On sumsets of dissociated sets *

Shkredov 1.D.

Annotation.

In the paper we are studying some properties of subsets Q C A1 +---+ Ay, where A; are dissociated
sets. The exact upper bound for the number of solutions of the following equation

G+t =gt tap, ¢GEQ (1)

in groups ¥4 is found. Using our approach, we easily prove a recent result of J. Bourgain on sets of
large exponential sums and obtain a tiny improvement of his theorem. Besides an inverse problem
is considered in the article. Let Q be a set belonging to a sumset of two dissociated sets such that
equation (1) has many solutions. We prove that in the case the large proportion of Q is highly
structured.

1. Introduction.

Let G = (G, +) be a finite Abelian group with additive group operation +. Suppose that
A is a subset of G. It is very convenient to write A(z) for such a function. Thus A(x) = 1
if x € A and A(x) = 0 otherwise. By G denote the Pontryagin dual of G, in other words
the space of homomorphisms ¢ from G to R/Z, £ : x — £ - z. It is well known that G is an
additive group which is isomorphic to G. Also denote by N the cardinality of G. Let f be a
function from G to C, N = |G|. By f(&) denote the Fourier transformation of f

F&) =) f@e(—¢-x), (2)
zeCG
where e(z) = 2 and ¢ € G.
Let 0, be real numbers, 0 < a < 9 < 1 and let A be a subset of Zy of cardinality d V.
Consider the set R, of all r, where Fourier transform of A is large

Ra=Ra(A)={reG : |A(r)|>aN }. (3)

In many problems of combinatorial number theory is important to know the structure of the
set R, (see [1]). In other words what kind of properties does R,, have? Clearly, this question
is an inverse problem of additive number theory (see [2, 24]).
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The first non—trivial result in the direction was obtained by M.—C. Chang [6] in 2002.
Recall that a set D = {d;,...,djp/} C G is called dissociated if any equality of the form

DI

Z 6idi =0 s (4)
i=1

where ¢; € {—1,0, 1} implies that all ¢; are equal to zero.

Let log stand for the logarithm to base 2. Let p be a positive integer. By [p] denote the
segment of natural numbers {1,...,p}.

Theorem 1.1 (Chang) Let §,« be real numbers, 0 < a < § < 1, A be a subset of G,
|A] = ON, and the set R, is defined by (3). Then any dissociated set A, A C R, has the
cardinality at most 2(5/a)*log(1/4).

A simple consequence of Parseval’s identity gives |A| < §/a?. Hence Chang’s Theorem is
nontrivial if 0 is small.

Using the approach of the paper [5] (see also [4]) Chang applied her result to prove the
famous Freiman’s Theorem [3] on sets with small doubling. Other applications of Theorem 1.1
were obtained by B. Green in paper [7] by B. Green and I. Ruzsa in [9], T. Sanders (see e.g.
[12, 13, 14]), and also T. Schoen in [23]. If the parameter « is close to ¢ then the structural
properties of the set R, were studied in papers [17, 18, 19] (see also survey [20]).

By A; + Ay +--- 4+ Ay denotes the set of sums of different elements of the sets A, ..., Ay.
If all A; are equal to A then we shall write dA.

In paper [26] J. Bourgain used sumsets of a dissociated set A and obtained an extension
of Chang’s theorem. He used the extension in proving of his beautiful result on density of
subsets of [IN] without arithmetic progressions of length three. Further applications on the
Theorem below were obtained in [15].

Theorem 1.2 (Bourgain) Let d be a positive integer, §, a be real numbers, 0 < o < § < 1,
A be a subset of G, |A| = 0N, and the set R, is defined by (3). Suppose that A is a dissociated
set. Then for any d > 1, we have |[dA N R4| < 8(5/a)?log?(1/6).

In articles [28, 29, 30] another results on sets of large exponential sums were obtained. In
particular, the following theorem was proved in these papers.

