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Abstract. Extensions of a set partition obtained by imposing bounds on the size of
the parts and the coloring of some of the elements are examined. Combinatorial prop-
erties and the generating functions of some counting sequences associated with these
partitions are established. Connections with Riordan arrays are presented.

1. Introduction

Consider two sets of n symbols [n] = {1, 2, . . . , n} and [n] = {1, 2, . . . , n}, with i 6= j,
for any i, j. Define Xn = [n] ∪ [n]. The symbol j is called the colored version of the
symbol j. Naturally there are (2n)! permutations of Xn. Some of these permutations
respect the sign, that is, satisfy σ(j) = σ(j). These are called signed permutations
or permutations of type B. General information about them and their relations to
Coxeter groups appears in Section 8.1 of [5].

The number of signed permutations on [n] is 2nn!, since each one of them is formed
by a permutation of [n] and a choice of sign. An example is

(1.1) π =

(
1 2 3 4 1 2 3 4
2 1 3 4 2 1 3 4

)
.

Observe that the complete permutation is determined by the values of π(1), π(2), π(3),
π(4) and these must be a permutation of [4] with some choices of overlines. The re-
maining images are determined from the sign rule. In order to simplify notation, only
the first half of the bottom row in (1.1) is retained and π is now written simply (in the
so-called line notation) as

(1.2) π = 2 1 3 4.

As in the classical case, it is possible to express a signed permutation as a product of
disjoint cycles [6]. The notation for the cycles is explained with the example. π =
463512 987. In order to compute the cycle of π containing 1, start by ignoring the
coloring to produce the cycle 1 → 4 → 5. Now insert the color back as they appear
in the one-line notation for π. This produces the cycle (145). Continuing this process
gives the final expression for π as (145)(26)(3)(79)(8). A second example illustrates a
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point that could lead to confusion. The permutations considered here have no fixed
points, for instance

(1.3) π =

(
1 2 3 1 2 3
2 1 3 2 1 3

)
.

The short hand notation for π is 1 2 3 and its cycle decomposition, as explained above,
is written as (12)(3). The interpretation of the last term, (3), is not that 3 is a fixed
point of π, but that π(3) = 3 and (necessarily) π(3) = 3.

The goal of the present work is to study a variety of functions for signed permuta-
tions in terms of their cycle structure.

Recall that [nk], the (unsigned) Stirling number of the first kind, counts the number of
permutations of n elements with k disjoint cycles. The recurrence for [nk] is

(1.4)
[

n
k

]
=

[
n− 1
k− 1

]
+ (n− 1)

[
n− 1

k

]
, for n > k > 1,

with the initial/boundary conditions
[

n
n

]
= 1 and

[
n
1

]
= (n − 1)! for n > 0 and

naturally
[

n
k

]
= 0 for n < k. Other functions include some restrictions on the length of

the cycles. For example, if the cycles are restricted to have length at least 2, one obtains
the derangement numbers dn, given by

(1.5) dn = n!
n

∑
j=0

(−1)j

j!
.

They satisfy the recurrence dn = ndn−1 + (−1)n, with d0 = 1. It follows from (1.5) that

(1.6) lim
n→∞

dn

n!
=

1
e

.

Broder [7] introduced the notion of r-permutations. For r ∈N an r-permutation of n + r
is a permutation where the first r elements, called special, are in distinct cycles. The
number of r-permutations of [n + r] into k + r cycles are counted by the r-Stirling num-

bers of the first kind, denoted by
[

n
k

]
r
. An r-derangement on [n + r] is an r-permutation

without fixed points. Information about these concepts appears in [18, 23]. These
concepts are now extended to signed permutations.

Definition 1.1. A derangement of type B on [n] is a signed permutation σ such that
σ(i) 6= i for every i ∈ [n]. The set of all such permutations is denoted by DB

n and its
cardinality by dB

n .

Chow [9] (see also Assaf [1]) proved that

(1.7) dB
n = n!

n

∑
k=0

(−1)k2n−k

k!
,
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and the analog of (1.6) is

(1.8) lim
n→∞

dB
n

n! 2n =
1√

e
.

This sequence appears as A000354 in OEIS and its first few values (starting at n = 0)
are

(1.9) 1, 1, 5, 29, 233, 2329, 27949, 391285, · · · .

Formula (1.7) is equivalent to

(1.10)
∞

∑
n=0

dB
n

xn

n!
=

e−x

1− 2x
.

The main object of the present work is introduced next.

Definition 1.2. Let n, r ∈ N. A type B r-derangement on the set [n + r] is a signed per-
mutation on [n + r], without fixed points and with r elements (called special) restricted
to be in distinct cycles. The set of all r-derangements of type B on [n + r] is denoted by
DB

n,r. Its cardinality is denoted by dB
n,r. The case r = 0 recovers dB

n in Definition 1.1.

The number of elements of DB
n,r with k + r cycles is called the r-Stirling number of type

B and is denoted by
[

n
k

]B

≥2,r
. Counting over all possible cycles gives the relation

(1.11) dB
n,r =

n

∑
k=0

[
n
k

]B

≥2,r
.

