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1 Introduction

Thomae’s formulae go back to two papers {T1},{T2} and express the proportionalities be-
tween the 4th powers of the non-vanishing theta constants, and polynomials in the variables
λ1, · · · , λ2g−1, which are the algebraic parameters of the hyperelliptic surface. They take the
form

θ4

[

ǫ
ǫ′

]

(0, Π)

P2

4

ǫ
ǫ′

3

5

(λ1, · · · , λ2g−1)
= K,

where K is independent of

[

ǫ
ǫ′

]

. Since there are precisely

(

2g + 1
g

)

non-vanishing theta

constants, this is the number of terms on the left hand side.
Thomae’s formulae can be viewed as a generalization of the Λ- function of elliptic curves,

a subject studied for example in {F},{G}. In those papers one does not obtain Thomae
but rather express the λi, the algebraic parameters of the hyperelliptic curve in terms of the
elements of the period matrix πi,j i,j=1,...g which are of course transcendental parameters.
There are however instances where Thomae’s formulae are actually essential {S} . Thomae’s
formulae have been generalized to the case of Zn curves in {N} .

In this note we give a proof of Thomae’s formulae for hyperelliptic surfaces using only
extremely elementary tools. In addition we shall also prove Thomae type formulae for Z3

curves, that is, curves with an algebraic equation of the form w3 =
∏3r−2

i=0 (z − λi) using
similar techniques.

Our method is based on two stages. First, we compare certain pairs of theta constants
attached to certain characteristics, obtaining equalities by means of elementary theta func-
tions theory. Then we show that all pairs may be compared to each other. The second
stage uses a simple combinatorial argument for the Z3 case. In the hyperelliptic case we use
an inductive argument for the second stage , but here also lies implicitly a combinatorial
argument of a similar kind.

We begin with the algebraic equation defining a hyperelliptic surface of genus g.

w2 = z(z − 1)Π2g−1
i=1 (z − λi)

Online Journal of Analytic Combinatorics, Issue 3 (2008), #2 1



This is a branched two sheeted cover of the Riemann sphere, branched over the points
0, 1,∞, λ1, · · · , λ2g−1

For a construction of a standard set of generators for the first homology group we refer
to {FK} pp. 102-103. Denote this set by {γ1, . . . , γg, δ1, . . . , δg}.

A basis for the holomorphic differentials dual to the chosen homology basis is given by
θ1, . . . , θg, where

∫

γj
θi = δij ,

∫

δj
θi = πij for i, j = 1, · · · , g.

We shall now recall some general notions regarding the Jacobi variety of a Riemann surface
and theta functions.

The Jacobi variety of the surface is J(S) = Cg/G where G is the group of translations of
Cg generated by

< z → z + e(i), z → z + π(i) >,

and the points of order two in J(S),

g
∑

i=1

ǫ′i
2

ei +

g
∑

i=1

ǫi

2
πi = I

ǫ′

2
+ Π

ǫ

2

will be denoted by

(

ǫ1, · · · , ǫg

ǫ′1, · · · , ǫ′g

)

=

(

ǫ
ǫ′

)

.

If one chooses a base point P0 ∈ S one has a mapping

S → J(S)

given by

P →

∫ P

P0

t(θ1, · · · , θg)

which we shall denote by φP0
. One then may extend this mapping to the set of integral

divisors of degree n by setting φP0
(P1 · · ·Pn) =

∑n
i=1 φP0

(Pi)
Recall the definition of a theta function with characteristics:

θ

[

ǫ
ǫ′

]

(ζ, Π) =
∑

N∈Zg

exp2πi[
1

2
t(N +

ǫ

2
)Π(N +

ǫ

2
) + t(N +

ǫ

2
)(ζ +

ǫ′

2
)]

where

[

ǫ1, · · · , ǫg

ǫ′1, · · · , ǫ′g

]

=

[

ǫ
ǫ′

]

∈ Z2g ,ζ ∈ Cg, Π ∈ Sg. We shall in fact restrict ǫi, ǫ
′
i to be 0 or

1 in our following discussion, as up to sign this gives us all the various theta functions with
integer characteristics.

Recall also the following formula:

θ

[

ǫ
ǫ′

]

(−ζ, Π) = exp2πi[
ǫǫ′

2
]θ(ζ, Π)

¿From this formula we may conclude that the 22g Theta functions with ǫi, ǫ
′
i 0 or 1 partition

into two classes, even and odd functions of ζ . The odd ones all vanish at ζ = 0. Furthermore,

if an even function vanishes at ζ = 0 it vanishes to second order, so that if θ

[

ǫ
ǫ′

]

is an

even function and vanishes at ζ = 0, then also

∂θ

2

4

ǫ
ǫ′

3

5

∂ζi
(0, Π) = 0 , i = 1, · · · , g.
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We shall also have a need in our discussions of the following formula:

θ

[

ǫ
ǫ′

]

(z + I
µ′

2
+ Π

µ

2
, Π) =

exp{2πi[−
1

8
tµΠµ −

1

4
tµ(ǫ′ + µ′) −

1

2
tµz]}θ

[

ǫ + µ
ǫ′ + µ′

]

(z, Π) (1)

The main result one has regarding these objects is due to Riemann. A discussion can
be found in {FK}. Consider the local analytic function θ(φ(P ) − e) with e ∈ Cg on the
Riemann surface. This either vanishes identically on the surface or vanishes at g points
P1 . . . Pg on the surface, s.t. i(P1 . . . Pg) = 0. Furthermore in the latter case we have
e = φP0

(P1, . . . , Pg) + Kp0
. The vector KP0

is called the vector of Riemann constants with
base point P0.

