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Abstract. Integer compositions and related counting problems are a rich and ubiqui-
tous topic in enumerative combinatorics. In this paper we explore the definition of sym-
metric and asymmetric peaks and valleys over compositions. In particular, we compute
an explicit formula for the generating function for the number of integer compositions
according to the number of parts, symmetric, and asymmetric peaks and valleys.

1. Introduction

A composition σ = σ1σ2 · · · σ` of a positive integer n is a sequence of positive integers
whose sum is n, that is, σ1 + σ2 + · · ·+ σ` = n. The summands σi are called parts of
the composition and n is referred to as the weight of σ. For example, the compositions
of 4 are 4, 31, 13, 22, 211, 121, 112, 1111. Let C(n) denote the set of compositions of n.
It is well-known that |C(n)| = 2n−1 for all n ≥ 1 (cf. [8]). Moreover, the number of
compositions of n with k parts is given by the binomial coefficient (n−1

k−1).
A peak p of a composition σ = σ1σ2 · · · σ` is a subword p = σi−1σiσi+1, where 2 ≤ i ≤

`− 1, such that σi > max{σi−1, σi+1}. Similarly, a valley is a subword p = σi−1σiσi+1
such that σi < min{σi−1, σi+1}. For example, the composition 3 1 5 2 2 3 1 4 2 has three
peaks and two valleys. Blecher et al. [2] determined an explicit formula for the gen-
erating function which counts the compositions of n having k parts according to the
occurrences of any peak and valley (including weak peaks and weak valleys). These
authors also give the following combinatorial formula for the total number of peaks

and valleys within all of the members in C(n) with k parts 2(k− 2)∑
b n

3 c
j=1 (

n−3j
k−2 ). In [12],

Shattuck gives a combinatorial proof of this result. From the main result given by Ki-
taev et al. in [10], it is possible to obtain a rational generating function for the total
number of peaks over all compositions of n.

A peak p = σi−1σiσi+1 is symmetric if σi−1 = σi+1. The peak p = σi−1σiσi+1 is asym-
metric if σi−1 6= σi+1. Analogously, we have the definition of symmetric and asymmetric
valleys. For example, the composition 3 5 3 2 4 4 3 4 3 1 2 has two symmetric peaks, one
symmetric valley, two asymmetric valleys, and no asymmetric peaks.

Date: December 30, 2023.
2020 Mathematics Subject Classification. 05A15, 05A16.
Key words and phrases. Compositions, peaks, symmetric peaks, asymmetric peaks, generating

functions.

1



2 TOUFIK MANSOUR, ANDRES R. MORENO, AND JOSÉ L. RAMÍREZ

The study of symmetric peaks was introduced by Asakly [1] in the context of k-ary
words. After that Flórez and Ramírez [6] introduced the concept of symmetric and
asymmetric peaks in Dyck paths, see also the recent works [3, 4, 5, 7, 13].

In this paper we give a multivariate generating functions, as well as combinatorial
formulas to count the distribution of symmetric and asymmetric peaks (resp. valleys)
over the set of integer compositions. Finally, we give some considerations for the num-
ber of symmetric peaks and valleys in restricted compositions, that is, compositions
with parts in a given set.

2. The Symmetric Peak and Valley Statistic

The goal of this section is to find an explicit formula for the generating function
G(x, y, q) for the number of compositions of n according to the number of parts and
number of symmetric peaks, that is, the coefficient of xnykq` is the number of com-
positions of n with k parts and ` symmetric peaks. In order to do that, we de-
fine G(x, y, q|a1a2 · · · as) to be the generating function for the number of compositions
π1π2 · · ·πm of n (m ≥ s) according to the number of parts and number of symmetric
peaks such that πi = ai for all i = 1, 2, . . . , s. Hence,

G(x, y, q) = 1 + ∑
a≥1

G(x, y, q|a)(1)

with

G(x, y, q|a) = xay +
a

∑
j=1

G(x, y, q|aj) + ∑
j≥a+1

G(x, y, q|aj)

= xay + xay
a

∑
j=1

G(x, y, q|j) + ∑
j≥a+1

G(x, y, q|aj),(2)

which implies

∑
j≥a+1

G(x, y, q|aj) = G(x, y, q|a)− xay− xay
a

∑
j=1

G(x, y, q|j).(3)