Example 1.3. The permutation σ = (174)(2)(365) is a type B r-derangement for 0 ≤
r ≤ 3 on the set [7].

Note 1.1. The case r = 0 has been discussed in [18]. The recurrence

(1.12)
[

n + 1
k

]B

≥2,0
= 2n

[
n
k

]B

≥2,0
+ 2n

[
n− 1
k− 1

]B

≥2,0
+

[
n

k− 1

]B

≥2,0
,

with the initial conditions

(1.13)
[

n
0

]B

≥2,0
= δn,0 for n > 0 and

[
n
k

]B

≥2,0
= 0 for n, k < 0,

is established there.

2. A recurrence for the r-Stirling numbers of type B

This section presents a recurrence for the r-Stirling numbers of type B. The initial
condition involve the Lah numbers L(n, k), defined as the number of ways a set of n
elements can be partitioned into k nonempty linearly ordered subsets [20].
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Theorem 2.1. For n ≥ 0 and k, r ≥ 1 the recursion[
n + 1

k

]B

≥2,r
=

[
n

k− 1

]B

≥2,r
+ 2n!

n

∑
j=1

2j

(n− j)!

[
n− j
k− 1

]B

≥2,r

+4rn!
n

∑
j=0

(j + 1)2j

(n− j)!

[
n− j

k

]B

≥2,r−1

=

[
n

k− 1

]B

≥2,r
+ 4r

[
n
k

]B

≥2,r−1

+4n!
n

∑
j=1

2j−1

(n− j)!

([
n− j
k− 1

]B

≥2,r
+ 2r(j + 1)

[
n− j

k

]B

≥2,r−1

)
,

holds. The initial conditions are given by[
n
0

]B

≥2,r
= 2nn!

r

∑
j=0

(
r
j

)(
n− 1

r− j− 1

)
2r−j and

[
0
0

]B

≥2,r
= 1.

Proof. The initial condition is established first. Recall that
[

n
0

]B

≥2,r
counts the number

of signed permutations of [n + r], with r cycles, without fixed points and r special
elements restricted to be in distinct cycles. Therefore each cycle contains a single special
point and, since there are no fixed points, the special points appearing in a cycle of
length 1 must be colored. The next step is to place the n non-special points in the r
cycles. Let j be the number of cycles that receive no new points (0 ≤ j ≤ r). Then

(2.1)
[

n
0

]B

≥2,r
=

r

∑
j=0

(
r
j

)
· 2n+r−j(r− j)! L(n, r− j).

The binomial coefficient (r
j) takes into account the choices of cycles without new points,

the factor (r − j)! takes care of the ordering of the cycles with new points, the Lah
number counts the ways to partition the n non-special points in order to place them
in the r− j cycles and finally the power of 2 describes whether to color the remaining
elements or not. The form of the initial condition stated above is obtained by using the
expression

(2.2) L(n, k) =
(

n
k

)(
n− 1
k− 1

)
(n− k)! =

n!
k!

(
n− 1
k− 1

)
,

appearing in [20].
To prove the general case of the recurrence, recall that there are r + k cycles of size

at least 2, r containing the special points and k containing no special points. Now con-
sider cases for the image of non-special element n + 1 under π.
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Option 1. The element n + 1 is fixed by π. Recall the warning: this means that
π(n + 1) = n + 1 and π(n + 1) = n + 1. Removing the cycle {n + 1, n + 1} leaves[

n
k− 1

]B

≥2,r
choices. This gives the first term in the recurrence.

Option 2. Assume n + 1 is the image under a signed permutation of an uncolored
symbols. There are two cases to consider:
Case 1: n + 1 belongs to one the first r cycles. Then the cycle b containing n + 1 has,
in addition to n + 1, one special element and j additional ones (0 ≤ j ≤ n) from
{1, 2, . . . , n}, for a total of j + 2 elements. Since n + 1 is not colored, there are 2j+1

ways to color or not the other elements in b. The j + 2 elements of the cycle b can now
be permuted cyclically in (j + 1)! ways. The count is now

(2.3) r
n

∑
j=0

(
n
j

)
(j + 1)!2j+1

[
n− j

k

]B

≥2,r−1
.

In this count, the number of special cycles has been reduced by 1, since n + 1 occupies
one of them.
Case 2. If n + 1 does not belong to one of the special cycles, then the number in Case 1
becomes

(2.4)
n

∑
j=1

(
n
j

)
j!2j
[

n− j
k− 1

]B

≥2,r
.

The index j counts the number of additional elements in the cycle containing n + 1 and
the remaining terms are interpreted as before.

Option 3. Assume n + 1 belongs to one of the cycles. Then the count is similar as in
Option 2. The numbers of cases where n + 1 is in one of r special cycles is

(2.5) 2r
n

∑
j=0

(
n
j

)
(j + 1)!2j

[
n− j

k

]B

≥2,r−1
.

