
INFINITE LOG-CONVEXITY

TEWODROS AMDEBERHAN AND VICTOR H. MOLL

Abstract. A criteria to verify log-convexity of sequences is presented. Iterating this
criteria produces infinitely log-convex sequences. As an application, several classical
examples of sequences arising in Combinatorics and Special Functions are presented.
The paper concludes with a conjecture regarding coefficients of chromatic polynomials.

1. Introduction

Questions about the ordering of a sequence of non-negative real numbers a = {ak}k,
for 0 ≤ k ≤ n, have appeared in the literature since Newton. He established that if
P(x) is a polynomial, all of whose zeros are real and negative, then the sequence of its
coefficients a = {ak}k is log-concave; that is, a2

k − ak−1ak+1 ≥ 0 for 1 ≤ k ≤ n− 1. A
weaker condition on sequences is that of unimodality: that is, there is an index r such
that a0 ≤ a1 ≤ · · · ≤ ar ≥ ar+1 ≥ · · · ≥ an. An elementary argument shows that a
log-concave sequence must be unimodal. A sequence a = {ak}k is called log-convex if
a2

k − ak−1ak+1 ≤ 0 for 1 ≤ k ≤ n− 1.
These concepts can be expressed in terms of the operator a 7→ L(a) defined by
L(a)k = a2

k − ak−1ak+1. In this notation, the sequence a = {ak}k is log-concave if it
satisfies L(a)k ≥ 0 for k ≥ 1. Similarly, the sequence is log-convex if L(a)k ≤ 0.
Iteration of L leads to the notion of `-log-concave sequences, defined by the property
that the sequences Lj(a) are all non-positive for 1 ≤ j ≤ ` and a is infinitely log-convex
if it is `-log-convex for every ` ∈ N. The definitions of `-log-concave and infinitely
log-concave are similar.

The results presented here originate with the sequence of coefficients {di(n)}i of the
polynomial

(1.1) Pn(a) =
n

∑
i=0

di(n)ai,

defined by

(1.2) di(n) = 2−2n
n

∑
k=i

2k
(

2n− 2k
n− k

)(
n + k

n

)(
k
i

)
.
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This polynomial appears in the evaluation of a definite integral. More details are pre-
sented in Section 5.

The goal of the present work is to develop a criteria which verifies the log-convexity
of a variety of classical sequences. We record an elementary observation of independent
interest.

Lemma 1. A positive sequence a = {ak}k is log-convex if and only if
a−1 = {1/ak}k is log-concave.

Proof. Simply observe that

(1.3) L
(

1
ak

)
=

1
ak−1ak+1

− 1
a2

k
=

L(a)k

ak−1a2
kak+1

.

�

Remark 1. This does not extend to k-log-concavity for k ≥ 2. For instance, the sequence
{1, 1

4 , 1
8 , 1

16 , 1
31} is 2-log-convex but the sequence of reciprocals is not 2-log-concave.

2. The criteria

In this section we establish the basic criteria used to establish infinite log-convexity
of sequences.

Proposition 1. Let a = {ak}k, with ak =
∫

X
f k(x) dµ(x) for a certain positive function f on

a measure space (X, µ). Then a = {ak}k is infinitely log-convex.

Proof. It suffices to prove that L(a)k ≤ 0. The general statement follows by iteration of
the argument. The initial step is a consequence of

−L(a)k = ak−1ak+1 − a2
k

=
∫

X×X
f k−1(x) f k+1(y)dµ(x)dµ(y)−

∫
X×X

f k(x) f k(y)dµ(x)dµ(y)

=
1
2

∫
X×X

f k(x) f k(y)
(

f (x)
f (y)

+
f (y)
f (x)

− 2
)

dµ(x)dµ(y)

=
1
2

∫
X×X

f k−1(x) f k−1(y)( f (x)− f (y))2 dµ(x)dµ(y).

To iterate this argument, observe that La also satisfies the hypothesis of this proposi-
tion. �

3. Examples of combinatorial sequences

This section presents a list of examples of log-convex sequences using Proposition 1.

Example 2. The central binomial coefficients
{
(2k

k )
}

k
are infinitely log-convex.
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Proof. This follows directly from Wallis’ formula [6, Theorem 6.4.1] written in the form

(3.1)
(

2k
k

)
=

2
π

∫ π/2

0
(2 sin x)2k dx.

�

Example 3. The Catalan numbers Ck =
1

k+1(
2k
k ) are infinitely log-convex.