Theorem 1.3 Let 6, be real numbers, 0 < a < 0, A be a subset of Zn, |A| = 0N, and
k > 2 be a positive integer. Let also B C R, \ {0} be an arbitrary set. Then the number

To(B) :={ (ri,...,re, 7%, ...,r) €B* o orp 4o =1 41 ) (5)
15 at least 5ot
«
gz Bl (6)

In article [29] was showed that Theorem 1.3 and an inequality of W. Rudin [21, 22] on
dissociated sets imply M.—C. Chang’s theorem. Similarly in the paper we show that an
appropriate analog of Rudin’s result and Theorem 1.3 gives us Theorem 1.2 in F} (see section
2). Our approach is elementary and does not require sufficiently difficult hypercontractivity
technique from [26]. We show that for any @ C dA, where A is a dissociated, the value T},(Q)
does not exceed C%*k®|Q|*. Here C' > 0 is an absolute constant. Applying this result to the
set dA (1R and using Theorem 1.3, we get Theorem 1.2. Actually a tiny improvement of the
last result was obtained (see Theorem 2.9).



In section 4 an inverse problem is considered (inverse problems are discussed in [2] and
24], for example). Let Q be a subset of 2A, where A is an arbitrary dissociated set. Suppose
that the value Tj(Q) is large in the sense that T3,(Q) > C%*k%|Q|*. What can we say about
the structure of )7 We show that in the case the set () contains a sumset of two dissociated
sets. In some sense we give a full description of large subsets of 2A with large value of Tj.
Here an approximate result (for exact formulation see Theorem 4.9).

Theorem 1.4 Let K be a real number, k be a positive integer. Let also A C F% be a
dissociated set, Q C A+ A, and

B Ql
Ti(Q) = ok (7)
Suppose that k < log |A|/loglog |A| and |Q| > |A|**¢, where e = e(k, K) € (0,1). Then there
are sets L1, Ly, ..., Ly, L}, © A such that L;() L) = 0, Li+L:CQ,i=1,....h,j=1,...,h,
L3l |£5] > log(|Q[/|A])/ log K, and

QY (s + Lo Leen+ £0) | >« 1@l ®)

Thus (7) implies that large proportion of () is a union of sums of disjoint subsets L;,
L, C A. The lower bound |L£;|, |Li| > log(|Q|/|A])/log K from the theorem above is best
possible (see Note 4.11).

The obtained results are formulated in groups F3 but they can be extended to any Abelian
group (see discussion of using F}, p is a prime, in [11]). In our forthcoming papers we are
going to obtain these extensions.

I acknowledge the Institute for Advanced Study for its hospitality and providing me with
excellent working conditions. Also the author is grateful to Professor N.G. Moshchevitin and
Professor S.V. Konygin for attention to this work and useful discussions.

2. An elementary proof of a result of Bourgain.

Denote by G the group Fj. Let A C G be a set, and k > 2 be a positive integer. By T;(A)
denote the number

T(A) ={ai+-+a=a)+--+a, : a,...,ad},...,a; € A}|.
If Ay,..., Ag, C G are any sets, then denote by Ty(Aq,. .., Ag) the following number
Tk(Al,...,Agk)::|{a1+-~-+ak:ak+1+--~+a2k :aiEAi,i:1,...,2kJ}|.

We shall write ) instead of ) . for simplicity.
Using the notion of convolution, we can calculate Tj(A).
Definition 2.1 Let f,g: G — C be any functions. Denote by (f * ¢g)(x) the function

(f*g)(x) =D fls)g(x —s). (9)

Clearly, (f * g)(z) = (g % f)(z), * € G. Further, using induction, we get the operation sy,
where k is a positive integer. So s := *(*,_1).

