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Abstract

We extend an argument of Felix Behrend to show that fairly dense subsets of the

integers exist which contain no solution to certain systems of linear equations.

1 Introduction

A classical argument of Behrend [Beh46] establishes

r3(N) & Ne−C
√

log N (1)

for some C > 0 where r3(N) is the maximum cardinality of any subset A ⊂ {0, 1, . . . , N−1}
which contains no proper 3-term arithmetic progression. We study the problem of finding
lower bounds on rP (N), a generalization of r3(N).

If P ⊂ Zr is a finite set and ψ : Qr → Q is an affine map so that ψ|P is injective, we say
ψ(P ) is an injective affine image of P, and we let rP (N) denote the maximum cardinality of
any subset A ⊂ {0, 1, . . . , N − 1} which contains no injective affine image of P . In this new
notation, r{0,1,2}(N) = r3(N)

Ruzsa initiated a systematic study of rP (N) in [Ruz93]. In particular, he observed that
Behrend’s argument easily extends to show

rP (N) & Ne−C
√

log N (2)

for some C = C(P ) > 0 provided P contains a nontrivial convex combination. More recently,
Shapira [Sha06] showed (2) holds, unless P which is contained in the zero set of a nonzero
quadratic polynomial.

1The author was supported in part by the National Science Foundation, Grant No. 0514370, Richard
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We provide a further extension along these lines. In particular, we show (2) holds for the
set

Pp = {(0, 0), (1, 0), (0, 1), (3, 1), (1, 3)}, (3)

among others. This appears to be new, as Pp lies on the parabola defined by (x−y)2−(x+y) =
0, and hence Shapira’s Theorem does not apply. Our main theorem shows that (2) holds
unless P lies on the zero set of a special type of quadratic polynomial.

The problem of finding affine images of P can be rephrased in terms of solving systems of
linear equations. For instance, affine images of {0, 1, 2} correspond to solutions of x+z = 2y.
Affine images of Pp correspond to solutions of

{

3x+ w = 3y + z

3x+ u = 3z + y
(4)

Furthermore, an injective affine image of Pp corresponds to a solution of (4) with x, y, z, w, u
all distinct. It is perhaps more natural to use the linear equation point of view to define
rP (N), but our argument, and the conditions we find on P , are more natural from the affine
image point of view.

In section 3 we provide an exposition of Behrend’s argument, with a slightly different
interpretation than usual. This new interpretation helps make our later argument more
transparent. We then prove a special case of our theorem in section 4, and the full theorem
in section 5.

The author thanks the anonymous referee for some helpful points on improving this
article.

2 Definitions and Notation

We write X . Y and Y & X if there exists a constant C > 0 so that X ≤ CY, and we write
X ∼ Y if X . Y and Y . X.

Let A ⊂ Z and B ⊂ Z ′ be finite subsets of abelian groups Z and Z ′ and let k ∈ N. A
Freiman homomorphism of order k from A to B is a map ϕ : A→ B so that

k
∑

j=1

ϕ(xj) =
k

∑

j=1

ϕ(yj)

whenever
k

∑

j=1

xj =

k
∑

j=1

yj,

provided x1, x2, . . . , xk, y1, y2, . . . , yk ∈ A. It follows that if a1, a2, . . . , as, b1, b2, . . . , bt are
positive integers with

∑s
j=1 aj =

∑t
j=1 bt = k, then

s
∑

j=1

ajϕ(xj) =

t
∑

j=1

bjϕ(yj)
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whenever
s

∑

j=1

ajxj =
t

∑

j=1

bjyj,

provided x1, x2, . . . , xs, y1, y2, . . . , yt ∈ A.

A Freiman isomorphism of order k between A and B is a bijective Freiman homomorphism
whose inverse is also a Freiman homomorphism1.

If P ⊂ Qr, AffRankP denotes the dimension of the affine span of P. We usually assume
AffRankP = r since P is affinely isomorphic to some Q ⊂ QAffRank Q.

3 Review of Earlier Arguments

We review the arguments from [SS42] and [Beh46].
We begin by extending the domain of the function r3(N). Suppose S ⊂ Z where Z is an

abelian group and S is a finite subset thereof. A nontrivial three term arithmetic progression
in Z is a triple of distinct elements (a, b, c) ∈ Z3 so that a + c = 2b. r3(S) denotes the
maximum cardinality of any subset of S which contains no nontrivial arithmetic progressions.
When Z = Z and S = {0, 1, 2, . . . , N−1} we write r3(N) rather than r3({0, 1, 2, . . . , N−1}).