On other hand, for b > a we have

G(x, y, q|ab) = xa+by2 +
b

∑
j=1,j 6=a

G(x, y, q|abj) + G(x, y, q|aba) + ∑
j≥b+1

G(x, y, q|abj)

= xa+by2 + xa+by2
b

∑
j=1

G(x, y, q|j) + (q− 1)xa+by2G(x, y, q|a)

+ xay ∑
j≥b+1

G(x, y, q|bj).
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Thus, by (3), we have

G(x, y, q|ab) = xa+by2 + xa+by2
b

∑
j=1

G(x, y, q|j) + (q− 1)xa+by2G(x, y, q|a)

+ xay(G(x, y, q|b)− xby− xby
b

∑
j=1

G(x, y, q|j))

= (q− 1)xa+by2G(x, y, q|a) + xayG(x, y, q|b).

Therefore, by (2), we have

G(x, y, q|a) = xay + xay
a

∑
j=1

G(x, y, q|j) + ∑
j≥a+1

((q− 1)xa+jy2G(x, y, q|a) + xayG(x, y, q|j))

= xay + xay ∑
j≥1

G(x, y, q|j) + (q− 1)x2a+1y2

1− x
G(x, y, q|a)

= xayG(x, y, q) +
(q− 1)x2a+1y2

1− x
G(x, y, q|a).

Then

G(x, y, q|a) = xay

1− (q−1)x2a+1y2

1−x

G(x, y, q).

Hence, by (1), we obtain

G(x, y, q)− 1 = ∑
a≥1

xay

1− (q−1)x2a+1y2

1−x

G(x, y, q),

which leads to the following result

Theorem 2.1. The generating function for the number of compositions of n according to the
number of parts and number of symmetric peaks is given by

G(x, y, q) =
1

1−∑a≥1
xay

1− (q−1)x2a+1y2
1−x

.

As a series expansion, the generating function G(x, y, q) begins with

G(x, y, q) = 1 + yx + (y + y2)x2 + (y + 2y2 + y3)x3 + (y + 3y2 + (2 + q)y3 + y4)x4

+ (y + 4y2 + 5y3 + qy3 + (2 + 2q)y4 + y5)x5 + · · ·

The compositions corresponding to the bold coefficients in the above series are

x5y4︷ ︸︸ ︷
2 1 1 1,

x5y4q︷ ︸︸ ︷
1 2 1 1,

x5y4q︷ ︸︸ ︷
1 1 2 1,

x5y4︷ ︸︸ ︷
1 1 1 2 .
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By using similar techniques as in the proof of Theorem 2.1, we obtain the following
theorem.

Theorem 2.2. The generating function for the number of compositions of n according to the
number of parts and number of symmetric valleys is given by

V(x, y, q) =
1

1−∑a≥1
xay

1− (q−1)xa+1(1−xa−1)y2
1−x

.

Clearly, Theorems 2.1 and 2.2 give G(x, y, 1) = V(x, y, 1) = 1−x
1−x−xy , as expected. Let

s(n) denote the total number of symmetric peaks in C(n), and let s(n, k) denote the total
number of symmetric peaks in C(n) with k parts. It is clear that s(n) = ∑n

k=0 s(n, k).
The generating functions for the sequences s(n, k) and s(n) are given by

∂

∂q
G(x, y, q) |q=1 = ∑

n,k≥0
s(n, k)xnyk =

(1− x)x4y3

(1− x− xy)2(1− x3)
,

∂

∂q
G(x, 1, q) |q=1 = ∑

n≥0
s(n)xn =

x4

(1− 2x)2(1 + x + x2)
.

In Theorem 2.3 we give a combinatorial expression for the sequence s(n, k).

Theorem 2.3. For n ≥ 0 and k ≥ 3 we have

(4) s(n, k) = (k− 2)
n−k+2

∑
m=2

(
min{m−1,t}

∑
b=1

(
n−m− 2b− 1

k− 4

))
,

where t = bn−m−k+3
2 c.

