n≥0 having expo-
nential generating series

(5) ∑
n≥0

sn(x)
tn

n!
= g(t) ex f (t)

where g(t) = ∑n≥0 gn
tn

n! and f (t) = ∑n≥0 fn
tn

n! are two exponential series with g0 6= 0,
f0 = 0 and f1 6= 0. A normalized Sheffer sequence is a Sheffer sequence with g0 = 1.
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A Sheffer matrix is an infinite lower triangular matrix S = [sn,k]n,k≥0 whose k-th col-
umn has exponential generating series

∑
n≥k

sn,k
tn

n!
= g(t)

f (t)k

k!

where g(t) = ∑n≥0 gn
tn

n! and f (t) = ∑n≥0 fn
tn

n! are two exponential series with g0 6= 0,
f0 = 0 and f1 6= 0. In this case, we say that S has spectrum (g(t), f (t)) and we write
S = (g(t), f (t)). The row polynomials of S are defined by

sn(x) =
n

∑
k=0

sn,k xk

and form a Sheffer sequence {sn(x)}n≥0 with exponential generating series (5). On
the other hand, given a Sheffer sequence {sn(x)}n≥0, the matrix S = [sn,k]n,k≥0 of the
coefficients is the Sheffer matrix with spectrum (g(t), f (t)).

Given a Sheffer sequence {sn(x)}n≥0, with Sheffer matrix S = [sn,k]n,k≥0 = (g(t), f (t)),
the associated sequence {s∗n(x)}n≥0 is defined by the polynomials

s∗n(x) =
n

∑
k=0

sn,kk! xk

with exponential generating series

(6) ∑
n≥0

s∗n(x)
tn

n!
=

g(t)
1− x f (t)

.

The associated polynomials s∗n(x) are essentially the Laplace transform of the polyno-
mials sn(x), since we have the following integral relation

s∗n(x) =
∫ +∞

0
sn(xz) e−z dz .

Notice that the space S of the Sheffer sequences and the space S∗ of the associated
Sheffer sequences are both closed under affine transformations of the variable. Indeed,
if {sn(x)}n≥0 is a (normalized) Sheffer sequence with spectrum (g(t), f (t)), then, for
every constant α 6= 0 and β, the sequence {sn(αx + β)}n≥0 is a (normalized) Sheffer
sequence with spectrum (g(t)eβ f (t), α f (t)), since

∑
n≥0

sn(αx + β)
tn

n!
= g(t) e(αx+β) f (t) = g(t) eβ f (t) · eαx f (t) .

Similarly, if {s∗n(x)}n≥0 is an associated Sheffer sequence with spectrum (g(t), f (t)),
then, for every constant α 6= 0 and β, the sequence {s∗n(αx + β)}n≥0 is an associated

Sheffer sequence with spectrum
(

g(t)
1−β f (t) , α f (t)

1−β f (t)

)
, since

∑
n≥0

s∗n(αx + β)
tn

n!
=

g(t)
1− (αx + β) f (t)

=
g(t)

1− β f (t)
1

1− x α f (t)
1−β f (t)

.
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4 EMANUELE MUNARINI

Finally, notice that the generalized exponential polynomials form a Sheffer sequence
with spectrum (eνt, et− 1), while the generalized Fubini polynomials are the associated
sequence. In particular, as just remarked, these polynomials are related by the identity

F(ν)
n (x) =

∫ +∞

0
S(ν)

n (xz) e−z dz .

In this paper, we show that the generalized exponential polynomials and the gener-
alized Fubini polynomials satisfy certain binomial identities and that these identities
characterize the mentioned polynomials (up to an affine transformation of the variable)
in the class of the normalized Sheffer sequences.

2. First characterization

We start by proving (in Theorem 1) that the generalized exponential polynomials
satisfy a binomial identity. Since this identity is of the form F(s0(x), s1(x), . . . , sn(x)),
with F(x0, x1, . . . , xn) ∈ R[x0, x1, . . . , xn] , it is satisfied by all sequences of the form
{sn(αx + β)}n≥0. However, we will prove (in Theorem 3) that such an identity char-
acterizes the generalized exponential polynomials in the class of normalized Sheffer
sequences, up to an affine transformation of the variable.

