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1 Introduction

Let A be a subset of F = Fpn , the field of pn elements with p prime.
We let

A + A = {a + b : a ∈ A, b ∈ A},

and
AA = {ab : a ∈ A, b ∈ A}.

Many authors have been proving lower bounds on max(|A + A|, |AA|) (see e.g. [BKT], [BGK],

[G], [HI]). Recently, Garaev [G] showed that when n = 1 and |A| < p
1

2 one has the estimate

max(|A + A|, |AA|) '. |A|
15

14 .

The authors in [KS] slightly improved this to

max(|A + A|, |AA|) ' |A|
14

13 .

In the present paper, we extend Garaev’s techniques to the set of fields which are not necessarily
of prime order. Our goal here is just to find an explicit estimate in the supercritical setting where
the set A has less cardinality than the square root of the cardinality of the field, and interacts in
a less than half-dimensional way with any subfields. (We make this precise below.) Precisely, we
prove

Main Theorem 1. Let F = Fpn be a finite field. Suppose that A is a subset of F so that for

any A′ ⊂ A with |A′| ≥ |A|
18

19 and for any G ⊂ F a subfield (not necessarily proper) and for any
elements c, d ∈ F if

A′ ⊂ cG + d,

then
|A′| ≤ |G|

1

2 .

Then it must be that
max(|A + A|, |AA|) ' |A|

20

19 .

1The first author was supported by NSF grant DMS 0432237.
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We thank the referee for a significant improvement in the exponents over our preliminary
version. This was done by adapting techniques reminiscent of those of Glibichuk and Konyagin
[GK] to reduce the complexity of the expression we have found which is not in A−A

A−A
.

The hypotheses regarding interaction with subfields could be tightened slightly in various ways,
but they certainly need to require that A be different from an affine translate of G. In many cases,

they are vacuous, as when n is odd and p
7n+ǫ

20 < |A| < p
n

2 . We think hypotheses as saying that in
a certain sense, the dimension of A is at most 1

2
. An analogy may be drawn with the sum product

theorem in [B] and it is possible that the techniques here would be useful in that setting.

2 Preliminaries

Throughout this paper A will denote a fixed set in the field F = Fpn of pn elements with p a prime.
For B, any set, we will denote its cardinality by |B|.

Whenever X and Y are quantities we will use

X . Y,

to mean
X ≤ CY,

where the constant C is universal (i.e. independent of p and A). The constant C may vary from
line to line. We will use

X / Y,

to mean
X ≤ C(log |A|)αY,

where C and α may vary from line to line but are universal.
We state some preliminary lemmas.

Lemma 2.1. Let A ⊂ F . Suppose that

|
A − A

A − A
| ≥ |A|2.

Then there are a1, a2, b1, b2 ∈ A with

|(a1 − a2)A + (b1 − b2)A| & |A|2.

Proof. Under the hypothesis, there is x ∈ A−A
A−A

with at most |A|2 representations

x =
a1 − a2

b1 − b2

.

Thus there . |A|2 solutions of
a1 + b2x = a2 + b1x.

Therefore
|A + xA| & |A|2.

But if

x =
a1 − a2

b1 − b2

,

then
|A + xA| = |(a1 − a2)A + (b1 − b2)A|.
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Lemma 2.2. Let A ⊂ F . Suppose that x ∈ F with x /∈ A−A
A−A

, then

|A + xA| = |A|2.

Proof. There are no nontrivial solutions of

a1 + xb2 = a2 + xb1,

with a1, a2, b1, b2 ∈ A.

Lemma 2.3. Let A ⊂ F with cardinality at least 3. Suppose that G is a subfield of F with

A − A

A − A
⊂ G,

then there exist c, d ∈ F with
A ⊂ cG + d.

Proof. Suppose that the conclusion is false for all c, d ∈ F . Then we can find a1, a2, b1, b2, c, d1, d2 ∈
A and g1, g2, g3, g4 ∈ G with b1 6= b2 and d1−d2

c
/∈ G, so that

a1 = cg1 + d1; a2 = cg2 + d2; b1 = cg3 + d2; b2 = cg4 + d2. (1)

We do this as follows: We select b1, b2 distinct in A. Since b1 − b2 is invertible, we can find c so
that (b1 − b2) ∈ cG. Then there is d2 with b1, b2 ∈ cG + d2. We choose a2 ∈ cG + d2 ∩ A. It need
not be distinct from b1 and b2. Then we apply the assumption to pick a1 ∈ A but a1 /∈ cG + d2.
Applying (1.1), we see immediately

a1 − a2

b1 − b2

/∈ G.

The following two lemmas, quoted by Garaev, are due to Ruzsa, may be found in [TV]. The first
is usually referred to as Ruzsa’s triangle inequality. The second is a form of Plunnecke’s inequality.

Lemma 2.4. For any subsets X,Y,Z of F we have

|X − Z| ≤
|Y − X||X + Z|

|X|
.

Lemma 2.5. Let X,B1, . . . , Bk be any subsets of F with

|X + Bi| ≤ αi|X|,

for i ranging from 1 to k. Then there exists X1 ⊂ X with

|X1 + B1 + · · · + Bk| ≤ α1 . . . αk|X1|. (2)

We record a number of Corollaries. The first can be found in [TV]. The second one, we first
became aware of in the paper of Garaev.