Proof. Let σ = σ1σ2 · · · σk be a composition of n with at least three parts, that is, k ≥ 3. If
p = σj−1σjσj+1 = bmb is a symmetric peak in σ, then 2 ≤ j ≤ k− 1, 2 ≤ m ≤ n− (k− 2),

and 1 ≤ b ≤ min{m− 1, t}, where t =
⌊

n−m−(k−3)
2

⌋
. Notice that the value t is reached

when σi = 1 for all i ∈ [n] − {j − 1, j, j + 1}. The number of compositions of the
form σ′ = σ1 · · · σi−2σi+2 · · · σk is given by (n−m−2b−1

k−4 ). Therefore, the total number of
composition of n with a symmetric peak in the j-th position is

n−k+2

∑
m=2

(
min{m−1,t}

∑
b=1

(
n−m− 2b− 1

k− 4

))
.

Since j takes values between 2 to k − 1, then there are k − 2 options. Multiplying by
k− 2 the last combinatorial expression we obtain the desired result. �
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From the above theorem we obtain the first few values of the sequence s(n, k) for
4 ≤ n ≤ 10 and 3 ≤ k ≤ 9:

[s(n, k)]n≥4,k≥3 =



1 0 0 0 0 0 0
1 2 0 0 0 0 0
1 4 3 0 0 0 0
2 6 9 4 0 0 0
2 10 18 16 5 0 0
2 14 33 40 25 6 0
3 18 54 84 75 36 7


For example, the symmetric peaks (denoted by red) in the compositions of n = 7 with
4 parts are

1 1 1 4, 1 1 2 3, 1 1 3 2, 1 1 4 1, 1 2 1 3, 1 2 2 2, 1 2 3 1,
1 3 1 2, 1 3 2 1, 1 4 1 1, 2 1 1 3, 2 1 2 2, 2 1 3 1, 2 2 1 2,
2 2 2 1, 2 3 1 1, 3 1 1 2, 3 1 2 1, 3 2 1 1, 4 1 1 1.

The first few values of the sequence s(n) for n ≥ 4 are

1, 3, 8, 21, 51, 120, 277, 627, 1400, 3093, 6771, . . .

From the rational generating function for the sequence s(n) we can state the follow-
ing result.

Corollary 2.4. The total number of symmetric peaks over all compositions of n is given by

s(n) =
7n− 17

49
2n−2 − 12 + i

√
3

147

(
−1 + i

√
3

2

)n

− 12− i
√

3
147

(
−1− i

√
3

2

)n

where i2 = −1.

Let p(n) denote the total number of peaks within all of the members in C(n). From
the main result given by Kitaev et al. [10] it is possible to give the following generating
function for the sequence p(n)

∑
n≥0

p(n)xn =
x4(1 + x2)

(1− x)(1 + x)(1− 2x)2(1 + x + x2)
.

Theorem 2.5. Among all peaks of all compositions, the proportion of those that are symmetric
is asymptotically

lim
n→∞

s(n)
p(n)

=
3
5

.

Proof. The generating functions of the sequences s(n) and p(n) are rational, therefore
we can use the asymptotic analysis for linear recurrences (cf. [11]). First, note that the
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unique pole 1/β of the rational generating function

∑
n≥0

s(n)xn =
x4

(1− 2x)2(1 + x + x2)

is 1/2, with multiplicity 2. Therefore s(n) ∼ 1
282nn. Similarly, we have p(n) ∼ 5

842nn.
From these expressions we obtain the desired result. �

From Theorem 2.2 we can obtain similar results for the symmetric valleys. For ex-
ample,

∂

∂q
V(x, 1, q) |q=1 =

(1− x)x5

(1− 2x)2(1 + x)(1− x3)

is the generating function for the total number of symmetric valleys in C(n). Moreover,
the total number of symmetric valleys over all compositions of n is given by

21n− 65
441

2n−2 +
1
9
(−1)n+1 − 15− 11i

√
3

294

(
−1 + i

√
3

2

)n

− 15 + 11i
√

3
294

(
−1− i

√
3

2

)n

,

where i2 = −1.