In particular, for an integer characteristic

[

ǫ
ǫ′

]

we have: θ

[

ǫ
ǫ′

]

(φP0
(P ), Π) on the Rie-

mann surface either vanishes identically on the surface or vanishes at g points P1 . . . Pg on
the surface, s.t. i(P1 . . . Pg) = 0. (This follows from equation (1) and the preceding result).
In the latter case we have

(

ǫ
ǫ′

)

= φP0
(P1, . . . , Pg) + Kp0

.

Note that if

[

ǫ
ǫ′

]

is even then Pi 6= P0 for i = 1, . . . , g, otherwise the function would vanish

identically on the surface. This would follow from the Riemann vanishing theorem.

2 Points of Order 2 on the Jacobi variety of hyperelliptic Riemann

surfaces

We return to hyperelliptic Riemann surfaces given by

w2 = z(z − 1)Π2g−1
i=1 (z − λi).

It is well known that if the base point P0 of the aforementioned mapping φP0
is chosen

as any of the 2g + 2 branch points 0, 1,∞, λ1, . . . , λ2g−1 then the image of any other branch
point is always of order 2.

In fact, it is easy to see that all points of order 2 are given as sums of k (k ≤ g) distinct
points of the 2g + 1 points of order 2, φ0(1), φ0(∞), φ0(λ1), . . . , φ0(λ2g−1).

For the sake of completeness we shall prove this fact:
Take all sums of k such points

∑k
i=1 φ(Pi) for k = 1, · · · , g. we thus get 22g − 1 sums.

Adding 0 we get exactly 22g sums, which are all points of order 2. Clearly there are exactly
22g points of order 2 ,

We now need to show that these are all distinct. This follows from the fact that for any
divisor P1 . . . Pk where k ≤ g and the Pi are distinct branch points of S we have i(P1 . . . Pk) =
g − k.

This in turn follows for example from the fact that on a hyperelliptic surface, if a holomor-
phic differential vanishes at a branch point then it vanishes there to even order. Therefore
i(P1 . . . Pg) = 0, and hence i(P1 . . . Pk) = g − k.
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Suppose now that φP0
(P1 . . . Pk) = φP0

(Q1 . . . Ql) where k ≤ l.
So φP0

(P1 . . . PkP
l−k
0 ) = φP0

(Q1 . . . Ql). We then have by Abel’s theorem that there exists
a meromorphic function on S whose poles are Q1, · · · , Ql.

But the Riemann-Roch theorem implies that r[ 1
Q1...Ql

] = l − g + 1 + g − l = 1 so this is

impossible, unless k = l and {P1, . . . , Pk} = {Q1, . . . , Qk}.
We now fix the base point of φP0

to be 0, (that is we look at φ0). One may compute
explicitly the images of the various branch points under φ0. A point of order 2 is called odd
if in the representation

(

ǫ
ǫ′

)

we have ǫ.ǫ′ = 1. (In this case θ

[

ǫ
ǫ′

]

is odd). Otherwise call it even. It turns out that

φ0(λ2k−1) is an odd point for all k = 1, . . . , g. We then have that θ[0](φ0(p), Π) vanishes at
these g points (just use equation (1)) . As θ[0](φ0(p), Π) is non vanishing, these are precisely
its zeroes. For more details details see {FK} ( pp. 329-331). From the discussion in the end
of section 1 we may now conclude that φ0(λ1λ3 . . . λ2g−1) = −K0. We also conclude from

the same discussion that the even non-vanishing characteristics are precisely the

(

2g + 1
g

)

points of the form φ0(P1 . . . Pg) +K0 where Pi ∈ (1,∞, λ1, . . . , λ2g−1), and Pi 6= Pj for i 6= j.
Note that we may easily switch from this last representation of a non-vanishing even

characteristic to a representation as a sum of k points k ≤ g using φ0(λ1, λ3, . . . , λ2g−1) =
−K0 = K0. In the following we shall use this relationship in order to characterize the non-
vanishing even characteristic in terms of their representation as a sum of k ≤ g points. This
will eventually allow us to prove Thomae’s formulae using an inductive argument.