Otherwise, n + 1 is in a cycle without special points and this contributes

(2.6)
n

∑
j=0

(
n
j

)
j!2j
[

n− j
k− 1

]B

≥2,r

to the count. This completes the proof. �

Note 2.1. The recurrence is now used to generate the values of
[

n
k

]B

≥2,r
. The matrix

below gives the values for r = 3 in the range 0 ≤ n, k ≤ 6:
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(2.7)

[[
n
k

]B

≥2,3

]
=



1 0 0 0 0 0 0
12 1 0 0 0 0 0

144 28 1 0 0 0 0
1824 592 48 1 0 0 0
25344 11232 1552 72 1 0 0

391680 213888 41824 3280 100 1 0
6727680 4267008 1061248 119520 6080 132 1


.

Note 2.2. The special value dr,0 = 1 comes directly from the definition. The recurrence
in Theorem 2.1 is now used to check that dB

1,r = 1 + 4r. Indeed,

(2.8) dB
r,1 =

[
1
0

]B

≥2,r
+

[
1
1

]B

≥2,r
,

and the initial condition in Theorem 2.1 shows that

(2.9)
[

1
0

]B

≥2,r
= 21 · 1!×

r−1

∑
j=0

(
r
j

)(
0

r− j− 1

)
2r−j = 4r,

and the second term in the recurrence yields

(2.10)
[

1
1

]B

≥2,r
=

[
0
0

]B

≥2,r
+ 4r

[
0
1

]B

≥2,r
+ an empty sum = 1,

for a total of dB
1,r = 1 + 4r.

3. An approach from the theory of Riordan arrays

This section considers the matrix C≥2,r :=
(
[nk]

B
≥2,r

)
n,k≥0

as a Riordan array. Enumer-

ative arguments for some combinatorial identities are presented. The unsigned entries
of the matrix C−1

≥2,r are discussed first.
Recall that an infinite lower triangular matrix L = [ln,k]n,k≥0 is called an exponential Ri-

ordan array [3] if its kth-column has generating function of the form g(z) ( f (z))k /k!, k =
0, 1, 2, . . . g(z), where g(z) and f (z) are formal power series with g(0) 6= 0, f (0) = 0 and
f ′(0) 6= 0. The matrix corresponding to the pair f (z), g(z) is denoted by (g(z), f (z)).

Multiplying (g, f ) by a column vector (c0, c1, . . . )t with exponential generating func-
tion h(z), results in a column vector with exponential generating function g · h ◦ f . This
property is known as the fundamental theorem of exponential Riordan arrays or sum-
mation property [12]. The product of two exponential Riordan arrays (g(z), f (z)) and
(h(z), `(z)) is defined by:

(g(z), f (z)) ∗ (h(z), `(z)) = (g(z)h ( f (z)) , ` ( f (z))) .



ON THE r-DERANGEMENTS OF TYPE B 7

The set of all exponential Riordan matrices is a group under this operation [3], [21].
The identity is I = (1, z) and

(3.1) (g(z), f (z))−1 =

 1(
g ◦ f

)
(z)

, f (z)

 ,

here f (z) denotes the compositional inverse of f (z); that is, ( f ◦ f )(z) = z.
Deutsch et al. [12] gave an algorithm to calculate the entry ln,k of an exponential

Riordan array. They proved that every element ln+1,k of an exponential Riordan array
can be expressed as a linear combination of the elements in the preceding row. In
particular, for L = [ln,k]n,k≥0 = (g(z), f (z)) there are sequences (an) and (zn) such that

ln+1,0 = ∑
i≥0

i!ailn,i,(3.2)

ln+1,k = a0ln,k−1 +
1
k! ∑

i≥k
i!(zi−k + kai−k+1)ln,i,(3.3)

where
A(t) = a0 + a1t + a2t2 + · · · , Z(t) = z0 + z1t + z2t2 + · · ·

satisfy the functional relations

A(t) = f ′( f̄ (t)), Z(t) =
g′( f̄ (t))
g( f̄ (t))

.(3.4)

Conversely, (3.4) implies (3.2) and (3.3).
The next results states that the matrix defined by C≥2,r :=

(
[nk]

B
≥2,r

)
n,k≥0

is an expo-

nential Riordan array.

Theorem 3.1. The matrix C≥2,r is the exponential Riordan array given by((
1 + 2z
1− 2z

)r
,− ln(1− 2z)− z

)
.

Proof. Let Ck(x) := ∑n≥0 [
n+k

k ]
B
≥2,r

xn

n! be the generating function of the columns of the
matrix C≥2,r. The initial values in Theorem 2.1 shows that the generating function of
the first column is given by

C0(x) = ∑
n≥0

2nn!
r

∑
j=0

(
r
j

)(
n− 1

r− j− 1

)
2r−j xn

n!
=

r

∑
j=0

(
r
j

)
2r−j ∑

n≥0

(
n− 1

r− j− 1

)
(2x)n.

The identity
1

(1− x)t = ∑
n≥0

(
t + n− 1

t− 1

)
xn,
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gives (
2x

1− 2x

)r−j
= ∑

n≥0

(
n− 1

r− j− 1

)
xn,

Therefore

C0(x) =
r

∑
j=0

(
r
j

)
2r−j

(
2x

1− 2x

)r−j
=

(
1 +

4x
1− 2x

)r
=

(
1 + 2x
1− 2x

)r
.