Theorem 1. The generalized exponential polynomials satisfy the binomial identity

(7)

n

∑
k=0

(
n
k

)
S(ν)

k+1(x)S(ν)
n−k(x) +

n

∑
k=0

(
n
k

)
S(ν)

k+1(x)S(ν)
n−k+1(x) =

=
n

∑
k=0

(
n
k

)
S(ν)

k+2(x)S(ν)
n−k(x) + ν

n

∑
k=0

(
n
k

)
S(ν)

k (x)S(ν)
n−k(x) .

In particular, for ν = 0, we have that the exponential polynomials satisfy the identity

(8)
n

∑
k=0

(
n
k

)
Sk+1(x)Sn−k(x) +

n

∑
k=0

(
n
k

)
Sk+1(x)Sn−k+1(x) =

n

∑
k=0

(
n
k

)
Sk+2(x)Sn−k(x) .

Proof. Consider series (1) and, for simplicity, set S = S(ν)(x; t). Differentiating two
times with respect to t, we have

∂S
∂t

= ν eνtex(et−1) + xeteνtex(et−1) = ν S + xetS

and
∂2S
∂t2 = ν

∂S
∂t

+ xetS + xet ∂S
∂t

.

From the first equation, we have

(∗) xetS =
∂S
∂t
− ν S .
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So, by replacing this expression in the second equation, we have

∂2S
∂t2 = (ν + 1)

∂S
∂t
− ν S + xet ∂S

∂t
.

Then, by multiplying both sides by S, we have

∂2S
∂t2 S = (ν + 1)

∂S
∂t

S− ν S2 + xetS
∂S
∂t

.

Using again identity (∗), we have

∂2S
∂t2 S =

∂S
∂t

S− ν S2 +
(∂S

∂t

)2

or
∂S
∂t

S +
(∂S

∂t

)2
=

∂2S
∂t2 S + ν S2 .

This equation is equivalent to identity (7). �

As an immediate consequence of Theorem 1, for x = 1, we have the following result.

Theorem 2. The generalized Bell numbers satisfy the identity

(9)
n

∑
k=0

(
n
k

)
b(ν)k+1b(ν)n−k +

n

∑
k=0

(
n
k

)
b(ν)k+1b(ν)n−k+1 =

n

∑
k=0

(
n
k

)
b(ν)k+2b(ν)n−k + ν

n

∑
k=0

(
n
k

)
b(ν)k b(ν)n−k .

In particular, for ν = 0, we have that the Bell numbers satisfy the identity

(10)
n

∑
k=0

(
n
k

)
bk+1bn−k +

n

∑
k=0

(
n
k

)
bk+1bn−k+1 =

n

∑
k=0

(
n
k

)
bk+2bn−k .

Now, we prove the converse of Theorem 1, i.e. that identity (7) essentially character-
izes the generalized exponential polynomials.

Theorem 3. If {sn(x)}n∈N is a normalized Sheffer sequence satisfying the binomial identity

(11)

n

∑
k=0

(
n
k

)
sk+1(x)sn−k(x) +

n

∑
k=0

(
n
k

)
sk+1(x)sn−k+1(x) =

=
n

∑
k=0

(
n
k

)
sk+2(x)sn−k(x) + ν

n

∑
k=0

(
n
k

)
sk(x)sn−k(x) ,

then

(12) sn(x) = S(ν)
n (αx + β)

where α and β are arbitrary constants (with α 6= 0).

Proof. Since {sn(x)}n∈N is a normalized Sheffer sequence, its exponential generating
series is

S(x; t) = ∑
n≥0

sn(x)
tn

n!
= g(t) ex f (t)
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6 EMANUELE MUNARINI

where g0 = 1. Identity (11) is equivalent to the equation

∂S
∂t

S +
(∂S

∂t

)2
=

∂2S
∂t2 S + ν S2

where S = s(x; t). Since

∂S
∂t

= g′ex f + xg f ′ex f

∂2S
∂t2 = g′′ex f + 2xg′ f ′ex f + xg f ′′ex f + x2g f ′2ex f ,

the above equation becomes

(g′ + xg f ′) ge2x f + (g′ + xg f ′)2e2x f = (g′′ + 2xg′ f ′ + xg f ′′ + x2g f ′2) ge2x f + ν g2e2x f .