We begin by recaling a simple lemma:

Lemma 2.1 φ0(1) + φ0(∞) +
∑2g−1

i=1 φ0(λi) = 0

Proof: This follows from the fact that the divisor of the function w on S is
0,1,λ1,...,λ2g−1

∞2g+1 ,

so φ0(0) + φ0(1) +
∑2g−1

i=1 φ0(λi) − (2g + 1)φ0(∞) = 0. This however can be rewritten as

φ0(1) + φ0(∞) +
∑2g−1

i=1 φ0(λi) = 0 because -(2g + 1)φ0(∞) = −φ0(∞) = φ0(∞).
Suppose now we have P1, . . . , Pg where Pi ∈ {1,∞, λ1, . . . , λ2g−1} and Pi 6= Pj for i 6= j.
Consider

(

ǫ
ǫ′

)

= φ0(P1 . . . Pg) + K0 = φ0(P1 . . . Pg) + φ0(λ1λ3 . . . λ2g−1).

Suppose exactly k points of the Pi are odd points, that is, of the λi with i odd. Then we
have

φ0(P1 . . . Pg) + φ0(λ1λ3 . . . λ2g−1) =

φ0(Pi1 . . . Pig−k
) + φ0(λi1 . . . λig−k

)

Where Pi1 . . . Pig−k
are all even points. If 2(g − k) ≤ g then we get a representation of this

even characteristic as a sum of 2(g − k) = r ≤ g points where r
2

points are odd and r
2

are
even points. If on the other hand 2(g−k) > g then using the lemma above, we may take the
sum of the complement of the set Pi1 , . . . , Pig−k

, λi1 , . . . , λig−k
in the set 1,∞, λ1, . . . , λ2g−1
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to represent

(

ǫ
ǫ′

)

. This complement consists of r = 2k + 1 points, of which k + 1 are even

and k are odd.
On the other hand we may go the other way round to show that each sum of one of these

sorts, is a non-vanishing even characteristic. If we have a sum of k odd points and k even
points s.t. 2k ≤ g then add the ”missing” odd points to the sum of the odd points and to
the sum of the even points to get a sum of the form φ0(P1, . . . , Pg) + K0. If the sum is of k
odd points and 2k + 1 even points, then turn over again to the sum of the complement set
to get a sum of an equal number of odd and even points, and proceed as in the first case.

Thus we have proven the following

Lemma 2.2

[

ǫ
ǫ′

]

corresponds to an even non-vanishing theta constant iff it is either of

the form
∑k

i=1 φ0(Pi) +
∑k

i=1 φ0(Qi), where the Pi correspond to even points of order 2, and
the Qi correspond to odd points of order 2, and 2k ≤ g

or of the form
∑k+1

i=1 φ0(Pi) +
∑k

i=1 φ0(Qi) where the Pi and the Qi are as before, and
2k + 1 ≤ g.

3 The proof of Thomae’s Formulae

Lemma 3.1 Let θ

[

ǫ
ǫ′

]

(φ0(P ), Π) and θ

[

ǫ̃
ǫ̃′

]

(φ0(P ), Π) be two nonidentically vanishing

theta functions with even characteristics with respective zeros P1...Pg and Q1...Qg. Suppose
that

(

ǫ̃
ǫ̃′

)

=

(

ǫ
ǫ′

)

+ φ0(R)

where R is a branch point of the surface. Then R 6= Pi, Qi for any i=1,...,g and also Pi 6= Qj

for all i,j=1,...,g . In other words θ

[

ǫ
ǫ′

]

(φ0(p), Π) and θ

[

ǫ̃
ǫ̃′

]

(φ0(p), Π) have no common

zeroes.

Proof: The hypothesis implies that

φ0(P1...Pg) + φ0(R) = φ0(Q1...Qg).

If R = P1 (wlog) we would have

φ0(P1...PgP1) = φ0(P2...Pg) = φ0(0P2...Pg) = φ0(Q1...Qg)

This would imply that i(Q1...Qg) ≥ 1 which is a contradiction. Hence R 6= Pi for any i. In
a similar manner one can show R 6= Qi for any i. (Just take φ0(R) to the other side of the
equation an proceed as before).

Suppose there indeed was a common zero (without loss of generality) P1 = Q1. We can
then write

φ0(P1...PgR) = φ0(0Q1...Qg)

which becomes
φ0(P2...PgR) = φ0(0Q2...Qg).
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We have already seen in section 2 that this is impossible.
Equipped with this lemma we turn now to our problem.
We start with a definition:

Definition 3.1 Let

[

ǫ
ǫ′

]

be an even non-vanishing integer characteristic. Let P1, . . . , Pg be

the zeroes of θ

[

ǫ
ǫ′

]

(φ0(P ), Π). Then we denote by Z

[

ǫ
ǫ′

]

the set of points {P1, . . . , Pg}∪

{0}

Now we prove:

Proposition 3.1 Let

[

ǫ
ǫ′

]

and

[

ǫ̃
ǫ̃′

]

be as in lemma (3.1), then we have

θ4

[

ǫ
ǫ′

]

(0, Π)

Π
λi,λj∈Z

2

4

ǫ
ǫ′

3

5,λi<λj

(λi − λj) · Π
λi,λj /∈Z

2

4

ǫ
ǫ′

3

5,λi<λj

(λi − λj)

=

θ4

[

ǫ̃
ǫ̃′

]

(0, Π)

Π
λi,λj∈Z

2

4

ǫ̃
ǫ̃′

3

5,λi<λj

(λi − λj) · Π
λi,λj /∈Z

2

4

ǫ̃
ǫ̃′

3

5,λi<λj

(λi − λj)

Proof: In the following we shall use formula (1) of section 1.

