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Abstract

In 1972, Bender and Knuth established a bijection between certain infinite matrices of non-negative
integers and plane partitions and in [2] a bijection between Bender-Knuth matrices and n-color partitions
was shown. Here we use this later bijection and translate the recently found n-color partition theoretic
interpretations of four mock theta functions of S. Ramanujan in [1] to new combinatorial interpretations
of the same mock theta functions involving Bender-Knuth matrices.

Subject Class: 05A15, 05A17, 11P81

1 Introduction, Definitions and the Main Results

In his last letter dated 12 January, 1920 to G.H. Hardy , S. Ramanujan listed 17 functions
which he called mock theta functions. He separated these 17 functions into three classes.
First containing 4 functions of order 3, second containing 10 functions of order 5 and the
third containg 3 functions of order 7. Watson [12] found three more functions of order 3
and two more of order 5 appear in the lost notebook [11]. Mock theta functions of order 6
and 8 have also been studied in [5] and [8], respectively. For the definitions of mock theta
functions and their order the reader is referred to [10].
A partition of a positive integer n is any non-increasing sequence of positive integers whose
sum is n. 0 also has a partition called ”empty partition”. The rank of a partition is defined
to be the largest part minus the number of its parts. Partition theoretic interpretations of
some of the mock theta functions are found in the literature. For example, Ψ(q) , defined
by (1.1) below , has been interpretated as generating function for partitions without gaps
(cf.[9]). A survey of work done on mock theta functions is given in Andrews paper [4].
Very recently Bringmann and Ono [7] redefined mock theta functions as the holomorphic
projection of weight 1/2 weak Maass forms and used their ideas in solving the classical
problem of obtaining formulas for Ne(n) (resp.No(n)), the number of partitions of n with
even (resp.odd) rank by showing the equivalence of this problem and the problem of deriving
exact formulas for the coefficients α(n) of the series

f(q) = 1 +
∞∑
n=1

α(n)qn =
∞∑
n=0

qn
2

/(−q; q)2
n,
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wheref(q) is the first mock theta function of order 3 in Ramanujan’s list of 17 mock theta
functions (cf.[9]) and

(a; q)n =
∞∏
i=0

(1− aqi)
(1− aqn+i)

,

for any constant a. Here our objective is to translate the n-color partition theoretic inter-
pretations of four mock theta functions obtained in [1] to matrix theoretic interpretations of
the same mock theta functions by using the bijection of [2]. First we recall the definitions
of n-color partitions and the weighted differences from [3]:

Definition 1.1. An n − color partition (also called a partition with ’n copies of n’) of
a positive integer ν is a partition in which a part of size n can come in n different colors
denoted by subscripts: n1, n2, · · · , nn and the parts satisfy the order 11 < 21 < 22 < 31 <
32 < 33 < 41 < 42 < 43 < 44 < · · ·. Thus, for example, the n-color partitions of 3 are

31, 32, 33, 2111, 2211, 111111.

Definition 1.2. The weighted difference of two parts mi, nj,m ≥ n is defined by m−n−i−j
and denoted by ((mi − nj)).

Recently in [1] we showed that the following four mock theta functions (first is of order
3 and the remaining three are of order 5) of S. Ramanujan:

Ψ(q) =
∞∑
m=1

qm
2

(q; q2)m
, (1.1)

F0(q) =
∞∑
m=0

q2m2

(q; q2)m
, (1.2)

Φ0(q) =
∞∑
m=0

qm
2

(−q; q2)m, (1.3)

and

Φ1(q) =
∞∑
m=0

q(m+1)2(−q; q2)m, (1.4)

have their n-color partition theoretic interpretations in the following theorems, respectively,

Theorem 1. For ν ≥ 1, let A1(ν) denote the number of n-color partitions of ν such
that even parts appear with even subscripts and odd with odd, for some k, kk is a part, and
the weighted difference of any two consecutive parts is 0. Then,

∞∑
ν=1

A1(ν)qν = Ψ(q). (1.5)

Theorem 2. For ν ≥ 0, let A2(ν) denote the number of n-color partitions of ν such
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that even parts appear with even subscripts and odd with odd greater than 1, for some k, kk
is a part, and the weighted difference of any two consecutive parts is 0. Then,