Simplifying by the exponential e2x f , we obtain the equation

gg′ + xg2 f ′ + g′2 + 2xgg′ f ′ + x2g2 f ′2 = gg′′ + 2xgg′ f ′ + xg2 f ′′ + x2g2 f ′2 + ν g2 ,

that is the equation

gg′ + g′2 − gg′′ − ν g2 + x(g2 f ′ + 2gg′ f ′ − 2gg′ f ′ − g2 f ′′) = 0

which is equivalent to the differential system

(∗∗)
{

gg′′ − g′2 − gg′ + ν g2 = 0
g2 f ′′ − g2 f ′ = 0 .

Let us consider the first equation, depending only on g. Setting z = g′/g, we have
z′ = (gg′′ − g′2)/g2, and consequently

g2z′ − g2z + ν g2 = 0 .

Simplifying by g2, we obtain the differential equation

z′ = z− ν .

Hence, we have ∫ dz
z− ν

=
∫

dt

that is
ln(z− ν) = t + c or z = ν + βet

where β is an arbitrary constant with respect to t. Since z = g′/g, we have

g′

g
= ν + βet

that is
ln g = νt + βet + c

that is
g(t) = C eνt eβ(et−1)
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where C is an arbitrary constant with respect to t. Since g0 = 1, we have C = 1 and

g(t) = eνt eβ(et−1) .

Let us now consider the second equation of the differential system (∗∗). Simplifying
by g2, we have f ′′ = f ′, that is f ′ = f + α. Hence, we have∫ f ′(t)

f (t) + α
dt =

∫
dt

that is
ln( f (t) + α) = t + K = t + ln α = ln αet

being f0 = 0. So
f (t) = α(et − 1) .

In conclusion, we have the generating series

S(x; t) = eνteβ(et−1) exα(et−1) = eνt e(αx+β)(et−1) = S(ν)(αx + β; t)

and consequently identity (12). �

3. Second characterization

Also in this case, we start by proving (in Theorem 4) that the generalized Fubini
polynomials satisfy a binomial identity, and then we prove (in Theorem 6) that such an
identity characterizes these polynomials among the normalized Sheffer sequences, up
to an affine transformation of the variable.

Theorem 4. The generalized Fubini polynomials satisfy the binomial identity

(13)

(1− 2ν)
n

∑
k=0

(
n
k

)
F(ν)

k+1(x)F(ν)
n−k(x) + 2

n

∑
k=0

(
n
k

)
F(ν)

k+1(x)F(ν)
n−k+1(x) =

=
n

∑
k=0

(
n
k

)
F(ν)

k+2(x)F(ν)
n−k(x) + ν(1− ν)

n

∑
k=0

(
n
k

)
F(ν)

k (x)F(ν)
n−k(x) .

In particular, for ν = 0, we have that the Fubini polynomials satisfy the identity

(14)
n

∑
k=0

(
n
k

)
Fk+1(x)Fn−k(x) + 2

n

∑
k=0

(
n
k

)
Fk+1(x)Fn−k+1(x) =

n

∑
k=0

(
n
k

)
Fk+2(x)Fn−k(x) .

Proof. Consider series (3) and, for simplicity, set F = F(ν)(x; t). Differentiating two
times with respect to t, we have

∂F
∂t

=
ν eνt

1− x(et − 1)
+

xeteνt

(1− x(et − 1))2 = ν F +
xet

1− x(et − 1)
F

and
∂2F
∂t2 = ν

∂F
∂t

+
xet

1− x(et − 1)
F +

x2e2t

(1− x(et − 1))2 F +
xet

1− x(et − 1)
∂F
∂t

.
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From the first equation, we have

(?)
xet

1− x(et − 1)
F =

∂F
∂t
− ν F .

So, by replacing this expression in the second equation, we have

∂2F
∂t2 = (ν + 1)

∂F
∂t
− ν F +

x2e2t

(1− x(et − 1))2 F +
xet

1− x(et − 1)
∂F
∂t

.