The generating function for the column C1(x) is presented next. The relation[
n
1

]B

≥2,r
=

n

∑
k=2

(
n
k

)
(k− 1)!2k

[
n− k

0

]B

≥2,r
+ n

[
n− 1

0

]B

≥2,r
.(3.5)

follows from the following combinatorial argument. Assume a non-special cycle has
k elements (2 ≤ k ≤ n). These can be chosen and colored in (n

k)(k − 1)! ways. The
coloring of these these elements produce 2k options. The remaining elements can be

organized in [n−k
0 ]

B
≥2,r ways. Summing over k gives the first expression in (3.5). On the

other hand, in the case where a non-special block has only one element gives n[n−1
0 ]

B
≥2,r

options. Therefore

C1(x) = C0(x) ∑
n≥2

(2x)n

n
+ xC0(x) = C0(x)(−x− log(1− 2x)).

Similarly

Ck(x) = C0(x)
(−x− log(1− 2x))k

k!
,(3.6)

since C0(x) takes into account the r special cycles and (−x − log(1− 2x))k/k! are se-
quences of unordered k cycles. The result now follows from (3.6) and the definition of
a Riordan array. �

4. Counting distances on graphs

Given a graph G the sequence SG(n) is defined as the number of vertices which have
a distance n from a given vertex in G. This sequence was discussed in [2] and [10]. The
example SZ2(3) = 12 is pictured in Figure 1. In the case of the r-dimension lattice Zr,
it follows that

∑
n≥0

SZr(n)xn =

(
1 + x
1− x

)r
.

The first column in the Riordan array given in Theorem 3.1 gives the next statement.
A combinatorial proof is presented.
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Figure 1. Points at a distance 3 from a fixed point.

Theorem 4.1. For r, n ∈N

(4.1)
[

n
0

]B

≥2,r
= 2nn!SZr(n).

Proof. A permutation σ with no non-special elements is written as σ = c1c2 · · · cr, where
ci are the special cycles containing one of the [r] elements. Define xσ = (x1, . . . , xr) ∈ Zr

by

xi =


0, if σi = ī;
−(ord(ci)− 1), if ī ∈ ci;
ord(ci)− 1, otherwise.

where ord(ci) is the length of the cycle ci. It is clear that ∑r
i=1 |xi| = n, so xσ is at

distance n from the origin. This construction does not take into account the sign in the
[n] elements. This can be done in 2n ways. Finally, the n! term count the ordering of
position in the cycles. The proposition follows. �

Lengyel [15] presented the interesting expression:

1 + x
1− x

=
∞

∑
n=1

xb
n
φ c +

∞

∑
n=1

xbnφ2c, for |x| < 1.

Here φ is the golden ratio.
The next statement characterizes the two diagonals below the main one.

Theorem 4.2. For n ≥ 0, the identities[
n + 1

n

]B

≥2,r
= 2(n + 1)(n + 2r),[

n + 2
n

]B

≥2,r
=

4
3

(
n + 2

2

)
(3n2 + n + 12nr + 12r2),

hold.

Proof. There are two cases to consider, either

Online Journal of Analytic Combinatorics, Issue 16 (2021), #05



10 ISTVÁN MEZO, VICTOR H. MOLL, JOSÉ L. RAMÍREZ, AND DIEGO VILLAMIZAR

• There is an element that belongs to one of the r special cycles. This happens in
(n + 1)r22 ways; or,
• Two elements form a non special cycle. This can be done in 22(n+1

2 ) ways.
The first identity follows from here. The proof of the second identity is similar. �

4.1. Combinatorial interpretation of the inverse matrix. The matrix C≥2,r is a Riordan
array and since the set of all Riordan matrices is a group, its inverse exists. This
subsection presents a combinatorial interpretation of the unsigned inverse matrix of
C≥2,r in terms of plane increasing trees. The particular case r = 0 was presented in [18].
The notation T≥2,r := [T≥2,r(n, k)]n,k≥0 is used for the inverse of C≥2,r. Then (3.1) shows
that T≥2,r is the exponential Riordan array given by

T≥2,r =

−1 +
1

1 + W
(
−1

2 e−
1
2−z
)
r

,
1
2
+ W

(
−1

2
e−

1
2−z
) ,

with W(z) is the Lambert W function. This is defined by

(4.2) W(x)eW(x) = x,

for all real (or complex) x. More information on this function appears in [11].
Let T ≥2,r :=

[
T≥2,r(n, k)

]
n,k≥0 be the unsigned matrix of T≥2,r, that is

T ≥2,r :=
[
T≥2,r(n, k)

]
n,k≥0 =

[
(−1)n+kT≥2,r(n, k)

]
n,k≥0

=

−1 +
1

1 + W
(
−1

2 e−
1
2+z
)
r

,−1
2
−W

(
−1

2
e−

1
2+z
) .

The first few rows of the matrix T ≥2,3 =
[
T≥2,3(n, k)

]
n,k≥0 are

1 0 0 0 0 0 0
12 1 0 0 0 0 0

192 28 1 0 0 0 0
3936 752 48 1 0 0 0
99456 22304 1904 72 1 0 0

3001344 748672 76320 3920 100 1 0
105544704 28412416 3265792 203040 7120 132 1


.