3. The symmetric and asymmetric distributions

By refining the arguments given in the above section we can obtain an explicit
formula for the generating function G(x, y, p, q) for the number of compositions of
n according to the number of parts, number of symmetric peaks, and number of
asymmetric peaks, that is, the coefficient of xnyk p`qs is the number of compositions
of n with k parts, ` symmetric peaks, and s asymmetric peaks. Again, we define
G(x, y, p, q|a1a2 · · · as) for the number of compositions π1π2 · · ·πm of n according to
the number of parts, number of symmetric peaks (counted by q), and number of asym-
metric peaks (counted by p) such that πi = ai for all i = 1, 2, . . . , s. By the definitions,
we have

G(x, y, q, p) = 1 + ∑
a≥1

G(x, y, q, p|a).(5)

Moreover,

G(x, y, q, p|a) = xay +
a

∑
j=1

G(x, y, q, p|aj) + ∑
j≥a+1

G(x, y, q, p|aj)

= xay + xay
a

∑
j=1

G(x, y, q, p|j) + ∑
j≥a+1

G(x, y, q, p|aj).(6)
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For all b ≥ a + 1,

G(x, y, q, p|ab) = xa+by2 +
b−1

∑
j=1,j 6=a

G(x, y, q, p|abj) + G(x, y, q, p|aba)

+ G(x, y, q, p|abb) + ∑
j≥b+1

G(x, y, q, p|abj)

= xa+by2 + pxa+by2
b−1

∑
j=1,j 6=a

G(x, y, q, p|j) + qxa+by2G(x, y, q, p|a)

+ xa+by2G(x, y, q, p|b) + xay ∑
j≥b+1

G(x, y, q, p|bj)

= xa+by2 + pxa+by2
b−1

∑
j=1

G(x, y, q, p|j) + (q− p)xa+by2G(x, y, q, p|a)

+ xa+by2G(x, y, q, p|b) + xay ∑
j≥b+1

G(x, y, q, p|bj).

Thus, by (6), we have

G(x, y, q, p|ab) = xa+by2 + pxa+by2
b−1

∑
j=1

G(x, y, q, p|j) + (q− p)xa+by2G(x, y, q, p|a)

+ xa+by2G(x, y, q, p|b) + xay(G(x, y, q, p|b)− xby− xby
b

∑
j=1

G(x, y, q, p|j))

= (p− 1)xa+by2
b−1

∑
j=1

G(x, y, q, p|j) + (q− p)xa+by2G(x, y, q, p|a)

+ xayG(x, y, q, p|b).

Summing over all b ≥ a + 1 we have

∑
j≥a+1

G(x, y, q, p|aj) = ∑
j≥a+1

(p− 1)xa+jy2
j−1

∑
k=1

G(x, y, q, p|k) + (q− p)x2a+1y2

1− x
G(x, y, q, p|a)

+ xay ∑
j≥a+1

G(x, y, q, p|j).

Hence, (6) gives

G(x, y, q, p|a) = xay + xay ∑
j≥1

G(x, y, q, p|j)

+ ∑
j≥a+1

(p− 1)xa+jy2
j−1

∑
k=1

G(x, y, q, p|k) + (q− p)x2a+1y2

1− x
G(x, y, q, p|a),

Online Journal of Analytic Combinatorics, Issue 17 (2022), #04
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which, by (5), implies

G(x, y, q, p|a) = xayG(x, y, q, p) +
(q− p)x2a+1y2

1− x
G(x, y, q, p|a)

+ (p− 1)y2 ∑
j≥a+1

xa+j
j−1

∑
k=1

G(x, y, q, p|k).

Define G(x, y, q, p; t) = 1 + ∑a≥1 G(x, y, q, p|a)ta. Then by multiplying by ta and sum-
ming over a ≥ 1, we obtain

G(x, y, q, p; t) = 1 +
xyt

1− xt
G(x, y, q, p) +

(q− p)xy2

1− x
(G(x, y, q, p; x2t)− 1)

+ (p− 1)y2 ∑
a≥1

∑
j≥a+1

j−1

∑
k=1

G(x, y, q, p|k)xa+jta

= 1 +
xyt

1− xt
G(x, y, q, p) +

(q− p)xy2

1− x
(G(x, y, q, p; x2t)− 1)