Then, by multiplying both sides by F, we have

∂2F
∂t2 F = (ν + 1)

∂F
∂t

F− ν F2 +

(
xet

1− x(et − 1)
F
)2

+
xet

1− x(et − 1)
F

∂F
∂t

.

Using again identity (?), we have

∂2F
∂t2 F = (ν + 1)

∂F
∂t

F− ν F2 +

(
∂F
∂t
− ν F

)2

+

(
∂F
∂t
− ν F

)
∂F
∂t

= (1− 2ν)
∂F
∂t

F− ν(1− ν) F2 + 2
(

∂F
∂t

)2

or

(1− 2ν)
∂F
∂t

F + 2
(

∂F
∂t

)2

=
∂2F
∂t2 F + ν(1− ν) F2 .

This equation is equivalent to identity (13). �

From Theorem 4, with x = 1, we immediately have the following specializations.

Theorem 5. The generalized Fubini numbers satisfy the binomial identity

(15)

(1− 2ν)
n

∑
k=0

(
n
k

)
F(ν)

k+1F(ν)
n−k + 2

n

∑
k=0

(
n
k

)
F(ν)

k+1F(ν)
n−k+1 =

=
n

∑
k=0

(
n
k

)
F(ν)

k+2F(ν)
n−k + ν(1− ν)

n

∑
k=0

(
n
k

)
F(ν)

k F(ν)
n−k .

In particular, for ν = 0, we have that the Fubini numbers satisfy the identity

(16)
n

∑
k=0

(
n
k

)
Fk+1Fn−k + 2

n

∑
k=0

(
n
k

)
Fk+1Fn−k+1 =

n

∑
k=0

(
n
k

)
Fk+2Fn−k .

Now, we can prove the converse of Theorem 4.

Theorem 6. If { fn(x)}n∈N is a sequence associated with a normalized Sheffer matrix and
satisfy the identity

(17)

(1− 2ν)
n

∑
k=0

(
n
k

)
fk+1(x) fn−k(x) + 2

n

∑
k=0

(
n
k

)
fk+1(x) fn−k+1(x) =

=
n

∑
k=0

(
n
k

)
fk+2(x) fn−k(x) + ν(1− ν)

n

∑
k=0

(
n
k

)
fk(x) fn−k(x) ,
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then

(18) fn(x) = F(ν)
k (αx + β)

where α and β are arbitrary constants (with α 6= 0).

Proof. By hypothesis, the exponential generating series of the sequence { fn(x)}n∈N is
of the form

F(x; t) = ∑
n≥0

fn(x)
tn

n!
=

g(t)
1− x f (t)

where g(t) and f (t) are two exponential series with g0 = 1, f0 = 0 and f1 6= 0. Then,
setting F = F(x; t) for simplicity, identity (17) is equivalent to the equation

(?) (1− 2ν)
∂F
∂t

F + 2
(

∂F
∂t

)2

=
∂2F
∂t2 F + ν(1− ν) F2 .

Differentiating two times the generating series F with respect to t, we have

∂F
∂t

=
g′(t)

1− x f (t)
+ x

g(t) f ′(t)
(1− x f (t))2

and
∂2F
∂t2 =

g′′(t)
1− x f (t)

+ x
2g′(t) f ′(t) + g(t) f ′′(t)

(1− x f (t))2 + x2 2g(t) f ′(t)2

(1− x f (t))3 .

Then, by replacing these expressions in equation (?), we have

(1− 2ν)

(
g′

1− x f
+ x

g f ′

(1− x f )2

)
g

1− x f
+ 2

(
g′

1− x f
+ x

g f ′

(1− x f )2

)2

=

=

(
g′′

1− x f
+ x

2g′ f ′ + g f ′′

(1− x f )2 + x2 2g f ′2

(1− x f )3

)
g

1− x f
+ ν(1− ν)

(
g

1− x f

)2

that is

(1− 2ν)
(

gg′(1− x f ) + xg2 f ′
)
(1− x f ) + 2

(
g′(1− x f ) + xg f ′

)2
=

=
(

g′′(1− x f )2 + x(2g′ f ′ + g f ′′)(1− x f ) + 2x2g f ′2
)

g + ν(1− ν)g2(1− x f )2

that is (
(1− 2ν)gg′ + 2g′2 − gg′′ − ν(1− ν)g2

)
(1− x f )2+

+ x
(

g2 f ′ + 4gg′ f ′ − (2gg′ f ′ + g2 f ′′)
)
(1− x f ) = 0 .