Now let Tk(z) be the generating function of the kth column of T ≥2,r. Then

T0(z) =

−1 +
1

1 + W
(
−1

2 e−
1
2+z
)
r

=
(

F′(z)
)r ,

where

(4.3) F(z) := −1
2 −W

(
−1

2 e−
1
2+z
)

.
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The generating function F(z) counts the total number of labeled rooted trees of subsets
of an n-set [16]. In the sequence A005172 of OEIS, Peter Bala states that F(z) satisfies
the functional equation

(4.4) x =
∫ F(x)

0

1
Φ(t)

dt,

where Φ(t) = (1 + 2t)/(1− 2t). Then [4, Theorem 1] provides an alternative combina-
torial interpretation for this sequence. It turns out that this sequence also counts the
plane increasing trees on n vertices, such that each vertex of out-degree k ≥ 1 is colored
with one of 2k+1 colors. Therefore F′(z), the derivative of F(z), counts plane increasing
trees on n + 1 vertices.

The power series expansion of F′(z) starts as

F′(z) = 1 + 4
z
1!

+ 32
z2

2!
+ 416

z3

3!
+ 7552

z4

4!
+ 176128

z5

5!
+ · · ·

Figure 2 shows the corresponding trees with 3 vertices. The parenthesis denotes the
possible colorings for a vertex.

1

2

3

1

2 3

1

3 2

(22)

(22)

(23) (23)

Figure 2. Colored plane increasing trees on 3 vertices.

The identity

(4.5) Tk(z) =
(

F′(z)
)r 1

k!
(F(z))k ,

leads to the next result.

Theorem 4.3. The sequence T≥2,r(n, k) counts the number of r-ordered and k-unordered el-
ements in a r + k-forest of increasing trees on n vertices, such that each vertex of out-degree
k ≥ 1 is colored with one of 2k+1 colors and the r ordered connected components are rooted.

The next recurrence now follows from (3.2) and (3.3).

Theorem 4.4. The sequence T≥2,r(n, k) for n ≥ k ≥ 0 is determined by the recurrence

T≥2,r(n + 1, k) = T≥2,r(n, k− 1) +
1
k!

n

∑
i=k

i!2i−k+2((i− k + 1)r + k)T≥2,r(n, i),

and the initial conditions T≥2,r(n, 0) = δn,0 for n ≥ 0, and T≥2,r(n, k) = 0 for n, k < 0.
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5. Properties of the numbers dB
r,n

This section discusses the expression

(5.1) dB
r,n =

n

∑
k=0

[
n
k

]B

≥2,r
,

for the total number of r-derangements of type B on [n + r]. This is the row sum of the
matrix in (2.7). The case r = 0 appears in (1.7).

Theorem 5.1. The recurrence

(5.2) dB
r,n = dB

r−1,n + 2ndB
r,n−1 + 2ndB

r−1,n−1,

holds. It is supplemented by the initial conditions dB
r,0 = 1 and dB

0,n = n!
n

∑
k=0

(−1)k

k!
2n−k.

Proof. Consider a permutation π in DB
n,r. There are r special elements and assume that

1 is the first of them. The recurrence is obtained by distinguishing cases according to
the type of cycle c containing 1. The initial conditions appeared in Note 1.1.

Case 1. Assume c is of length 1. Then the cycle must be (1), since there are no fixed
points in π. The rest of the permutation is in DB

n,r−1, counting for the term dB
n,r−1.

Case 2. If c is of length 2, then c is of the form (1 x) with x non-special. Then 1 and x
can be colored or not, for a total of n choices. The rest of the permutation is in DB

n−1,r−1,
for a total of 4ndB

n−1,r−1 choices.

Case 3. Finally consider the case when the cycle c has at least 3 elements. To produce
such a permutation, choose k to be non-special and drop it from the list of non-special
elements. Then form an arbitrary B-r-derangement on n − 1 + r elements in dB

n−1,r
ways. After that, insert k to the right of 1 and optionally color it. This accounts for
2ndB

n−1,r choices. In this process, there are certain permutations that have been counted
twice. Namely, those for which 1 is in a cycle of length 1 for a permutation in DB

n−1,r.
Inserting k then produces a cycle of length 2, already counted in Case 2. Therefore
these must be excluded. Thus, the total count is 2n

(
dB

n−1,r − dB
n−1,r−1

)
.

The proof is complete. �

Corollary 5.1. For fixed n ∈N, the function dB
n,r is a polynomial in r of degree n.

Proof. This follows from dr,0 = 1 and (5.2), written in the form

(5.3) dB
r,n − dB

r−1,n = 2n(dB
r,n−1 + dB

r−1,n−1).

�
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Example 5.2. The value dB
r,1 = 1 + 4r and the difference equation (5.3) give

(5.4) dB
r,2 − dB

r−1,2 = 4(1 + 4r + 1 + 4(r− 1)) = 32r− 8.