∞∑
ν=0

A2(ν)qν = F0(q). (1.6)

Theorem 3. For ν ≥ 0, let A3(ν) denote the number of n-color partitions of ν such that
only the first copy of the odd parts and the second copy of the even parts are used, that is,
the parts are of the type (2k− 1)1 or (2k)2, the minimum part is 11 or 22, and the weighted
difference of any two consecutive parts is 0. Then,

∞∑
ν=0

A3(ν)qν = Φ0(q). (1.7)

Theorem 4. For ν ≥ 1, let A4(ν) denote the number of n-color partitions of ν such that
only the first copy of the odd parts and the second copy of the even parts are used, the
minimum part is 11, and the weighted difference of any two consecutive parts is 0. Then,

∞∑
ν=1

A4(ν) = Φ1(q). (1.8)

It was pointed out in [3] that the number of n-color partitions of a positive integer ν equals
the number of plane partitions of ν. A plane partition π of n is an array

n1,1 n1,2 n1,3 ...
n2,1 n2,2 n2,3 ...

. . .

. . .

. . .

of non-negative integers which is non increasing along each row and column and such that∑
ni,j = n. The non-zero entries ni,j > 0 are called the parts of π.

E.A. Bender and D.E. Knuth [6] proved the following:

Theorem [Bender and Knuth]. There is a one-to-one correspondence between plane
partitions of ν, on the one hand, and infinite matrices aij (i, j ≥ 1) of non negative integer
entries which satisfy, ∑

r≥1

r{
∑

i+j=r+1

aij} = ν,

on the other.

Note. For the definition and other details of the one-to-one correspondence of this the-
orem which is denoted by φ the reader is referred to [6].

Corresponding to every non negative integer ν we shall call the matrices of the above
theorem BKν− matrices (BK for Bender and Knuth). These are infinite matrices but will
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be represented in the sequel by the largest possible square matrices whose last row (column)
is non-zero. Thus, for example, we will represent six BK3 -matrices by

( 3 ) ,
(

1 0
1 0

)
,

(
1 1
0 0

) (
0 0
0 1

)
,

 0 0 1
0 0 0
0 0 0

 ,
 0 0 0

0 0 0
1 0 0

 .

We give here three more definitions:

Definition 3. We define a matrix Ei,j as an infinite matrix whose (i, j)−th entry is 1
and the other entries are all zeros. We call Ei,j distinct units of a BKν−matrix.

Definition 4. In the set of all units the order is defined as follows:
If r + s < p+ q then Er,s < Ep,q and if r + s = p+ q then Er,s < Ep,q when r < p. Thus the
units satisfy the order:
E1,1 < E1,2 < E2,1 < E1,3 < E2,2 < E3,1 < E1,4 < E2,3 < E3,2 < · · · .

Definition 5. The order difference of two units Ep,q, Er,s(p + q ≥ r + s) is defined by
q − s− 2r and is denoted by [[Ep,q − Er,s]].

In [2] we established the following bijection between n-color partitions and BKν-matrices:

Let ∆ = a1,1E1,1 + a1,2E1,2 + ...+ a2,1E2,1 + a2,2E2,2 + ...+ a3,1E3,1 + a3,2E3,2 + ...
be a BKν− matrix, where ai,j are non negative integers which denote the multiplicities of
Ei,j. We map each part Ep,q of ∆ to a single part mi of an n-color partition of ν. The
mapping ψ is

ψ : Ep,q −→(p+ q − 1)p (1.9)

and the inverse mapping ψ−1 is easily seen to be

ψ−1 : mi −→ Ei,m−i+1. (1.10)

Remark. Clearly for a non-negative integer ’a’, we have

ψ(aEp,q) = aψ(Ep,q),

and
ψ−1(ami) = aψ−1(mi).

Under this mapping we see that each BKν−matrix uniquely corresponds to an n-colour
partition of ν and vice-versa.

We note that the composite of the two mappings φ and ψ denoted by ψ.φ is a bijection
between plane partitions of ν, on the one hand, and the n-color partitions of ν on the other.