+ (p− 1)y2 ∑
k≥1

∑
j≥k+1

G(x, y, q, p|k)xj+1t− x2jtj

1− xt

= 1 +
xyt

1− xt
G(x, y, q, p) +

(q− p)xy2

1− x
(G(x, y, q, p; x2t)− 1)

+
(p− 1)x2y2t

(1− x)(1− xt)
(G(x, y, q, p, x)− 1)

− (p− 1)x2y2t
(1− xt)(1− x2t)

(G(x, y, q, p, x2t)− 1),

which implies

G(x, y, q, p; t)− 1 = α(t) + β(t)(G(x, y, q, p, x2t)− 1),

where

α(t) =
xyt

1− xt
G(x, y, q, p) +

(p− 1)x2y2t
(1− x)(1− xt)

(G(x, y, q, p, x)− 1),

β(t) =
(q− p)xy2

1− x
− (p− 1)x2y2t

(1− xt)(1− x2t)
.
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By iterating this equation infinitely many times (here we assume that |x| < 1), we
obtain

G(x, y, q, p; t) = 1 + ∑
j≥0

α(x2jt)
j−1

∏
i=0

β(x2it)

= 1 + G(x, y, q, p) ∑
j≥0

x2j+1yt
1− x2j+1t

j−1

∏
i=0

β(x2it)

+ (G(x, y, q, p, x)− 1) ∑
j≥0

(p− 1)x2j+2y2t
(1− x)(1− x2j+1t)

j−1

∏
i=0

β(x2it).

By taking either t = 1 or t = x, and the solving for G(x, y, p, q), we obtain the following
result.

Theorem 3.1. We have

G(x, y, q, p) =
1− B(x)

1− A(1)− B(x)− A(x)B(1) + A(1)B(x)
,

where

A(t) = xyt ∑
j≥0

x3jy2j

1− x2j+1t

j−1

∏
i=0

(
q− p
1− x

− (p− 1)x2i+1t
(1− x2i+1t)(1− x2i+2t)

)
,

B(t) =
(p− 1)x2y2t

1− x ∑
j≥0

x3jy2j

1− x2j+1t

j−1

∏
i=0

(
q− p
1− x

− (p− 1)x2i+1t
(1− x2i+1t)(1− x2i+2t)

)
.

As a series expansion, the generating function G(x, y, q, p) begins with

G(x, y, q, p) = 1 + xy + (y + y2)x2 + y(1 + y)2x3 + (y4 + (2 + q)y3 + 3y2 + y)x4

+ (y5 + 2(q + 1)y4 + (5 + q)y3 + 4y2 + y)x5

+ (y6 + (2 + 3q)y5 + (6 + 4q)y4 + (q + 2p + 7)y3 + 5y2 + y)x6 + · · · .

The compositions corresponding to the bold coefficients in the above series are

x6y3︷ ︸︸ ︷
4 1 1,

x6y3q︷ ︸︸ ︷
1 4 1,

x6y3︷ ︸︸ ︷
1 1 4,

x6y3︷ ︸︸ ︷
3 2 1,

x6y3︷ ︸︸ ︷
3 1 2,

x6y3 p︷ ︸︸ ︷
2 3 1,

x6y3︷ ︸︸ ︷
2 1 3,

x6y3 p︷ ︸︸ ︷
1 3 2,

x6y3︷ ︸︸ ︷
1 2 3,

x6y3︷ ︸︸ ︷
2 2 2 .

We define similarly the generating functions V(x, y, q, p), V(x, y, q, p; t), and
V(x, y, q, p|a1a2 · · · as) for symmetric valleys (counted by q) and asymmetric valleys

Online Journal of Analytic Combinatorics, Issue 17 (2022), #04
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(counted by p). Then, by similar arguments as in the proof of Theorem 3.1, we obtain

V(x, y, q, p|a) = xayV(x, y, q, p) +
(q− p)xa+1(1− xa−1)y2

1− x
V(x, y, q, p|a)

+ (p− 1)y2
a−1

∑
b=1

xa+b ∑
j≥b+1

V(x, y, q, p|j)(7)

and then

Ṽ(x, y, q, p; t) =
xyt

1− xt
V(x, y, q, p) +

(q− p)y2

1− x
(xṼ(x, y, q, p; xt)− Ṽ(x, y, q, p, x2t))

+
(p− 1)xy2t

(1− xt)(1− x2t)
(x2tṼ(x, y, q, p)− Ṽ(x, y, q, p, x2t)),

where Ṽ(x, y, q, p; t) = V(x, y, q, p; t)− 1.