Therefore dB
r,2 is a quadratic polynomial in r. The ansatz dB

r,2 = a0r2 + a1r + a2 in (5.4)
gives a2 = 16 and a1 = 8. The remaining coefficient comes from (1.7); so that

(5.5) dB
r,2 = 16r2 + 8r + 5.

Similarly,

(5.6)

dB
r,3 = 64r3 + 48r2 + 92r + 29,

dB
r,4 = 256r4 + 256r3 + 992r2 + 592r + 233,

dB
r,5 = 1024r5 + 1280r4 + 8320r3 + 7200r2 + 7796r + 2329,

dB
r,6 = 4096r6 + 6144r5 + 60160r4 + 67840r3 + 141424r2 + 83672r + 27949.

An explicit formula for dB
r,n is presented next.

Theorem 5.3. For all n, r ≥ 0,

(5.7) dB
r,n = 2n

r

∑
i=0

(
r
i

)
ni2i

n−i

∑
k=0

(
n− i

k

)
(−1)k(i + 1)n−i−k2−k.

Here ni = n(n− 1) · · · (n− i + 1) and nj = n(n + 1) · · · (n + j− 1).

Proof. We consider cases with r− i special elements (0 ≤ i ≤ r) are in cycles of length
one (and therefore necessarily barred). The other i special elements are in cycles of
length greater than one. Choose first these special elements (in (r

i) ways), and then
place the i non-special elements into their cycles. This gives n(n− 1) · · · (n− i+ 1) = ni

choices. Then mark both the i special elements and the non-special ones with a bar,
for a total of 2i · 2i options. The other n− i non-special elements are placed into the i
special cycles or outside them. This yields (i + 1)n−i options. There are 2n−i ways to
mark these elements or not. Up to now, the count is

(5.8)
(

r
i

)
ni22i(i + 1)n−i2n−i.

Observe that in the non-special part of the permutation, the placement above might
have introduced some fixed points and these must be removed. Among the above
permutations, the number of those type B derangements which have exactly k fixed
points among the n− i elements is(

n− i
k

)
ni22i(i + 1)n−i−k2n−i−k.

The inclusion-exclusion principle now completes the proof. �
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5.1. The generating function and asymptotics of dB
r,n. Theorem 5.3 is now used to

produce the exponential generating function of {dB
r,n}.

Theorem 5.4. The formula

(5.9)
∞

∑
n=0

dB
r,n

xn

n!
=

e−x

1− 2x

(
1 + 2x
1− 2x

)r
,

holds.

Proof. Start with

∞

∑
n=0

dB
r,n

2n
xn

n!
=

r

∑
i=0

(
r
i

)
2i

∞

∑
k=0

(
−1

2

)k ∞

∑
n=i+k

(
n− i

k

)
ni(i + 1)n−i−k xn

n!
.

The innermost sum is
∞

∑
n=i+k

(
n− i

k

)
ni(i + 1)n−i−k xn

n!
=

xi

(1− x)i+1
xk

k!
.

Multiplying the right hand side by
(
−1

2

)k
and summing over k produces e−x/2. Thus

∞

∑
n=0

dB
r,n

2n
xn

n!
=

r

∑
i=0

(
r
i

)
2i e−x/2xi

(1− x)i+1 =
e−x/2

1− x

(
1 + x
1− x

)r
.

Substituting 2x in place of x produces the result. �

The asymptotics of the type B r-derangements, when r is fixed and n tends to infin-
ity, are presented next. Standard methods of the analysis of the principal part of the
generating function are used. Details appeared in [24, Theorem 5.2.1].

Corollary 5.5. For any fixed r ≥ 0 and large n

dB
r,n

n!
∼ (−2)n
√

e

r

∑
i=0

(
r
i

)
2i
[(
−i− 1

n

)
− 2i− 1

2

(
−i
n

)]
.

6. A generalization of the r-Stirling numbers

Let σ = c1c2 · · · cs be the usual cycle representation of a permutation into s dis-
joint cycles. The orders of the cycles are denoted by ord(cj), 1 ≤ j ≤ s. For ex-
ample, 4 3 2 7 5 8 1 9 6 is written as (14 7)(23)(5)(689). Then ord(c1) = 3, ord(c2) =
2, ord(c3) = 1, ord(c4) = 3. The derangements of type B can be characterized by

DB
n = {σ = c1 · · · cs : for all i ∈ [s] either ord(ci) ≥ 2 or ci ⊆ [n̄] = {1̄, 2̄, . . . , n̄}}.

This leads to the following
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Definition 6.1. Let σ = c1 · · · cs be a permutation of type B of length n with s cycles.
The permutation σ is a m-restricted permutation of type B if for all 1 ≤ i ≤ s either the
order of each cycle satisfies ord(ci) ≤ m or each item in ci is signed, that is ci ⊆ [n̄]. The
permutation σ is an m-associated permutation of type B if for all 1 ≤ i ≤ s either the order
of each cycle satisfies that ord(ci) ≥ m or ci ⊆ [n̄].