Using the above bijection we propose here to prove the following new combinatorial in-
terpretations of (1.1)-(1.4), respectively,:
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Theorem 5. For ν ≥ 1, let C1(ν) denote the number of BKν-matrices such that even
columns are zero, 1 is an entry in the first column and the order difference between any two
consecutive units Ep,q and Er,s, (p+ q ≥ r + s) is zero. Then

∞∑
ν=0

C1(ν)qν = Ψ(q). (1.11)

Example. C1(6) = 2. The relevant matrices are

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

 ,
 1 0 0

0 0 0
0 0 1

 .

Theorem 6. For ν ≥ 0, let C2(ν) denote the number of BKν-matrices such that even
columns are zero, first row is zero, 1 is an entry in the first column and the order difference
between any two consecutive units is zero. Then

∞∑
ν=0

C2(ν)qν = F0(q). (1.12)

Theorem 7. For ν ≥ 0, let C3(ν) denote the number of BKν-matrices such that even
columns are zero, all rows after the second row are zero, first column is non zero, and the
order difference between any two consecutive units is zero. Then

∞∑
ν=0

C3(ν)qν = Φ0(q). (1.13)

Theorem 8. For ν ≥ 1, let C4(ν) denote the number of BKν-matrices such that even
columns are zero, all rows after the second row are zero, first element in the first row is 1
and in the second row it is 0, and the order difference between any two consecutive units is
zero. Then ∞∑

ν=1

C4(ν)qν = Φ1(q). (1.14)

2 Proofs of Theorems 5-8

For proving Theorem 5 we use Theorem 1. In view of the bijection ψ given by (1.9) above,
we have only to prove that if a BKν- matrix ∆ is enumerated by C1(ν), then in the n-color
partition ψ(∆) the even parts appear with even subscripts and odd with odd, for some k, kk
is a part, and the weighted difference of any two consecutive parts is 0, and conversely, if an
n-color partition π is enumerated by A1(ν) then in the BKν-matrix ψ−1(π) even columns
are zero, 1 is an entry in the first column and the order difference of any two consecutive
units is zero.
Let Ep,q and Er,s, (p+q ≥ r+s) be any two consecutive units of a BKν-matrix ∆ enumerated

Online Journal of Analytic Combinatorics, Issue 2 (2007), #5 5



by C1(ν) which correspond to two consecutive parts mi, nj of ψ(∆). Then

mi = (p+ q − 1)p and nj = (r + s− 1)r.

Since p+ q ≥ r + s, therefore m ≥ n and

((mi − nj)) = (p+ q − 1)− p− (r + s− 1)− r
= q − s− 2r
= [[Ep,q − Er,s]]
= 0.

Since in Ep,q, q is odd, we see that p+ q − 1 and p have the same parity which implies that
in ψ(∆) even parts appear with even subscripts and odd with odd. Furthemore, since for
some p, Ep,1 is non-zero, this implies that pp is a part of ψ(∆), that is, for some k, kk is a
part of ψ(∆).
Next, suppose π is an n-color partition enumerated by A1(ν) and mi, nj(m ≥ n) are its two
consecutive parts which correspond to two consecutive units Ep,q and Er,s of ψ−1(π). Then

Ep,q = Ei,m−i+1 and Er,s = Ej,n−j+1.

Since m ≥ n, we have
p+ q = m+ 1 ≥ n+ 1 = r + s,

and
[[Ep,q − Er,s]] = [[Ei,m−i+1 − Ej,n−j+1]]

= (m− i+ 1)− (n− j + 1)− 2j
= m− n− i− j
= ((mi − nj))
= 0.

Since, in π even parts appear with even subscripts and odd with odd, we see that m− i+ 1
and n− j + 1 are both odd. This implies that in ψ−1(π) all even columns are zero. Further-
more, the part kk of π corresponds to the unit Ek,1 which implies that the first column of
ψ−1(π) does contain 1. This completes the proof of Theorem 5.
Theorems 6-8 can be proved similarly hence their proofs are omitted.

Remark

It would be of interest to provide combinatorial interpretations for other mock theta func-
tions also by using the technique of this paper.

Acknowledgement. I would like to thank the referee for his helpful comments which led
to a better presentation of the paper.
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