3.1. Total number of asymmetric peaks. Let a(n) denote the total number of asym-
metric peaks in C(n), and let a(n, k) denote the total number of asymmetric peaks in
C(n) with k parts. The generating functions for the sequences a(n, k) and a(n) are given
by

∂

∂p
G(x, y, 1, p) |p=1 = ∑

n,k≥0
a(n, k)xnyk =

2x6y3

(1− x− xy)2(1 + x− x3 − x4)
,

∂

∂p
G(x, 1, 1, p) |p=1 = ∑

n≥0
a(n)xn =

2x6

(1− 2x)2(1 + x− x3 − x4)
.(8)

The first few values of the sequence a(n) for n ≥ 6 are

2, 6, 18, 48, 120, 288, 674, 1542, 3474, 7728, 17016, . . .

In Theorem 3.2 we give a combinatorial expression for the sequence a(n, k).

Theorem 3.2. For n ≥ 0 and k ≥ 3 the sequence a(n, k) is given by

2(k− 2)
n−k+2

∑
m=2

(
min{m−1,n−m−k+2}

∑
b=1

(
min{b−1,n−m−b−k+3}

∑
c=1

(
n−m− b− c− 1

k− 4

)))
.

Proof. Let σ = σ1σ2 · · · σk be a composition of n with at least three parts, that is, k ≥ 3.
If p = σj−1σjσj+1 = bmc is an asymmetric peak in σ, then 2 ≤ j ≤ k − 1, 2 ≤ m ≤
n − (k − 2), c 6= b, and max{b, c} < m. Notice that 1 ≤ b ≤ min{m − 1, t}, where
t = n− m− (k− 2). The value t is reached when σi = 1 for all i ∈ [n]− {j− 1, j}. If
c < b, then c < min{b− 1, n− m− b− (k + 3)}. The number of compositions of the
form σ′ = σ1 · · · σi−2σi+2 · · · σk is given by (n−m−b−c−1

k−4 ). Therefore, the total number of
composition of n with an asymmetric peak in the j-th position is given by

n−k+2

∑
m=2

(
min{m−1,n−m−k+2}

∑
b=1

(
min{b−1,n−m−b−k+3}

∑
c=1

(
n−m− b− c− 1

k− 4

)))
.
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Since j takes values between 2 to k− 1, then there are k− 2 options. The option b < c
is analogous. Therefore, multiplying by 2(k− 2) the last combinatorial expression we
obtain the desired result. �

From Theorem 3.2 we obtain the first few values of the sequence a(n, k) for 6 ≤ n ≤
12 and 3 ≤ k ≤ 9:

[a(n, k)]n≥6,k≥3 =



2 0 0 0 0 0 0
2 4 0 0 0 0 0
4 8 6 0 0 0 0
6 16 18 8 0 0 0
8 28 42 32 10 0 0

10 44 84 88 50 12 0
14 64 150 200 160 72 14


For example, the asymmetric peaks (denoted by red) in the compositions of n = 7 with
4 parts are

1 1 1 4, 1 1 2 3, 1 1 3 2, 1 1 4 1, 1 2 1 3, 1 2 2 2, 1 2 3 1,
1 3 1 2, 1 3 2 1, 1 4 1 1, 2 1 1 3, 2 1 2 2, 2 1 3 1, 2 2 1 2,
2 2 2 1, 2 3 1 1, 3 1 1 2, 3 1 2 1, 3 2 1 1, 4 1 1 1.

From the rational generating function, see (8), for the sequence a(n) we can state the
following result.

Corollary 3.3. The total number of asymmetric peaks over all compositions of n is given by

a(n) =
3 + (−1)n

9
+

21n− 107
441

2n−1 +
13− 3

√
3i

147

(
1−
√

3i
−2

)n

+
13 + 3

√
3i

147

(
1 +
√

3i
−2

)n

,

where i2 = −1.

Corollary 3.4. Among all peaks of all compositions, the proportion of those that are asymmetric
is asymptotically

lim
n→∞

a(n)
p(n)

=
2
5

.