Denote by AB
n,≤m(AB

n,≥m) the set of all m-restricted (associated) permutations of type
B in DB

n . The m-restricted (associated) factorial numbers of type B, AB
n,≤m is the correspond-

ing cardinalities. Note that DB
n = AB

n,≥2. The associated (restricted) Stirling numbers of
the first kind of type B, [nk]

B
≥m([

n
k]

B
≤m) , is the number of permutations of AB

n,≥(≤)m with k
cycles. The basic relations

AB
n,≥m :=

n

∑
k=0

[
n
k

]B

≥m
, AB

n,≤m :=
n

∑
k=0

[
n
k

]B

≤m
,

hold.
The restricted Stirling numbers of the first kind (of type A) [nk]≤m enumerate the number

of permutations on n elements with k cycles with the restriction that none of the cycles
contain more than m items. Similarly, the associated Stirling numbers of the first kind
[nk]≥m equals the number that each cycle contains at most m items. Komatsu et al. [14]
presented a variety of combinatorial properties for these sequences. Recently, Moll et
al. [19] obtained new combinatorial and arithmetical properties for them.

The restricted and associated Stirling numbers of the first kind satisfy the recurrence
relations [

n
k

]
≤m

=
m−1

∑
i=0

(n− 1)!
(n− 1− i)!

[
n− i− 1

k− 1

]
≤m

,(6.1)

[
n
k

]
≥m

=
n−1

∑
i=m−1

(n− 1)!
(n− 1− i)!

[
n− i− 1

k− 1

]
≥m

.(6.2)

with initial values [
0
0

]
≤m

= 1 and
[

n
0

]
≤m

=

[
0
n

]
≤m

= 0,[
0
0

]
≥m

= 1 and
[

n
0

]
≥m

=

[
0
n

]
≥m

= 0,

for n > 0. Introduce now the incomplete factorial numbers Ai,≤m and Ai,≥m, as the total
number of incomplete permutations, that is

An,≤m :=
n

∑
k=0

[
n
k

]
≤m

An,≥m :=
n

∑
k=0

[
n
k

]
≥m

.

Online Journal of Analytic Combinatorics, Issue 16 (2021), #05



16 ISTVÁN MEZO, VICTOR H. MOLL, JOSÉ L. RAMÍREZ, AND DIEGO VILLAMIZAR

Theorem 6.2. For n ≥ 0, the identities

AB
n,≤m =

n

∑
i=0

(
n
i

)
2i Ai,≤m An−i,≥m+1,

AB
n,≥m =

n

∑
i=0

(
n
i

)
2i Ai,≥m An−i,≤m−1,

hold.

Proof. Let σ ∈ AB
n,≥k and consider A1 = {s ∈ [n] : there is i ∈ [k] such that σi

s = s}, and
A2 = Ac

1. It is clear that A2 ⊆ [n] and so there is no coloring on them. Consider now
the the function

ϕ : AB
n,≤k −→

n⋃
i=0

(
[n]

n− i

)
× [2][i] ×Ai,≤k ×An−1,≥k+1,

given by ϕ(σ) = (A2, f , σ|A1
, σ|A2

), where f (x) = χ[n̄](x). It is easy to check that this
is a bijection, completing the proof. �

6.1. The r-version. This subsection consider the analog of the results presented above
for the case of r-permutations.

Definition 6.3. Let n, r ∈ N and m ≥ 1. A type B m-associated r-permutation on the set
[n + r] is a signed permutation on [n + r], with the restriction that the order of each
cycle is at least m, and the first r elements (called special) are restricted to be in distinct
cycles. The set of all m-associated r-permutation of type B on [n + r] is denoted by
AB

n,≥m,r and its cardinality by AB
n,≥m,r.

The number of elements ofAB
n,≥m,r with k+ r cycles is called the m-associated r-Stirling

number of type B and is denoted by
[

n
k

]B

≥m,r
. Counting over all possible cycles gives the

relation

(6.3) AB
n,≥m,r =

n

∑
k=0

[
n
k

]B

≥m,r
.

In the cases m = 0, 1, there are no restrictions on the sign, so one can color any
element in 2n+r ways and then choose the blocks as the normal r-Stirling numbers of
the first kind. It follows that[

n
0

]B

≥m,r
= 2n+r

[
n
0

]
r
= 2n+rn!

(
n + r− 1

r− 1

)
.

The case m = 2 was described in Theorem 2.1. The next result gives a general
recurrence relation. This can be used to analyze the situation for m > 2.
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The symbol Par≤c(a, b) denotes the number of composition of a into b positive parts,
each part of size at most c, then

Par≤c(a, b) =


0, c ≤ 0 and (a 6= 0 or b 6= 0);

b

∑
i=0

(−1)i
(

b
i

)(
a− ci− 1

b− 1

)
, otherwise.

Introduce the function

(6.4) τm,n(j) =

{
2j+1 if m− 1 ≤ j ≤ n
1 otherwise.

Theorem 6.4. For n ≥ 0, k, r ≥ 1 and m > 2, the recursion[
n + 1

k

]B

≥m,r
=

n

∑
j=0

j!τm,n(j)
(

n
j

)[
n− j
k− 1

]B

≥m,r
+ r

n

∑
j=0

(j+ 1)!τm,n+1(j+ 1)
(

n
j

)[
n− j

k

]B

≥m,r−1
,

holds. The initial conditions are given by[
n
0

]B

≥m,r
= n!

r

∑
p=0

p

∑
j=0

(
r
p

)(
p
j

) n

∑
k=0

2n+p−k−jPar≤m−2(k, j)Par≥m−1(n− k, p− j).