We have:

θ2

2

4

ǫ
ǫ′

3

5(φ0(P ),Π)

Θ2

2

4

ǫ̃
ǫ̃′

3

5(φ0(P ),Π)

= c ·
Πg

i=1
(z−z(Pi))

Πg
i=1

(z−z(Qi))

where c is some constant, and P1, . . . , Pg and Q1, . . . , Qg are again the zeroes of θ

[

ǫ
ǫ′

]

(φ0(P ), Π)

and θ

[

ǫ̃
ǫ̃′

]

(φ0(P ), Π) respectively - one can see this is a well defined function on S using

elementary theta function identities (see e.g. {FK} p. 302), and it has the same divisor as
the rational function of z on the right.

Note that according to lemma (3.1) all the Pi and Qi are distinct and distinct from one
another.

Moreover, none of them is 0 because an even characteristic s.t. θ

[

ǫ
ǫ′

]

(φ0(0), Π) = 0

vanishes identically. (See the end of section 1).
We have now accounted for 2g + 1 of the branch points and exactly one remains. This

has to be R as defined in lemma (3.1).
Thus, to find c we may set P = 0 and we get:

c =

θ2

[

ǫ
ǫ′

]

(0)

θ2

[

ǫ̃
ǫ̃′

]

(0)

·
Πg

i=1z(Qi)

Πg
i=1z(Pi)

Online Journal of Analytic Combinatorics, Issue 3 (2008), #2 6



In the next computation we warn the reader that we have not actually computed exactly
but only up to sign. Set now P = R, then we have, using formula (1) (here is where we are
neglecting the sign) in order to calculate the left hand side of the equation,

θ2

[

ǫ̃
ǫ̃′

]

(φ0(0), Π)

θ2

[

ǫ
ǫ′

]

(φ0(0), Π)

=

θ2

[

ǫ
ǫ′

]

(φ0(R), Π)

θ2

[

ǫ̃
ǫ̃′

]

(φ0(R), Π)

=

θ2

[

ǫ
ǫ′

]

(0, Π)

θ2

[

ǫ̃
ǫ̃′

]

(0, Π)

·
Πg

i=1z(Qi)

Πg
i=1z(Pi)

·
Πg

i=1(z(R) − z(Pi))

Πg
i=1(z(R) − z(Qi))

And so we have:

θ4

[

ǫ
ǫ′

]

(0, Π)

θ4

[

ǫ̃
ǫ̃′

]

(0, Π)

=
Πg

i=1z(Pi)

Πg
i=1z(Qi)

·
Πg

i=1(z(R) − z(Qi))

Πg
i=1(z(R) − z(Pi))

(2)

Note that R, Q1, . . . , Qg /∈ Z

[

ǫ
ǫ′

]

whereas 0, P1, . . . , Pg ∈ Z

[

ǫ
ǫ′

]

, and again R, P1, . . . , Pg /∈

Z

[

ǫ̃
ǫ̃′

]

and 0, Q1, . . . , Qg ∈ Z

[

ǫ̃
ǫ̃′

]

.

To get the equality that the proposition states, we just have to multiply the denominator
and the numerator of (2) by all the differences z(Pi)−z(Pj) and z(Qi)−z(Qj) (where i 6= j).

It is now clear that the polynomials we are looking for are

P2

4

ǫ
ǫ′

3

5

(λ1, . . . , λ2g−1) = Π
λi∈Z

2

4

ǫ
ǫ′

3

5,λi<λj

(λi − λj) · Π
λi /∈Z

2

4

ǫ
ǫ′

3

5,λi<λj

(λi − λj)

What is left to do in order to prove the main theorem is to use an inductive argument so
as to get the equality we look for for any two non-vanishing even characteristics. For this
we use lemma (2.2):

Use induction on the minimal number r such that

[

ǫ
ǫ′

]

can be written as the sum of r

terms φ(Pi) as in the lemma.
For r = 1 the theorem is a result of proposition (3.1).

Suppose we have proved the theorem for r − 1, and

[

ǫ̃
ǫ̃′

]

can be written as the some of

r terms. Then, if r is even, we may subtract one ’odd’ term, and the result will be a non
vanishing even characteristic which can be written as a sum of r−1 terms. Using proposition
(3.1), and the induction hypothesis, we get the result.