4. Symmetric Peaks over Restricted Compositions.

Let CA(n) denote the set of compositions of n with parts in the set A ⊆ N. For ex-
ample, it is well-known that |C{1,2}(n)| = Fn+1, where Fn is the n-th Fibonacci number.
In [9], Janjić gave several combinatorial expressions for the sequence |CA(n)|. From the
same argument as in the previous section, it is possible to obtain expressions for the
generating function GA(x, y, q) for the number of compositions with parts in A ⊆ N

according to the number of parts and symmetric peaks.

Online Journal of Analytic Combinatorics, Issue 17 (2022), #04
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For example, for ` ≥ 2 we have

G{1,2,...,`}(x, y, q) := G`(x, y, q) =
1

1−∑`
a=1

xay

1− (q−1)y2(x2a+1−xa+`+1)
1−x

.

In particular, for ` = 2 we have

G2(x, y, q) =
1 + x3y2 − qx3y2

1− xy− x2y + x3y2 − qx3y2 − x5y3 + qx5y3

= 1 + yx + (y + y2)x2 + (2y2 + y3)x3 + (y2 + (2 + q)y3 + y4)x4

+ (3y3 + (2 + 2q)y4 + y5)x5 + · · ·
The compositions corresponding to the bold coefficients in the above series are

x5y4︷ ︸︸ ︷
2 1 1 1,

x5y4q︷ ︸︸ ︷
1 2 1 1,

x5y4q︷ ︸︸ ︷
1 1 2 1,

x5y4︷ ︸︸ ︷
1 1 1 2 .

Let sA(n) denote the total number of symmetric peaks in CA(n), and let sA(n, k)
denote the total number of symmetric peaks in CA(n) with k parts. For example, for
` = 2

∂

∂q
G2(x, y, q) |q=1 = ∑

n,k≥0
s{1,2}(n, k)xnyk =

x4y3

(1− (x + x2)y)2 ,

∂

∂q
G2(x, 1, q) |q=1 = ∑

n≥0
s{1,2}(n)xn =

x4

(1− x− x2)2 .

In Theorem 4.1 we generalize the combinatorial expression given in Theorem 2.3.

Theorem 4.1. We have

sA(n, k) = (k− 2) ∑
m∈M∩A

(
∑

b∈Bs∩A
cA(n−m− 2b, k− 3)

)
,

where M = {2, 3, . . . , n− k + 1}, Bs = {1, 2, . . . , min{m− 1, bn−m−k+3
2 c}}, and cA(n, k)

denote the number of compositions of n with k parts in A.

For example, for A = {1, 2, 3} we obtain the array

[s{1,2,3}(n, k)]n≥4,k≥3 =



1 0 0 0 0 0 0
1 2 0 0 0 0 0
0 4 3 0 0 0 0
1 4 9 4 0 0 0
0 4 15 16 5 0 0
0 2 18 36 25 6 0
0 2 15 56 70 36 7


In particular, the symmetric peaks (denoted by red) in the compositions of n = 7 with
4 parts in A = {1, 2, 3} are 3121, 2131, 1312, 1213.
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The first few values of the sequence s{1,2,3}(n) for n ≥ 4 are

1, 3, 7, 18, 40, 87, 186, 388, 799, 1627, 3281, . . .

Moreover,

∂

∂q
G3(x, y, q) |q=1 = ∑

n,k≥0
s{1,2,3}(n, k)xnyk =

x4(1 + x + x3)y3

(1− (x + x2 + x3)y)2 ,

∂

∂q
G3(x, 1, q) |q=1 = ∑

n≥0
s{1,2,3}(n)xn =

x4(1 + x + x3)

(1− x− x2 − x3)2 .

Similarly, we obtain the following result.

Theorem 4.2. We have

aA(n, k) = 2(k− 2) ∑
m∈M∩A

(
∑

b∈Ba∩A

(
∑

c∈Ca∩A
cA(n−m− b− c, k− 3)

))
,

where

Ba = {1, 2, . . . , min{m− 1, n−m− k + 2}} and

Ca = {1, 2, . . . , min{b− 1, n−m− b− k + 3}}.
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