If A,B C @ are arbitrary sets, then (A x B)(z) # 0 iff + € A+ B. Hence Th(A) =
S (Ax A)*(x). Let f: G — C be a function. By Ti(f) denote Ty.(f) = >_, |(f *r—1 f)(x)|*.
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Lemma 2.2 Let s,t > 2 be positive integers, and let fi,..., fs,91,...,9: : G — R be
functions. Then

D (frseew f)@) - (grs - x g)(@)] <
< (T(fO)'2 o (T (f )V (Ti(g) 2 (Ta(g) (10)

— ~

Proof. Since (f * g)(r) = f(r)g(r), it follows that

=S @) (g xg)@) = 5 SURO) - RORE) - .

x T

Using Holder’s inequality several times, we obtain

1 1

o< (f X)) (o)
(NZ e ) (%Zau) -

= (T ()% (T (D)2 (Tg) V2 (T(ge) ™

This completes the proof.
Corollary 2.3 Let A, B be finite subsets of G. Then

T, (AU B) < T,/ (4) + 1,7(B) . (11)

We need in the notion of dissociativity in F7.
Definition 2.4 Let R C F} be a set, R = —R and {0} € R. We say that a set A =
{A, ..., A} € F3 belongs to the family Ag(k) if the equality

Al

Zﬁi)\i € R, (12)
=1

where ¢; € {0,1} and Ziﬂl lei] < k implies that all €; are equal to zero. If R = {0} then A
belongs to the family A(k).

Proposition 2.5 Let k > 2 be a positive integer, and A C F% be an arbitrary set, belonging
to the family A(2k). Then for any integer p, 2 < p < k, we have

To(A) < p"|AP. (13)
Proof. Let m = |A|. Consider the equation
)\1—|—"'—|—)\2p:0, A €A, 1=1,...,2p. (14)

Let us consider any partitions M = { My, ..., M,} of the segment [2p| onto sets M;, |M;| = 2,
p j J
7 =1,...,p. It is easy to see that the number of such partitions equals _(22;);;)'! < —(221;)17 = pP.
p!

Further, let us mark any set M; by an element AU) of the set A. Then the number of these
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labelled partitions does not exceed p’mP. By assumption the set A belongs to the family
A(2k). Hence if (A,...,\yp,) is an arbitrary solution of (14) then any \;, ¢ € [2p] appears
an even number of times in this solution. So a solution (Ay, ..., Ag,) of (14) corresponds to
a labelled partition M’ = {(M;, \V), ... (M, AP))}. To see this let us construct a labelled
partition M’ = {(M;, A\V), ..., (M,, A\®)} such that for any M; = {a,8}, j = 1,...,p, we
have A\, = Ag = AU, Clearly, if we have two different solutions of (14) then we get different
labelled partitions. Hence the total number of solutions of (14) does not exceed p?m?. This
completes the proof. R

Note 2.6 Rudin’s Theorem (see [21, 22]) asserts that for any function f: G — C, supp f C
A, A is a dissociated set, we have ||f|, < CVE| f||2, where C' > 0 is an absolute constant and
k > 2. In other words, for an arbitrary a, the following holds

k)2
%Z > are(=A-x)| < CFEM? <Z|M|Q> | =

T |AEA A€A

k

Certainly, inequality (15) implies Proposition 2.5 (up to constants) : to see this one can put
k = 2p, ax = 1 and note that T,(A) = &> |3 cpe(=A- x)’Zp. On the other hand, we
can use a slightly modified arguments from Proposition 2.5 to prove (15). Indeed, to obtain
inequality (15), we need to calculate the number of solutions of (14) such that any solutions has
weight ay, ... ay,, By assumption the set A belongs to the family A(2k). Hence if (Aq, ..., Ag)
is an arbitrary solution of (14) then any \;, i € [2p] appears even number of times in this
solution. It follows that if a partition M = {M;,..., M,} of the segment [2p] onto the sets
Mj, |Mj| =2, j = 1,...,p is fixed then we get weight (3,4 |ax|?)”. We know that the
number of such partitions M does not exceed p?. Thus, we have proved (15) in the case
k = 2p. Using standard methods (see e.g. [10], Lemma 19), we obtain inequality (15) for all
k> 2.
Now we can prove an analog of Proposition 2.5 for subsets of sums of dissociated sets and
obtain Theorem 2.9.
Proposition 2.7 Let k, d be positive integers, k > 2, and A C F3 be an arbitrary set,
A € A(2dk) such that |A| > 4d?. Let also Q be a subset of dA. Then for all integers p,
2 <p <k, we have
T,(Q) < 2| QP (16)