By simplifying by 1− x f , we obtain the equation(
(1− 2ν)gg′ + 2g′2 − gg′′ − ν(1− ν)g2)(1− x f ) + x

(
(1− 2ν)g2 f ′ + 2gg′ f ′ − g2 f ′′

)
= 0

which is equivalent to the differential system

(??)

{
gg′′ − 2g′2 − (1− 2ν)gg′ + ν(1− ν)g2 = 0
g2 f ′′ − 2gg′ f ′ − (1− 2ν)g2 f ′ = 0 .

Online Journal of Analytic Combinatorics, Issue 16 (2021), #09
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Let us consider the first equation, which depends only on g:

gg′′ − 2g′2 − (1− 2ν)gg′ + ν(1− ν)g2 = 0 .

Setting z = g′/g, we have z′ = (gg′′ − g′2)/g2, and the above equation becomes

g2z′ − g2z2 − (1− 2ν)g2z + ν(1− ν)g2 = 0 .

Simplifying by g2, we obtain the differential equation

z′ = z2 + (1− 2ν)z− ν(1− ν) = (z− ν)(z− ν + 1)

from which we have ∫ dz
(z− ν)(z− ν + 1)

=
∫

dt

that is

ln
z− ν

z− ν + 1
= t + c or

z− ν

z− ν + 1
= λet or z =

ν + (1− ν)λet

1− λet

where λ is an arbitrary constant with respect to t, λ 6= 1. Hence, being z = g′/g, we
have

g′

g
=

ν + (1− ν)λet

1− λet = ν− λet

1− λet .

So, integrating, we have

ln g = νt− ln(1− λet) + C = ln
heνt

1− λet

that is

g(t) =
heνt

1− λet

where h is an arbitrary constant with respect to t. Since g0 = 1, we have h = 1− λ, and
consequently

g(t) =
(1− λ) eνt

1− λet =
(1− λ) eνt

1− λ− λ(et − 1)
=

eνt

1− λ
1−λ (e

t − 1)
.

Setting β = λ
1−λ , we have

g(t) =
eνt

1− β(et − 1)
where β is an arbitrary constant with respect to t.

Let us now consider the second equation of the differential system (??). Simplifying
by g, we have

g f ′′ − 2g′ f ′ − (1− 2ν)g f ′ = 0 .
Then, dividing by g f ′ both the sides, we have

f ′′

f ′
= 2

g′

g
+ 1− 2ν .
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Integrating, we have

ln f ′ = 2 ln g + (1− 2ν)t + a = ln αg2e(1−2ν)t

where a = ln α. So

f ′(t) = α g(t)2 e(1−2ν)t =
α et

(1− β(et − 1))2 .

For β 6= 0, integrating we have

f (t) =
α

β

1
1− β(et − 1)

+ K .

Since f0 = 0, we have K = α
β , and consequently

f (t) =
α

β

1
1− β(et − 1)

− α

β
=

α(et − 1)
1− β(et − 1)

.

In conclusion, we have the generating series

F(x; t) =
eνt

1− β(et − 1)
1

1− x α(et−1)
1−β(et−1)

=
eνt

1− (αx + β)(et − 1)
= F(ν)(αx + β; t)

and consequently we have identity (18). Similarly, for β = 0. �

References

[1] R. P. Boas Jr., R. C. Buck, Polynomial Expansions of Analytic Functions, Academic Press, New York,
1964.

[2] A. Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984), 241–259.

[3] A. Cayley, On the analytical forms called trees, second part, Philosophical Magazine, Series IV, 18 (121)
(1859), 374–378. In Collected Works of Arthur Cayley, p. 113.

[4] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht-Holland, Boston, 1974.

[5] O. M. D’Antona, E. Munarini, A combinatorial interpretation of the connection constants for persistent
sequences of polynomials, European J. Combin. 26 (2005), 1105–1118.

[6] O. A. Gross, Preferential arrangements, Amer. Math. Monthly 69 (1962), 4–8.
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