Corollary 2.6. Let X,B1, . . . , Bk be any subsets of F . Then

|B1 + · · · + Bk| ≤
|X + B1| . . . |X + Bk|

|X|k−1
.
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Proof. Simply bound |B1 + · · · + Bk| by |X1 + B1 + · · · + Bk| and |X1| by |X|.

Corollary 2.7. Let A ⊂ F and let a, b ∈ A. Then we have the inequalities

|aA + bA| ≤
|A + A|2

|aA ∩ bA|
,

and

|aA − bA| ≤
|A + A|2

|aA ∩ bA|
.

Proof. To get the first inequality, apply Corollary 1.6 with k = 2, B1 = aA, B2 = bA, and
X = aA ∩ bA.

To get the second inequality, apply Lemma 1.4 with Y = aA, Z = −bA and X = −(aA∩bA).

3 Modified Garaev’s inequality

In this section, we slightly modify Garaev’s argument to obtain the desired result.

Proof of Main Theorem. Following Garaev, we observe that

∑

a∈A

∑

b∈A

|aA ∩ bA| ≥
|A|4

|AA|
.

Therefore, we can find an element b0 ∈ A, a subset A1 ⊂ A and a number N satisfying

|b0A ∩ aA| ≈ N,

for every a ∈ A1. Further

N '
|A|2

|AA|
, (3)

and

|A1|N '
|A|3

|AA|
. (4)

Now there are three cases. In the first case, we have that A1−A1

A1−A1
is a field G ⊂ F . If we have

|A1| / |A|
18

19 , then we already have the desired result from (2.2) and N ≤ |A|. Otherwise, by
Lemma 1.3, we have that A1 is contained in an affine image of G so that by hypothesis

|
A1 − A1

A1 − A1

| & |A1|
2.

Thus by Lemma 1.1 we can find a1, a2, b1, b2 ∈ A1 so that

|A1|
2 . |(a1 − a2)A1 + (b1 − b2)A1| ≤ |a1A − a2A + b1A − b2A|.

Applying Corollary 1.6 with k = 4, B1 = a1A, B2 = −a2A, B3 = b1A, B4 = −b2A, and with
X = b0A, and applying Corollary 1.7 to bound above |X + Bj |. Thus we get

|A1|
2 .

|A + A|8

N4|A|3
,
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or
|A1|

2N4|A|3 / |A + A|8.

Applying (2.2), we get
N2|A|9 / |A + A|8|AA|2 (5)

and applying (2.1), we get
|A|13 / |A + A|8|AA|4. (6)

The estimate (2.4) implies that

max(|A + A|, |AA|) ' |A|
13

12 ' |A|
20

19 ,

so that we have more than we need in this case. We restrict to the setting where A1−A1

A1−A1
is not a

field.
Now there are two remaining cases, either

(
A1 − A1

A1 − A1

)(
A1 − A1

A1 − A1

) 6⊂
A1 − A1

A1 − A1

or

(
A1 − A1

A1 − A1

)(
A1 − A1

A1 − A1

) = (
A1 − A1

A1 − A1

),
A1 − A1

A1 − A1

+
A1 − A1

A1 − A1

6⊂
A1 − A1

A1 − A1

.

In the first case for some ai, bi, ci, di ∈ A1, we have

a1 − b1

c1 − d1

a2 − b2

c2 − d2

/∈
A1 − A1

A1 − A1

which can be rewritten as

a1 − b1

a1

a1

a1 − c1

a1 − c1

c1

c1

c1 − d1

a2 − b2

c2 − d2

/∈
A1 − A1

A1 − A1

.

From this we deduce that for some a, b, x, y, z, t ∈ A1, we have

a − b

a

x − y

z − t
/∈

A1 − A1

A1 − A1

.

Thus

|A1|
2 ≤ |(a − b)(x − y)A1 + a(z − t)A1| ≤ |a(x − y)A − b(x − y)A + a(z − t)A|.

We now apply Corollary 1.6 first with X = a(x − y)A to get

|A1|
2 ≤

|A + A||aA − bA||(x − y)A + (z − t)A|

|A|2
.

and then with X = b0A together with Corollary 1.7, this gives

|A|20 / |A + A|13|AA|6.

This implies that

max(|A + A|, |AA|) ' |A|
20

19
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In the second case, for some ai, bi ∈ A1 we have

a1 − a2

b1 − b2

+
a3 − a4

b3 − b4

/∈
A1 − A1

A1 − A1

,

which, in view of (A1−A1

A1−A1
)(A1−A1

A1−A1
) = A1−A1

A1−A1
,implies that there exist elements a, b, c, d ∈ A1 such

that
a − b

c − d
+ 1 =

b3 − b4

a3 − a4

a1 − a2

b1 − b2

+ 1 =
b3 − b4

a3 − a4

(
a1 − a2

b1 − b2

+
a3 − a4

b3 − b4

) /∈
A1 − A1

A1 − A1

Thus we have
|A1|

2 ≤ |(c − d)A + (a − b)A + (c − d)A|.

Now applying Corollary 1.6 first with k = 3 ,X = (c − d)A and then X = b0A together with
Corollary 1.7, we obtain

|A|15 / |A + A|10|AA|4.

Since 15

14
≥ 20

19
, we get more than we need in this case.
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