Proof. We use induction. If d = 1, then the bound for 7,,(Q)) was obtained in Proposition
2.5. Let d > 2, and let m = |Q|. Put ¢4 :=8d, d > 1.
Let a = [|A]|/2d]. By assumption |A| > 4d?. Hence |A|/a < 4d. Also

(|A| - d)‘l (|A|) AJ(A = 1)... (A —d+1)

a—1 a -

A —a)(A—a-1). (N -a—d+2) =

P P
< 4d - eﬁ ol it2 ?:_()2(‘1+i)) < 244 . (17)

Let E be any set. By E° denote A\ E. Using dissociativity of A and the definition of the
operation +, we get

Q(:z:):dl(M’_d)_l > (@M + (@~ 1Ag) ().

a—1
AoCA, |Ao|=a



Using Holder’s inequality, we obtain

Tp@)Sd—%('A"d)_%('A')%_l S LN+ -1 ()

a—1 a
AoCA, [Ao|=a

If we prove for any Ay C A the following inequality

To(Q[ (Ao + (d — 1AG) < 24-7p™|Q (Ao + (d — DAGJ,
then using (18) and (17), we obtain
[A[ —d

a—1

-2 2
TP(Q> < d_2p< ) p<|A|> pQCdflpppdmp < 2(cd71+8)pppdmp — 20dpppdmp
> a <

and Proposition 2.7 is proved. '
Let Ay = A, Ay = A\ A, and Q" € Ay + (d — 1)A;. We have to prove that T,(Q’) <
2¢a-1Pprd|()'|P. Let A be an element from A;. Consider the sets

Dy=DN={XN : A Ne@Q, Ne(d-1)A,},

Q)\:Q()‘):{QGQI : q:/\+)‘,2++)\il7 /\;€A7i:27'-'7d}7
Clearly, Q(A) = D(\) + A. Let s; be a number of nonempty sets D,. Let these sets be
Dy, ..., Dy, . We shall write D; instead of D,,. Let also sy = |Ay[. Obviously, @ C
{1, A+ (d—1)Ag
Consider the equation
Gt =Gt Gy, (19)
where ¢; € @', i = 1,...,2p. Denote by o the number of solutions of (19). Since Q" C
A1+ (d—1)As, it follows that for all ¢ € @', we have ¢ = A+ u, where A € Ay, p € (d—1)As.
Let 41,...,79 € [s1] be arbitrary numbers. Denote by oz, @ = (i1, 12, ..,49,) the set of
solutions of equation (19) such that for all j € [2p], we have the restriction ¢; € D()\;,),

]

Ai; € Ay By assumption the sets A; and Ay belong to the family A(2dk). Also Ly, Ly have
empty intersection. It follows that if ¢, ..., ¢, is a solution of equation (19) such that this
solution belongs to the set o7, then any component of vector ;appears an even number of
times in the vector. We have

o< Z . Z o] . (20)

M, M={M,...M;}, 2p|=M1 - Mp jeM

Summation in (20) is taken over families of sets M, M = {My,..., M,}, 2p] = My | ]--- M,
such that for all j = 1,...,p, we have |M;| = 2. Let M; = {ozgj),agj)}, j=1,...,p. By
definition 7 € M if for all J € [p], we have io) =10

Using Lemma 2.2 and induction, we get ' ’

2p
07| < 9cd-15d(P=1) H !D(Aij)\l/Q-

j=1

Hence

2p
o < 20NN TP (21)
M

iem J=1
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Let m’ = |Q’|, and let ¢ be an arbitrary element of the set )'. By assumption A;[Ay =0
and A is a dissociated set, so it is easy to see that the sets Q(\) are disjoint. Hence

Y D= QM) =m'. (22)

AEA AEA;

For any A € Ay, we have |D,| < m/. Let > 1 be an arbitrary number. Using formula (22),
we get
S IDOIE = 3 1RO < ()5t 3 1] = (') (23)
AEA XA XA
The number of partitions M in inequality (21) does not exceed p?. Any component of vector
i appears even number of times in the vector. Combining inequality (21) and bound (23), we
obtain o < 2¢-1p(m/)P. This completes the proof.

In some sense the last proposition is best possible.