If r is odd, then we may subtract an ’even’ term, and conclude in a similar manner . We
have thus proved

Theorem 3.1 Let θ

[

ǫ
ǫ′

]

(0, Π) be an even non vanishing theta constant on the hyperelliptic

surface. Then

θ4

[

ǫ
ǫ′

]

(0, Π)

∏

λi<λj∈Z

2

4

ǫ
ǫ′

3

5

(λi − λj) ·
∏

λi<λj /∈Z

2

4

ǫ
ǫ′

3

5

(λi − λj)
= k
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where k is independent of the characteristic.

4 Nonspecial Divisors on Z3 Curves

Let w3 =
∏3r−2

i=0 (z − λi) be the algebraic equation of a three sheeted cover of the sphere
branched over the 3r points λ0λ1, ..., λ3r−1,∞ where λ0 = 0 and λ1 = 1. This is a compact
Riemann surface of genus g=3r-2. We would like to get Thomae type formulae for these
surfaces. Recall that in the hyperelliptic case we were able to obtain the formulae due to
the fact that a non vanishing even characteristic is of the form φP0

(P1 . . . Pg) + KP0
with

P1, . . . , Pg branch points and i(P1 . . . Pg) = 0. Thus, in order to find the analogue formulae
for Z3 curves, we would like to construct on this surface a set of integral divisors of degree
g whose support is in the branch locus which are non special, that is, no holomorphic
differential (non constant) vanishes at the g points which constitute the divisor, or there is
no canonical divisor which is a multiple of this divisor. We shall show that the only such
divisors are those constructed by choosing r-1 distinct points from the branch set and then
an additional r distinct points from the remaining elements of the branch set and forming
the divisor P 2

1 ...P 2
r−1Q1...Qr. In other words we are constructing

(

3r
r − 1

) (

2r + 1
r

)

divisors.
We begin with some elementary and trivial observations: We think of the function z as the

projection map of the compact surface onto the sphere and as such it has divisor
P 3

0

P 3
∞

where

Pi is the point on the surface over the branch point λi. The divisor of the meromorphic

differential dz is just
P 2

0 P 2
1 ...P 2

3r−2

P 4
∞

and the divisor of the meromorphic function w is just
P0P1...P3r−2

P 3r−1
∞

.

It thus follows that the divisor of the differential

(

j
∏

i=1

(z − λni
)
dz

w
) = P 3

λn1
...P 3

λnj

3r−2
∏

i=1

PiP
3r−3j−5
∞ .

It thus follows that this differential is holomorphic whenever j ≤ r − 2. Moreover it is also
clear that the r-1 holomorphic differentials

∏j
i=1(z −λni

)dz
w

, j = 0, ..., r− 2 are r-1 linearly
independent holomorphic differentials on the surface.

We can now do the same thing with dz
w2 and conclude that the the 2r-1 differentials

∏j
i=1(z − λni

) dz
w2 , j = 0, ...2r − 2 are 2r-1 linearly independent holomorphic differentials

with divisors P 3
n1

...P 3
nj

P 6r−6−3j
∞ and that these 3r-2 differentials are a basis for the space of

holomorphic differentials. As a special case we can choose the 3r-2 holomorphic differentials

dz

w
, z

dz

w
, ..., zr−2 dz

w
,
dz

w2
, z

dz

w2
, ...z2r−2 dz

w2

and this as is easily seen is a basis adopted to either the point P0 or P∞. In fact, if we look
at the orders of the zero at P0 we see that for r ≥ 2 the orders are precisely

0, 1, 3, 4, ..., 3r − 6, 3r − 5, 3r − 3, 3r, 3r + 3, ..., 3(2r − 2).
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The conclusion from this is that the Weierstass gaps at the Weierstrass point P0 are precisely

1, 2, 4, 5, ...3r − 5, 3r − 4, 3r − 2, 3r + 1, 3r + 4, ..., 3(2r − 2) + 1

and in particular if a positive integer is ≤ 3r − 4 and congruent to two mod three, we see
that it is a gap. The argument just given for zero holds for all other branch points as well
so we have thus seen that

Lemma 4.1 If 2 ≤ k ≤ 3r − 4 and k is congruent to two mod three then k is a gap at Pi

for any point Pi in the branch set. Furthermore there are no orders of zero congruent to two
mod three at any point in the branch set.

Proof: The first statement has been proved before the statement of the lemma. The final
statement follows from the fact that a zero of order congruent to two mod three would imply
a gap congruent to zero mod three of which there are none.

We are now able to determine the integral divisors of degree g with support in the branch
set which are nonspecial.

Theorem 4.1 Let P1, ...Pr−1 be r-1 distinct points of the branch set and let Q1, ..., Qr be an
additional set of r distinct points from the branch set which are also disjoint from the Pi

already chosen. Then the integral divisor of degree g=3r-2 , P 2
1 ...P 2

r−1Q1...Qr satisfies the
condition that there is no canonical divisor which is a multiple of it. Furthermore these are
the only integral divisors of degree g=3r-2 with support in the branch set which have this
property.