Proof. Applying the Wallis’ integral formula for (2k
k ) in (3.1), we obtain

(3.2) Ck =
2
π

∫ π/2

0

∫ 1

0

(
4t sin2 x

)k
dx dt.

�

Example 4. Let {Fk}k be the sequence of Fibonacci numbers. Then {F2k/k} is infinitely
log-convex.

Proof. This follows from the integral representation [11, eqn. (10.2)] written in the form

(3.3)
F2k
k

=
1
2

∫ π

0

(
3
2
+

√
5

3
cos x

)k−1

dµ(x) with dµ(x) = sin x dx.

�

Example 5. The reciprocals of the binomial coefficients arow = {(n
k)
−1}k form an infin-

itely log-concave sequence. The same holds for the sequence acol = {(n
k)
−1}n.

Proof. Fix n and consider the expression ak = (n
k)
−1. Using the integral representation

of Euler’s beta function

B(n, m) =
Γ(n)Γ(m)

Γ(n + m)
=
∫ 1

0
tn−1(1− t)m−1dt,

we have

(3.4) ak =
∫ 1

0

(
x

1− x

)k
dµ(k) with dµ(x) = (n + 1)(1− x)n dx.

Proposition 1 and (3.4) yield the infinite log-convexity of arow = {ak}k.
The second assertion follows from the representation

(3.5)
(

n
k

)−1

=
∫ 1

0
(n + 1)(1− x)n dη(x) with dη(x) =

(
x

1− x

)k
dx.

�

Example 6. The derangement sequence dk is defined as the number of permutations in
Sk without fixed points. The integral representation of the even-indexed subsequence
d2k [17, page 313]

(3.6) d2k =
∫ ∞

0
(x− 1)2k dµ(x) with dµ(x) = e−xdx
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shows that {d2k}k is infinitely log-convex.

Example 7. A permutation π = π1π2 . . . πn in the symmetric group Sn is called alternat-
ing if its entries alternately rise or descend. The Euler number En counts the number
of alternating permutations in Sn. Since E2k = (−1)kẼ2k (Ẽ2k denotes the Eulerian
numbers) and by the integral representation of Ẽ2k (see [3, eqn. (1)]), we have

(3.7) E2k =
2
π

∫ ∞

0

(
2 log x

π

)2k
dµ(x) with dµ(x) =

dx
1 + x2 .

Proposition 1 and (3.7) together imply that {E2k}k is infinitely log-convex.

Example 8. The large Schröder numbers Sk count the number of paths on a k× k grid
from the southwest corner (0, 0) to the northeast corner (k, k) using only single steps
north, northeast or east that do not rise above the southwest-northeast diagonal. Propo-
sition 1 and the integral representation (see [19, eqn. (1.10)])

(3.8) Sk =
1

2π

∫ 3+2
√

2

3−2
√

2

1
xk+2 dµ(x) with dµ(x) =

√
−x2 + 6x− 1 dx

show that {Sk}k is infinitely log-convex.

Example 9. The Motzkin numbers Mk count the number of lattice paths from (0, 0)
to (k, k), consisting of steps (0, 2), (2, 0) and (1, 1) subject to never rising above the
diagonal y = x. Apply the integral representation [15, Corollary 12 (e)]

(3.9) M2k =
2
π

∫ π

0
(1 + 2 cos x)2k dµ(x) with dµ(x) = sin2 x dx

reveals that the even-indexed Motzkin sequence {M2k}k is indeed infinitely log-convex.

Example 10. Let hk be the number of lattice paths from (0, 0) to (2k, 0) with steps
(1, 1), (1,−1) and (2, 0), never falling below the x-axis and with no peaks at odd level.
These numbers also count the number of sets of all tree-like polyhexes with k + 1
hexagons. This is sequence A002212 in OEIS. The integral representation

(3.10) hk =
1

2π

∫ 5

1
xk−1dµ(x) with dµ(x) =

√
(x− 1)(5− x) dx

and Proposition 1 show that {hk}k is infinitely log-convex.

Example 11. Let wk be the number of walks on a cubic lattice with k steps, starting and
finishing on the xy-plane conditioned to never going below it. This is sequence A005572
in OEIS. These numbers have the integral representation

(3.11) wk =
1

2π

∫ 6

2
xkdµ(x) with dµ(x) =

√
4− (4− x)2.