It is useful to study this generalization even if one is only interested in r3(N). For instance,
lower bounds for r3(N) can be established using lower bounds on r3({0, 1, . . . ,M − 1}d) for
appropriate M and d. The following lemma specifies the required relationship between N,

M, and d.

Lemma. [SS42] Suppose N ≥ 1
2
[(2M − 1)d − 1]. Then

r3({0, 1, . . . ,M − 1}d) ≤ r3(N).

Proof. Let Φ : Zd → Z,

Φ(x1, x2, . . . , xd) = x1 + (2M − 1)x2 + · · ·+ (2M − 1)d−1xd.

Φ is a Freiman isomorphism of order 2 when restricted to the domain {0, 1, . . . ,M − 1}d.

If B ⊂ {0, 1, . . . ,M − 1}d has no nontrivial arithmetic progressions of length three then
A = Φ(B) has no nontrivial arithmetic progressions of length three andA ⊂ {0, 1, · · · , 1

2
[(2M−

1)d − 1]}. The estimate

r3({0, 1, . . . ,M − 1}d) ≤ r3(
1

2
[(2M − 1)d − 1])

follows since |B| = |A|. The lemma then follows from monotonicity of r3.

Let cd(M) denote the maximum size of any subset B ⊂ {0, 1, . . . ,M−1}d which contains
no nontrivial convex combination. That is, if p, p1, p2, . . . , pn are in B and

p =
n

∑

j=1

λjpj

1We give the standard warning that a bijective Freiman homomorphism need not be an isomorphism.
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for some choice of 0 < λ1, λ2, . . . , λn ≤ 1 with
∑n

j=1 λj = 1 then p = p1 = · · · = pn.

Since a nontrivial arithmetic progression of length 3 is a nontrivial convex combination,
we obtain

cd(M) ≤ r3({0, 1, . . . ,M − 1}d).

Salem and Spencer obtained the lower bound

cd(M) ≥ d!
(

d
M

)

!M

for any pair d,M with M |d, using the sets

Sd(M) ⊂ {0, 1, . . . ,M − 1}d

consisting of points (x1, x2, . . . , xd) ∈ Nd so that xj = a for exactly d
M

choices of j for each
a ∈ {0, 1, . . . ,M − 1}. Given N ∈ N and choosing d and M appropriately (see [SS42] for
what appropriate means), Salem and Spencer obtain

r3(N) & Ne−C log N

log log N

for some positive constant C.
Behrend’s argument is similar, but uses a better bound on cd(M). Behrend starts with d

considerably smaller thanM and uses the pigeonhole principle to find an R ∈ (0, (M−1)2]∩Z

so that

|Σ(M, d,R)| ≥ Md−2

d
,

where

Σ(M, d,R) = {(x1, x2, . . . , xd) ∈ {0, 1, . . . ,M − 1}d : x2
1 + x2

2 + · · ·+ x2
d = R}.

Choosing d and M integers satisfying d ∼
√

logN and M ∼ e
√

log N , Behrend concludes

r3(N) & Ne−C
√

log N .

Trying to improve Behrend’s bound by replacing the spheres with some other collection
of strictly convex hypersurfaces is a natural temptation. However, the elementary bound

cd(M) ≤ 2Md−1

shows that such argument would, at best, improve the value of C in (1).
It is interesting to point out that the very first lower bound, r3(N) & N log 2/log 3, also fits

into the above paradigm, following from cd(2) = 2d.

The above method easily extends to establish the bound (2) for any P ⊂ Zr which
contains a nontrivial convex combination. Let P be any subset of Zr with AffRankP =
r. Any affine map Qr → Q defines a Freiman homomorphism of any order of P into Q.

Conversely, there exists a positive integer oP so that any Freiman homomorphism of P into
Q of order at least oP is the restriction of an affine map. This follows from Konyagin and
Lev’s linear algebraic method, [KL00]. We call the smallest such oP the Freiman order of P .
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Lemma. Suppose P ⊂ Zr has Freiman order oP and N ≥ 1
oP

[(oP (M − 1) + 1)d − 1]. Then

rP ({0, 1, . . . ,M − 1}d) ≤ rP (N).