Proof: Consider the divisor ∆ = P 2
1 ...P 2

r−1Q1...Qr and assume that i(∆) ≥ 1. This means
that some multiple of ∆ is canonical and therefore we have

(∆Ω) = (P 2
1 ...P 2

r−1Q1...QrΩ) = (P 3
1 ...P 3

r−1Q1...QrΩ
′)

is a canonical divisor with deg (Ω)=3r-4, and deg (Ω′)= 2r-3. (The second equation is a
consequence of the lemma).

We now use the fact that given any point in the branch set there is a holomorphic
differential with support at that point. In other words i(P 6r−6

i ) = 1. As a consequence of
this if we take the Abel Jacobi map φPi

it is clear that if Z is a canonical divisor φPi
(Z) = 0.

Furthermore since for any two points in the branch set Pi, Pj we have the divisor
P 3

i

P 3
j

is

principal we also have φPi
(P 3

j ) = 0 for any pair of points Pi, Pj.
As a consequence of the preceding remarks we have φQ(Q1...QrΩ

′) = 0 and the degree of
Q1...QrΩ

′ is 3r-3 where Q is any element of the branch set. By Abel’s theorem this implies
the existence of a meromorphic function with zeros at Q1...QrΩ

′ and a pole of order 3r-3 at
Q. Choosing Q however as one of the points in the branch set say one of the Qi now gives a
meromorphic function with a pole of order precisely 3r-4 at this point Q. (Note that we can
always find a point Qi that does not appear in Ω′). We have seen however that 3r-4 is a gap
at any element of the branch set which is a contradiction.

We now need to prove that these are the only divisors of degree g with this property.
From the fact that the holomorphic differential dz

w
has divisor

P0P1P2...P3r−2P
3r−5
∞ it is clear that there is no integral divisor of degree g with all points

distinct and in the branch set which satisfies the condition of nonspeciality. Moreover if even
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one point of the divisor ∆ has order 3 or more then once again the divisor is special since
we will have r( 1

∆
) ≥ 2. It thus follows that you can have only points with order at most two

and must have at least one such point. In fact we see that you must have precisely r-1 such
points as follows.

Consider the holomorphic differential
∏k

i=1(z − λi)
dz
w

with k ≤ r − 2. Its divisor is

P 4
1 ...P 4

k Pk+1...P3r−2P
3r−3k−5
∞ . Therefore if k ≤ r − 2 we have

i(P 4
1 ...P 4

k Pk+1...P3r−2P
3r−3k−5
∞ ) = 1 and thus i(P 2

1 ...P 2
k Pk+1...P3r−2) ≥ 1 as well. Hence we

require at least r-1 points of order 2. Suppose now we had r points of order 2 or more. We
then would have a divisor P 2

1 ...P 2
k Q1...Qg−2k with k ≥ r. Note however that when k = r,

P 3
1 ...P 3

r Q3
1...Q

3
r−2 is canonical and a multiple of the original divisor. If k is greater than r

we get a similar result showing the divisors are all special. This concludes the proof of the
theorem.

5 Thomae Formulae for Z3 Curves

In this section we apply the main result of the previous section to get Thomae type formulae
on the Riemann surface

w3 =

3r−2
∏

i=0

(z − λi).

We recall the following fact concerning the vector of Riemann constants KP with respect to
a base point P and canonical homology basis (details can be found in {FK}); as a point in
the Jacobi variety of the surface it satisfies the condition that for any canonical divisor Z,
φP (Z) = −2KP . −2KP is sometimes referred to as the canonical point.

It follows from what we have already done in the proof of the preceding theorem that
if Q is any point in the branch set then KQ is a point of order two in the Jacobi variety.
Furthermore we saw that φQ(Pi) is a point of order three in the Jacobi variety. We therefore
can conclude that for any Q in the branch set the point φQ(∆) + KQ where ∆ is any one of
the nonspecial divisors of degree g with support in the branch set constructed in the previous
section,

φQ(∆) + KQ

is a point of order 6 in the Jacobi variety of the surface, and it may be represented uniquely

,making some canonical choice once and for all, as Π
2ǫ
3

+δ

2
+ I

2ǫ′

3
+δ′

2
, where δ, δ′ are inde-

pendent of ∆. We will represent such a point by the symbol

(

2ǫ
3

+ δ
2ǫ′

3
+ δ′

)

. Hence we shall

have a correspondence between the divisors constructed above and the theta characteristics
[

2ǫ
3

+ δ
2ǫ′

3
+ δ′

]

.

Recalling the Riemann vanishing theorem cited in the introduction we conclude that if we
choose the characteristics as above, taking Q = P0,and taking P1, . . . , Pr−1, Pr, . . . , P2r−1 6=
P0, then we have that the theta functions with these characteristics do not vanish at the
origin. We shall write such a theta function as θ[P1..Pr−1; Pr..P2r−1].