Proposition 2.8 Let k,d be positive integers, and let A C FY belong to the family A(2d).
Let also Ay be an arbitrary subset of A, and Q = dAy C dA. Then for all k < |Ay|/(2d) and
for any 2 < p <k, we have T,(Q) > 273dprd|Q|P.

Proof. Consider the equation

Gttt =Gt T G2p, (24)

where ¢; € Q,i=1,...,2p. Let us prove that equation (24) has at least 2-3P%pP?|Q|P solutions.

Since ¢; € @, it follows that ¢; = ijl )\;Z), i =1,...,2p. Consider tuples (q1,...,q,) such

that all )\y) for all ¢; are different. Clearly, there are exactly ('2;')% such tuples. For
any tuple (¢i,...,qp,) there are at least E%)p! solutions of equation (24). Indeed we have Eflf))p!

number of ways to partition the set {)\gl), e )\Ell), e Aﬁp), e )\Elp)} = {\,..., \pa} onto p
sets M, ..., M, of the same cardinality. Put ¢, = EjeMi Aj, © =p+1,...,2p, we get a
tuple (gpt1s---,q2p) € QP such that ¢y + -+ + ¢, = g1 + -+ + q2p. By assumption A is a

dissociated set, thus any collection of sets Mj, ..., M, corresponds to a tuple (gpt1,---,q2p)-
Hence T,(Q) > (M) EE - B Since A € A(2d), it follows that |Q| = (). Using the

inequality 2kd < |A4|, we get

Q) > (IAA) (pd)! (pd)! )y (pd)! Pp——

g pd )@y @y = (dy

p

This completes the proof.

At the end of the section we show that Theorem 1.3 (actually Theorem 5.1, see Appendix)
and Proposition 2.7 imply Theorem 1.2 in the case G = F}.

Theorem 2.9 Let §,« be real numbers, 0 < a < & < 1/4, d be a positive integer,
d < log(1/9)/4, A be an arbitrary subset of ¥4 of the cardinality 6N, and let R, be as in
(3). Suppose that a set A C F3 belongs to the family A(2log(1/d)). Then for all 1 < d <

log(1/5) /4, we have
[dA [\ Ral < (g)z (%‘W)d . (25)

Proof. Let k = [In(1/6)/d] > 2, Q = dA(\Ra and m = |Q|. We need to prove that
m < (5/04)2(%)‘1. Using Theorem 5.1, we get

d
5a2k
Tk(@) > 52k ka

(26)
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On the other hand, by Proposition 2.7, we obtain T;(Q) < 28*k*mk. Combining the last
inequality and (26), we get m < (6/ a)2(w)d. This concludes the proof.

So an upper bound for |dA (| R.| was obtained in Theorem 2.9. The next simple proposi-
tion gives us a lower estimate for the quantity. It is turn out this lower bound is close to the
upper one.

Proposition 2.10 Let § be a real number, 1/N < § < 1/16, and o = 2726 /\/n, n > 32.
Then there exist a set A CFy, dN < |A| <8N and a dissociated set A C R, (A) such that
for all integers d > 1, we have

A\ Ra| = 27 <g>2 (%)d_l . (27)

Proof. Let €; = (1,0,...,0),...,€, = (0,...,0,1) be the standard basis for F}. Let also
k = [log1/(49)], and H, H* be subspaces spanned by vectors €y, ...,¢€, x and €n_gi1,.--,En,
correspondingly. Let A C H be a set of £ = (z1,...,x,) € H such that the number z; = 1,
i=1,...,n—kisat least (n—k)/2. Clearly, |A] > 272 > §N and |A| < |H| < 2" % < 8JN.
Let H' be a space spanned by vectors of the length n— k, namely (1,0,...,0),...,(0,...,0,1).
Let alson’ = n—k, and let A’ C H' be the restriction of A on H’. Let us find Fourier coefficients
of A’. We have

ZA’ —1)< = |A(VHO | = 1A (HD| =214 (H| - |4, (28)

where H” = {r € H :<ryz >=0} and HY = {r e H :<rjxa>=1}. Letl>0bea
positive integer. Consider the sets

Hy={z=(x1,...,2y) : #x;=1equals [}.