The usual argument shows that {hk}k is infinitely log-convex.
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Example 12. The central Delanoy numbers Dk enumerate the number of king walks on a
k× k grid, from the (0, 0) corner to the upper right corner (k, k). The integral represen-
tation due to F. Qi et. al. [20, Theorem 1.3]

(3.12) Dk =
1
π

∫ 3+2
√

2

3−2
√

2

1
xk+1 dµ(x) with dµ(x) =

dx√
−x2 + 6x− 1

shows that {Dk}k is infinitely log-convex.

Example 13. The Narayana numbers N(n, k) count the number of lattice paths from
(0, 0) to (2n, 0), with k peaks, not straying below the x-axis and using northeast and
southeast steps. Applying the integral formula for the Euler’s beta function, the infi-
nite log-convexity of the reciprocals of N(n, k) = 1

n (
n

k−1)(
n
k) follows from the integral

representation

(3.13)
1

N(n, k)
=
∫ 1

0

∫ 1

0

(
x

1− x

)k ( y
1− y

)k−1

dµ(x, y),

where dµ(x, y) = n(n + 1)2(1− x)n(1− y)n dx dy.

4. A variety of examples from special functions

This section presents a selection of sequences related to classical special functions.

Example 14. The sequence of factorials {k!}k is infinitely log-convex.

Proof. Apply the representation

(4.1) k! =
∫ ∞

0
xk dµ(x) with dµ(x) = e−xdx.

�

Example 15. The classical Eulerian gamma and beta functions are defined by integral
representations

(4.2) Γ(a) =
∫ ∞

0
ta−1e−t dt

and

(4.3) B(a, b) =
∫ 1

0
ta−1(1− t)b−1 dt.

Specialization of these formulas and Proposition 1 give infinitely log-convex sequences.
Example 14 corresponds to the special value Γ(k + 1) = k!. Another infinitely log-
convex sequence arising in this manner is {ak}k, with

(4.4) ak =
(2k)!
22kk!

=
1√
π

Γ
(

k + 1
2

)
.
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Naturally, the specialization of (4.3) gives a double-indexed log-convex sequence (sym-
metric in m and n)

(4.5) B(n, m) =
Γ(n)Γ(m)

Γ(n + m)
=

(n− 1)!(m− 1)!
(n + m− 1)!

.

Clearly, many other examples can be produced in this manner.

Example 16. The integral representation of the Riemann zeta function (see [21, eqn.
(2.4.1)])

(4.6) ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1 dx
ex − 1

with Re(s) > 1

gives for k ∈N,

(4.7) Γ(k)ζ(k) =
∫ ∞

0
xkdµ(x) with dµ(x) =

dx
x(ex − 1)

.

Proposition 1 shows that the sequence {Γ(k)ζ(k)}k is infinitely log-convex.

Example 17. The values of the Riemann zeta function at even integers is given in terms
of the Bernoulli numbers B2k defined by the generating function

(4.8) coth x =
1
x

∞

∑
k=0

B2k
(2k)!

(2x)2k.

The aforementioned relation and taking the logarithmic derivative of the function
sin z = z ∏∞

n=1

(
1− z2

n2π2

)
with the substitution z 7→ ix, it follows that

(4.9) B2k =
(−1)k+12(2k)!

(2π)2k ζ(2k).

The integral representation (4.6) yields

(4.10)
B4k+2

4k + 2
=
∫ ∞

0
2
( x

2π

)4k+2
dµ(x) with dµ(x) =

dx
x(ex − 1)

.

From here it follows that the sequence
{

1
4k+2 B4k+2

}
k

is infinitely log-convex.

The next example emerges from a multi-dimensional integral:

Example 18. Fix d ∈N. Then the sequence
{

1
(k + 1)d

}
k

is infinitely log-convex.

Proof. Apply the representation

(4.11)
1

(k + 1)d =
∫ 1

0
· · ·

∫ 1

0
(x1x2 · · · xd)

k dµ(x)

with dµ(x) = dx1dx2 · · · dxd. �

The final example in this section is a generalization of Example 3.
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Example 19. The generating function of the Catalan numbers Ck is

(4.12) G(x) =
2

1 +
√

1− 4x
=

∞

∑
k=0

Ckxk.

Li et al. [14, eqn. (1.10)] considered the function

(4.13) Ga,b(x) =
1

a +
√

b− x
=

∞

∑
k=0
Ck(a, b)xk

as a generalization of (4.12). The coefficients Ck(a, b) admit the integral representation
[14, Theorem 3.1, eqn. (3.2)]

(4.14) Ck(a, b) =
2
π

∫ ∞

0

s2 ds
(a2 + s2)(b + s2)n+1 ,

(see [18, 7.4.1]. Proposition 1 shows that, for fixed a and b, the sequence {Ck(a, b)}k is
infinitely log-convex.