Proof. This follows as above, except we use

Φ(x1, x2, . . . , xd) = x1 + (oP (M − 1) + 1)x2 + · · ·+ (oP (M − 1) + 1)d−1xd,

which is a Freiman isomorphism of order oP between {0, 1, . . . ,M − 1}d and its image. Sup-
pose ϕ : Qr → Q is an affine map giving an injective affine image of P into Φ({0, 1, . . . ,M −
1}d). Then ψ = Φ−1 ◦ ϕ is a Freiman homomorphism of order oP from P into Zd. By the
choice of oP , ψ therefore has an extension to an affine map Qr → Qd. In the contrapositive,
if B ⊂ {0, 1, . . . ,M −1}d has no injective affine image of P then Φ(B) has no injective affine
image of P .

As with r3, to establish lower bounds on rP (N) it suffices to do so for rP ({0, 1, . . . ,M −
1}d). If P contains a nontrivial convex combination then

rP ({0, 1, . . . ,M − 1}d) ≥ cd(M) (5)

since convex combinations are preserved by affine maps. Taking d ∼
√

logN andM ∼ e
√

log N

gives (2) for some C > 0. Furthermore, C = 2 + log oP + ǫ is admissible for any positive ǫ,
provided N is sufficiently large.

The following proposition is the culmination of the above discussion. The novelty of this
proposition is its emphasis on affine structures of P , letting convexity play a subsidiary role.
Our later argument exploits this extra flexibility.

Proposition. Let P ⊂ Zr be a finite set with AffRankP = r and Freiman order oP .

• If P has no injective affine image on any sphere Σ(M, d,R) with 0 < R ≤ (M − 1)2,

and d ∼ logM then rP (N) & Ne−C
√

log N .

• If P has no injective affine image into any Salem-Spencer set S(M, d), with M |d, then

rP (N) & Ne−C log N

log log N .

In the next two sections we find obstructions for P to have an injective affine image on
a sphere. Although the Salem-Spencer sets provide a worse bound, they may be able to
provide additional obstructions. We have not been able to find any additional obstructions
yet.

4 Planar Sets

Our method is best illustrated for P ⊂ Z2 since this case avoids some annoying degenerate
cases that appear in higher dimensions.

Let P ⊂ Z2 be a finite set with |P | ≥ 3 and suppose P is not collinear. Suppose there is
an affine map ψ : Q2 → Qd for some d ∈ N so that ψ|P is injective and ψ(P ) ⊂ S∩Zd for some
d−1-dimensional sphere S ⊂ Rd. By continuity there is a unique continuous affine extension
ψ : R2 → Rd. H = ψ(R2) is a translate of a subspace of Rd and dimH ∈ {0, 1, 2}, so H ∩ S
is either empty, one point, two points, or a circle. However ψ(P ) ⊂ H ∩ S and |ψ(P )| ≥ 3;
therefore H ∩ S is a circle C. In particular, dimH = 2 so ψ is an affine isomorphism onto
H . It follows that P ⊂ ψ−1(C) = E , an ellipse, establishing the planar case of our theorem.
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Theorem. Let P ⊂ Z2 be a finite set. If P is not contained on any ellipse in R2 then there
exists a constant C > 0 so that (2) holds.

It is instructive to investigate rP (N) for P ⊂ Z2 as |P | increases. Throughout this
discussion we assume P is not collinear. First, rP (N) = 3 for any 3-element set, since
any such set is affinely independent. Next, there is a one parameter family of quadratic
curves passing through any four element set. A tedious, but elementary, calculation with
the quadratic formula shows this family is devoid of ellipses if and only if P contains a
nontrivial convex combination. Thus, for |P | = 4 the only case where we know (2) is if P
has a nontrivial convex combination.

Now suppose |P | = 5. First, if P has 4 points on a single line ℓ then there is a one
parameter family of quadratic curves passing though P , and each such curve is the union of
ℓ with one other line. Such a set obviously does not lie on an ellipse. If P has 3, but not
more, points on a single line ℓ then there is a unique quadratic curve passing through P ,
and it is the union of ℓ and the unique line through the other 2 points of P . Again, such a
set does not lie on an ellipse.

If P contains no collinear triple then there is a unique irreducible quadratic curve passing
through P . In particular, P cannot lie on an ellipse if it lies on either a parabola or a
hyperbola.

Corollary. Let P ⊂ Z2 be a 5 element set. There exists a constant C > 0 so that (2) holds
if any of the following is satisfied:

1. P contains at least 3 points on line;

2. P lies on a hyperbola, and intersects both components;

3. P lies on a single component of a hyperbola;

4. P lies on a parabola.

Conditions 1 and 2 are well known, as they follow from the existence of nontrivial convex
combinations in P . Conditions 3 and 4 appear to be new. The result in the introduction
concerning Pp follows since this set lies on a parabola.