Proof. The initial conditions are discussed first. For m > 2, choose r− p elements from
the r special elements and assign them to its own bar; that is, assign each of them to
themselves but with a bar. This can be done in (r

p) ways. From the remaining p special
elements, choose j of them which will contain cycles of size less than m so the have to
have all sign. This can be done in (p

j) ways. Then choose k elements out of n to put in
these j cycles in (n

k)Par≤m−2(k, j)k! ways. The remaining n− k elements will be in the
p− j cycles with length greater or equal to m, in Par≥m−1(n− k, p− j) ways. Note that

Par≥c(a, b) = Par≥1(a− (c− 1)b, b) =
(

a− (c− 1)b− 1
b− 1

)
.

The inclusion-exclusion principle gives the expression for Par≤c(a, b). Adding over all
possibilities for p, j, k gives the result.

The recursion is discussed next. The discussion is divided into cases:
(1) Either n + 1 is in a cycle without special elements and of length < m. This can

be done by selecting the j elements which are in these cycles and taking care of
the cyclic order, to produce(

n
j

)
j!
[

n− j
k− 1

]B

≥m,r
.

(2) n + 1 is in a cycle without special elements of length ≥ m. As before, select the
j elements and choose their signs in 2j+1 ways.
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(3) n + 1 is in a cycle with a special element and of length < m. Select j elements
and take care of the cyclic order to obtain

r
(

n
j

)
(j + 1)!

[
n− j

k

]
≥m,r−1

.

(4) n + 1 is in a cycle with a special element and of length ≥ m. Select j elements as
before and now colored them in 2j+2 ways.

Summing over these options gives the result. �

6.2. General case of Howard’s identity of type B. Howard [13] established several
combinatorial identities involving binomial coefficients and Stirling number of both
kinds. Caicedo et al. [8] gave combinatorial proofs and generalization for some of
them. For example, the identity[

n
n− k

]
=

k

∑
`=0

(
n

2k− `

)[
2k− `

k− `

]
≥2

is such an example. The next statement provides a B-analogue.

Theorem 6.5. The identity[
n
k

]B

≥m,r
=

r

∑
p=0

k

∑
l=0

(
n

ml

)(
r
p

)(
n−ml
(m− 1)p

)
(2m − 1)l+p(ml)!((m− 1)p)!

ml l!

·
[

n−ml − (m− 1)p
k− l

]B

≥m+1,r−p

= n!
r

∑
p=0

k

∑
l=0

(
r
p

)
(2m − 1)l+p

ml l!(n−m(l + p) + p)!

[
n−m(l + p) + p

k− l

]B

≥m+1,r−p

holds.

Proof. Consider a type B r-permutation σ ∈ AB
n,≥m,r with k + r cycles and let l be the

number of cycles b of size m such that b ∩ ([r] ∪ [r̄]) = ∅ and |b ∩ [n + r]| < m. Let p
be the number of cycles with the above property with b ∩ ([r] ∪ [r̄]) 6= ∅. The number
of permutations with this two statistics are counted by the expression on the left-hand
side. Adding for all cases of p and l, yields the result. �

The special case r = 0 is stated next.

Corollary 6.6. The identity[
n
k

]B

≥m
=

k

∑
l=0

(
n

ml

)
(ml)!
ml l!

(2m − 1)l
[

n−ml
k− l

]B

≥m+1

holds.
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The case m = 1 is similar.

Corollary 6.7. For n, k ≥ 0, the identity[
n
k

]B

r
=

r

∑
p=0

k

∑
`=0

(
r
p

)(
n
`

)[
n− `

k− `

]
≥2,r−p

,

holds. Moreover, if r = 0 one obtains[
n
k

]B
=

k

∑
`=0

(
n
`

)[
n− `

k− `

]B

≥2
.

6.3. The Riordan matrices. It turns out that the sequence [nk]
B
≥m,r can be encoded by a

Riordan matrix.

Theorem 6.8. The matrix C≥m,r :=
(
[nk]

B
≥m,r

)
n,k≥0

is an exponential Riordan array given by

C≥m,r =

((
1− xm−1

1− x
− 2mxm−1

1− 2x

)r

,− ln(1− 2x)−
m−1

∑
`=1

2k − 1
k

xk

)
.

Theorem 4.2 can be generalized as follows. The proof is left to the reader.

Theorem 6.9. If m > 0, the two diagonals below the main diagonal are[
n + 1

n

]B

≥m,r
= 2(n+r+1)δm,1+2δm,2−1(n + 1)(n + 2r),[

n + 2
n

]B

≥m,r
=

2(n+r+2)δm,1

12

(
n + 2

2

)
·
(

3 · 24δm,2(4r(r + n− 1) + n(n− 1)) + 23(δm,2+δm,3)+3(n + 3r)
)

where δa,b is the Kronecker delta function.
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