Note that, as in the hyperelliptic case we have that
∑3r−2

i=1 φP0
(Pi) + φP0

(∞) = 0, Where
we take the sum over all the branch points. As a consequence of this fact and the discussion
above we have the following useful
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Lemma 5.1 Let P1, . . . , Pr−1, Q1, . . . , Qr be distinct branch points (not equal to P0), and
Q̃1, . . . , Q̃r denote the complement of these points in the set of branch points (minus P0).
Then

−φP0
(P 2

1 . . . P 2
r−1 · Q1 . . . Qr) = φP0

(P 2
1 . . . P 2

r−1 · Q̃1 . . . Q̃r)

We now prove the following

Proposition 5.1 Suppose P1, . . . , Pr−1, Q1, . . . , Qr−1, R are distinct branch points, corre-
sponding to {λ1, . . . , λr−1, µ1, . . . , µr−1, ρ} respectively then:

θ6[P1..Pr−1; Q1..Qr−1R](0, Π)
∏r−1

i=1 (λ0 − λi)2(ρ − µi)2
=

θ6[Q1..Qr−1; P1..Pr−1R](0, Π)
∏r−1

i=1 (λ0 − µi)2(ρ − λi)2
.

This equality is up to multiplication by a 6th root of unity.

Proof: Consider the following quotient of cubes of theta functions:

θ3[P1..Pr−1; Q1..Qr−1R](φP0
(P ))

θ3[Q1..Qr−1; P1..Pr−1R](φP0
(P ))

This is a well defined function. As in the hyperelliptic case this follows from elementary theta
function identities. (We make here use of the fact that the characteristics in the denominator

and numerator are of the form

[

2ǫ
3

+ δ
2ǫ′

3
+ δ′

]

and

[

2ǫ̃
3

+ δ
2ǫ̃′

3
+ δ′

]

for the same δ, δ′)

There is though some ambiguity here, as the theta function itself is only fixed up to sign
by an element in the Jacobi variety (see e.g. {FK} p. 303). (This was no problem in the
hyperelliptic case as we took there the squares of theta functions)

It follows from the Riemann vanishing theorem that the zeros of this function on the
Riemann surface are just sixth order zeros at P1, ...Pr−1 and that the poles are sixth or-
der poles at the points Q1, ..Qr−1. This is so because the zeros R1, . . . , Rg of the function
θ[P1..Pr−1; Q1..Qr−1R](φP0

(P )) are the same as the zeros of the theta function θ(φP0
(P )+e),

where e = φP0
(P 2

1 . . . , P 2
r−1Q1 . . . Qr−1R), and for the latter we have by Riemann: −e =

φP0
(R1 . . . Rg)+KP0

. Denote by Q̃1, . . . , Q̃r−1 the remaining branch points, as in the preced-

ing lemma, then −e = φP0
(P 2

1 . . . , P 2
r−1Q̃1 . . . Q̃r−1) + KP0

. It thus follows, that the zeros of

the numerator are at the points P1..Pr−1 all of second order and also at the points Q̃1...Q̃r−1

here simple vanishing. In the same manner the zeros of the denominator are at the points
Q1...Qr−1 each one of second order, all by hypothesis distinct from the P1...Pr−1 and also at
the points Q̃1...Q̃r−1. The latter however cancel with those of the numerator.

We can therefore conclude that

θ3[P1..Pr−1; Q1..Qr−1R](φP0
(P ))

θ3[Q1..Qr−1; P1..Pr−1R](φP0
(P ))

= c

∏r−1
i=1 (z − λi)

2

∏r−1
i=1 (z − µi)2

If we now set P = P0 we find that

c =

∏r−1
i=1 (λ0 − µi)

2θ3[P1 . . . Pr−1; Q1 . . . Qr−1R](0, Π)
∏r−1

i=1 (λ0 − λi)2θ3[Q1 . . . Qr−1; P1 . . . Pk−1R](0, Π)
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(Where λ0 = z(P0)). Now, letting P = R we get

θ3[P1 . . . Pr−1; Q1 . . . Qr−1R](φP0
(R), Π)

θ3[Q1 . . . Qr−1; P1 . . . Pk−1R](φP0
(R), Π)

=

∏r−1
i=1 (λ0 − µi)

2θ3[P1 . . . Pr−1; Q1 . . . Qr−1R](0, Π)
∏r−1

i=1 (λ0 − λi)2θ3[Q1 . . . Qr−1; P1 . . . Pk−1R](0, Π)
·

∏r−1
i=1 (ρ − λi)

2

∏r−1
i=1 (ρ − µi)2

The left hand side is equal to
θ3[φP0

((P1...Pk−1)2Q1...Qk−1R2)+KP0
](0,Π)

θ3[φP0
((Q1...Qk−1)2P1...Pk−1R2)+KP0

](0,Π)
multiplied by some 6th root

of unity, which depends on the canonical choice for the representatives of the characteristics
and the point φ(R). This equality is derived from formula (1) .Since it is always true that

θ

[

−ǫ
−ǫ′

]

(0, Π) = θ

[

ǫ
ǫ′

]

(0, Π) and since

−φP0
((P1 . . . Pk−1)

2Q1 . . . Qk−1R
2) − KP0

= φP0
((Q1 . . . Qk−1)

2P1 . . . Pk−1R) + KP0

−φP0
((Q1 . . . Qk−1)

2P1 . . . Pk−1R
2) − KP0

= φP0
((P1 . . . Pk−1)

2Q1 . . . Qk−1R) + KP0

we obtain the conclusion.