If |P | ≥ 6 then (2) holds for “almost all” P, in the sense that the typical 6-element set does
not lie on any ellipse. However, there exist arbitrarily large R so that |Σ(M, 2, R)| & logR,

provided M &
√
R, (See Proposition 17.6.1 of [IR90].). Taking P = Σ(M, 2, R) for such M

and R provide arbitrarily large P to which our theorem does not apply. On the other hand,
the only planar P which are known to satisfy a power-type upper bound, rP (N) . N1−α for
some positive α, have |P | = 4 and are related to symmetric equations. This is discussed in
more detail in the final section of this work.

5 General Case

Our main theorem from the last section generalizes to P ⊂ Zr but there are extra degen-
eracies. We write Es−1 for an ellipsoid in Rs. An ellipsoidal cylinder is the product of an
ellipsoid with a Euclidean space.
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Theorem. Let P ⊂ Zr be a finite set. If P is not contained on any ellipsoidal cylinder
Es−1 × Rr−s ⊂ Rr with 2 ≤ s ≤ r then there exists a constant C > 0 so that (2) holds.

Proof. Assuming there is an affine map ψ : Qr → Qd for some d ∈ N so that ψ|P is injective
and ψ(P ) ⊂ S ∩ Zd for some d − 1-dimensional sphere S ⊂ Rd, we extend ψ : Rr → Rd

as before and H = ψ(Rd) is a translate of a subspace of Rd with dimH ∈ {0, 1, 2, . . . , r}.
The cardinality considerations we relied on before can only rule out dimH = 0 and 1. If
s = dimH then s ∈ {2, 3 . . . , r}, and we find H ∩ S is an s− 1-dimensional sphere. Then

ψ−1(H ∩ S) ∼= Es−1 × Rr−s.

Corollary. Let P ⊂ Zr be a finite set and let P ′ ⊂ P with t = AffRankP ′ ≥ 2. If P ′ is not
contained on any ellipsoidal cylinder Es−1 × Rt−s ⊂ Rt with 2 ≤ s ≤ t then there exists a
constant C > 0 so that (2) holds.

This follows from the monotonicity rP (N) ≥ rP ′(N) whenever P ′ ⊂ P.

6 Conclusion

It may be possible that (2) holds for all P ⊂ Z2 with at least 5 elements, but our method is
not able to establish this when P lies on an ellipse. Perhaps the simplest elliptic set is

Pe = {(0, 0), (1, 0), (0, 1), (2, 1), (1, 2)}, (6)

which superficially looks like Pp, but the latter satisfies (2) whereas only trivial lower bounds
are currently known for rPe

(N).
A stronger result may in fact hold. Affine images of a four element P ⊂ Z2 correspond

to solutions to a single linear equation in four variables. It is an open question whether

rP (N) . N1−α

for some α = α(P ) if and only if the linear equation corresponding to P is of the form

ax+ by = az + bw (7)

for a, b ∈ N. We call such equations symmetric equations. In [Ruz93] it is shown that all
equations of the form (7) satisfy

√
Ne−β

√
log N . r(N) .

√
N.

The equations
3x+ y = 2z + 2w (8)

3x+ 6y = z + 8w (9)

are equations for which α = 0 is unknown. (8) is perhaps the simplest equation in four
variables for which α = 0 is unknown. The result α = 0 for (9) would have ergodic theoretic
consequences, [Fra06]. In fact, the weaker α < 1

3
suffices for ergodic theoretic consequences.
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The essential property of spheres we used in our argument is what we call the “unique
cross section” property. As an example, let

H(d,R) = {(x1, x2, . . . , xd) ∈ Rd : x2
1 + x2

2 + . . .+ x2
d−1 − x2

d = R}

and let L be a rank 2 affine subspace. If L⊥{xn = 0} then H(d,R) ∩ L is empty, a single
point, or a circle, as before. On the other hand, if {xn = 0} ⊂ L then H(d,R) ∩ H is a
hyperbola. More generally, if Q is any quadratic hypersurface in Rd and r is much smaller
than d, then the set of quadratic varieties obtained by slicing Q with affine subspaces of
dimension not exceeding r contain the set of such cross sections for the sphere. Thus, at
least among quadratic hypersurfaces, the sphere has the minimal collection of cross sections,
and therefore presents the strictest collection of obstructions to injective affine mappings.
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