Among the expressions for Cn(a, b) one finds the finite sum [14, Theorem 2.1]

(4.15) Cn(a, b) =
1

(2n)!!bn+1/2

n

∑
k=0

(
2n− k− 1
2(n− k)

)
k![2(n− k)− 1]!!

(1 + a/
√

b)k+1
,

the hypergeometric representation

(4.16) Cn(a, b) = Cn
π

(2
√

b)n

1

(a +
√

b)n+1 2F1

(
1− n n

n + 2

∣∣∣∣
√

b− a
2
√

b

)

and an expression in terms of the Jacobi polynomials P(α,β)
n (see [2]):

(4.17) Cn(a, b) =
π

n(2
√

b)n

1

(a +
√

b)n+1
P(n+1,−n−1)

n−1

(
a√
b

)
.

5. The motivating example

As mentioned in the Introduction, the sequence that lead the authors to the present
work results from the evaluation of the quartic integral

(5.1) N0,4(a; n) =
∫ ∞

0

dx
(x4 + 2ax2 + 1)n+1 .

The main result of [7] is that the expression

(5.2) Pn(a) =
1
π

2n+3/2(a + 1)n+1/2N0,4(a; n)

is a polynomial in a, of degree n, with the coefficient of ai given by

(5.3) di(n) =
n

∑
k=i

2k−2n
(

2n− 2k
n− k

)(
n + k

k

)(
k
i

)
.
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Properties of these coefficients are studied in [16]. In particular, for fixed n, the se-
quence (di(n))i was shown to be unimodal in [1, 5, 8]. Its log-concavity was estab-
lished in [13] and its 2-log-concavity appeared in [10]. The question about the infinite
log-concavity of {di(n)}i remains open. The next statement follows from Proposition
1:

Proposition 2. For fixed r ∈N, the sequence {Pn(r)}n is infinitely log-convex.

Proof. Proposition 1 and the integral representation

(5.4) Pn(r) =
23/2
√

r + 1
π

∫ ∞

0

(
2(r + 1)

x4 + 2rx2 + 1

)n

dµ(x)

with dµ(x) =
dx

x4 + 2rx2 + 1
, yield the result. �

6. Chromatic polynomials

This last section discusses properties of chromatic polynomials of graphs. Recall that
given an undirected graph G and x distinct colors, the number of proper colorings
(adjacent vertices having distinct colors) is a polynomial in x, called the chromatic
polynomial of G and denoted by κG(x).

Examples of chromatic polynomials include
• If G is a graph with n vertices and no edges, then κG(x) = xn;
• If G is a tree with n vertices, then κG(x) = x(x− 1)n−1;
• If G is the complete graph with n vertices, then

κG(x) = x(x− 1) · · · (x− n + 1).

In these examples, the chromatic polynomials have only real roots. The log-concavity
of the coefficients follows from a work of P. Bränden [9].

Other examples of chromatic polynomials include
• For a cycle G with n vertices, κG(x) = (x− 1)n + (−1)n(x− 1);
• If G is the bipartite graph Kn,m, then

κG(x) =
m

∑
j=0

S(m, j)(x)j(x− j)n,

where S(m, k) is the Stirling number of the second kind and (x)k = x(x −
1) · · · (x− k + 1) is the falling factorial.
• If G is the cyclic ladder graph with 2n vertices, then

(6.1) κG(x) = (x2 − 3x + 3)n − (1− x)n+1 − (1− x)(3− x)n + (x2 − 3x + 1).

• If G is the signed book graph B(m, n), then

(6.2) κG(x) = (x− 1)mx−n ((x− 1)m + (−1)m)n .
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These examples, as well as many more from the long list given by Birkhoff and Lewis
[4], have been tested to be infinitely log-concave.

J. Huh [12] proved:

Theorem 20. The absolute values of the coefficients of a chromatic polynomial κG(x) are log-
concave.

The authors will analyze chromatic polynomials by the methods presented in this
paper. In the meantime, based on some experimental evidence, we invite the reader to:

Conjecture 21. The absolute values of the coefficients of any chromatic polynomial are infinitely
log-concave.

Acknowledgements. The authors wish to thank a referee for a meticulous report on the
original version of the paper.
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