Note though, that after making the last change (using the equality θ

[

−ǫ
−ǫ′

]

(0, Π) =

θ

[

ǫ
ǫ′

]

(0, Π)) we (may) get non-canonical representatives for the characteristics involved,

and so we have to multiply again by some 6th root of unity in order to get the value of the
theta functions corresponding to the canonical representatives.
If we would like to avoid the ambiguity caused by the 6th roots of unity, we may take the
6th power of each side of the equation in order to get:

θ36[P1..Pr−1; Q1..Qr−1R](0, Π)
∏r−1

i=1 (λ0 − λi)12(ρ − µi)12
=

θ36[Q1..Qr−1; P1..Pr−1R](0, Π)
∏r−1

i=1 (λ0 − µi)12(ρ − λi)12
.

Turning back to the equation in the proposition we may now multiply both the denomi-
nators by
∏

1≤i<j≤r−1(λi − λj)
2 ·

∏

1≤i<j≤r−1(µi − µj)
2 and get:

θ6[P1..Pr−1; Q1..Qr−1R](0, π)

[λ0, λ1, ..λr−1]2[ρ, µ1, ...µr−1]2
=

θ6[Q1..Qr−1; P1..Pr−1R](0, π)

[λ0, µ1, ..µr−1]2[ρ, λ1, ...λr−1]2

where we understand [a1, .., ar]
2 to be

∏r
i,j=1i<j(ai − aj)

2.

If Q̃1, . . . , Q̃r is the complement of P1, . . . , Pr−1, Q1, . . . , Qr−1, R in the branch set minus
P0, and Q̃i corresponds to νi then we may multiply both sides of the identity by 1

[ν1,...,νr]2
.

This is motivated by the following observation;
If Q1, . . . , Qr−1, Qr, . . . , Q2r−1 are distinct branch points (not equal to P0), and Q2r, . . . , Q3r−1

denote the complement of these points in the set of branch points (minus P0), and suppose
Qi corresponds to µi then, by the lemma above we can write

θ6[Q1..Qr−1; Qr..Q2r−1](0, π)

[λ0, µ1, ..µr−1]2[µr, ..µ2r−1]2[µ2r, ..µ3r−1]2
=

θ6[Q1..Qr−1; Q2r..Q3r−1](0, π)

[λ0, µ1, ..µr−1]2[µ2r, ..µ3r−1]2[µr, ..µ2r−1]2

We may now conclude using the proposition and the last observation:
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Theorem 5.1 Let Q1, ..Qr−1, Qr, ..Q2r−1 be an arbitrary choice of 2r-1 of the points P1, ...P3r−1.
Thus there remain r points which were not chosen. Denote these last r points by Q2r, ...Q3r−1.
Suppose Qi corresponds to µi Then we have

θ6[Q1..Qr−1; Qr..Q2r−1](0, π)

[λ0, µ1, ..µr−1]2[µr, ..µ2r−1]2[µ2r, ..µ3r−1]2
= k · e(ǫ, ǫ′)

where k is independent of the choice, and e(ǫ, ǫ′) is a 6th root of unity that does depend on
the choice.

Note that we have equality of the quotients for two different choices of points (up to 6th roots
of unity), if the choices differ by one of two moves; either one may replace Q1, . . . , Qr−1 by
r − 1 of the points Qr, . . . , Q2r−1 or one may replace the points Qr, . . . , Q2r−1 by the points
Q2r, . . . , Q3r−1. The general formula follows readily from this by a simple combinatoric
argument. Let there be given 3r-1 elements. Partition these elements into three distinct
sets A,B,C with the cardinality of A being r-1 and the cardinalities of B and C being r. We
will allow two types of moves. The first move is interchanging the elements of A with r-1
elements of B. There are clearly r such moves possible. A second move is interchanging the
elements of B and C. It is not hard to see that this action is transitive on all the possible
partitions and thus we conclude the proof of the theorem.
We mention again that in order to have equations that do not include possible multiplication
by 6th roots of unity, one may raise the expressions in the equations to the 6th power. We
then have the following:

Theorem 5.2 Let Q1, ..Qr−1, Qr, ..Q2r−1 be an arbitrary choice of 2r-1 of the points P1, ...P3r−1,
and let Q2r, ...Q3r−1 be the remaining r points. Suppose Qi corresponds to µi Then we have

θ36[Q1..Qr−1; Qr..Q2r−1](0, π)

[λ0, µ1, ..µr−1]12[µr, ..µ2r−1]12[µ2r, ..µ3r−1]12
= k

where k is independent of the choice
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