Let r € Hy. Put (5) = 0 for y > x. Using Stirling’s formula and (28), we get

~ " n —1 n' " 25 —n' n'
w3 ()-(0))F X () ()=
s=[n’/2] s=[n'/2]
[n'/2+V/n']

2s —n'\ (n 2n 2n ON
> > ( : ) < ) > e8 > >o712 (29)
> ze g =2 =2
s=[n!/24+/n’ /2] " s \/_ \/ﬁ

It is casy to see that for any » € H' and for all b+ € H*, we have A(r + h*) = A'(r). Hence
Hi+H* CRo(A), a =27126/\/n and |R4(A)| > n'2¥ > n/(166) > 2728.§/a?. Thus we have
a lower bound for the cardinality of R,(A), which is close to an upper bound — §/a?. Clearly,
the set A’ is invariant under all permutations. Using this fact one can prove (assuming some
restrictions on parameters) that the following holds R4 (A) = ({0} UH,) + H+. We do not
need in the fact.
Let A={é1,...,é,} CRu(A), and A* = {€, k11,...,€,}. Clearly,

Ll e, (P + (d — 1)A*) C Ro(A) (N dA. Hence

: K n k! Lo (0N [log(1/6)\*
A)ﬂdA’2”<d—1>Zdeled122 (&) ( 16d )
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This completes the proof.
Note 2.11 Certainly, we can change the value of the parameter a in Proposition 2.10. For
example one can consider sets Hy instead of H; and choose the parameter o smaller than

9126/ /.
3. On connected subsets of dA.

Let G be an Abelian group, and A C G be an arbitrary finite set. In paper [31], so—called
”connected” sets A were studied (see also article [8]). Let us give a definition from [31].

Definition 3.1 Let k > 2 be a positive integer, and 1, B2 € [0, 1] be real numbers, 5; < (.
Nonempty set A C G is called (31, 52) —connected of degree k if there exists an absolute constant
C € (0, 1] such that for any B C A, ;1]|A| < |B| < (32| A| we have

T.(B) > C* ('|—fi") Ti(4). (30)

By (x(A) denote the quantity (x(A) := lolig"“[g') In paper [31] (see also [16]) the following
result was obtained.

Theorem 3.2 Let 31,32 € (0,1) be real numbers, $y < 5. Then there exists a set A’ C A
such that
1) A is (p1, B2)—connected of degree k set such that (30) holds for any C < 1/32.

log((2k—1)/¢) _ ay—
2) |A|>m-2 Toarrn) - 108(1 52), where Kk = log((ltg—’ill)l)(l —160C).

3) G(A) = G(A).
In the section we prove an analog of Theorem 3.2 for subsets of dissociated sets.
Let A C F3 be an arbitrary set from the family A(2dk), and A C dA. Denote by Dy (A)

the quantity TA)
Di(A) = log (k’fIAI’“> . (31)

In other words Ty, (A) = 2P EF| Ak, Since for all sets A with sufficiently large cardinality, we
have Ti(A) > () (k)2 > e=2kF| A*, it follows that the quantity Dy(A) is at least —2k loge.
On the other hand, by Proposition 2.7, we get Dy(A) < 8dlogd + k(d — 1) log k.

Theorem 3.3 Let K > 0 be a real number, k,d > 2 be positive integers. Let A C F3 be
an arbitrary set, A € A(2dk), and Q be a subset of dA such that Tp(Q) > ’“dﬁ{'—%‘k Let also
b1, 02 € (0,1) be real numbers, 51 < By. Then there is a set Q' C Q such that
1) @ is a (B1, B2)—connected of degree k such that (30) holds for any C < 1/8.

8dlog d+k(d—1)logk—Dy(Q)

2) Q| > Q| 2 FesaEma—soy  lesll=f)

3) T(Q) > F-

Proof. Let m = |Q|, and C' < 1/8 be a real number. The proof of Theorem 3.3 is a sort of
algorithm. If @ is (01, B2)—connected of degree k and (30) is true with the constant C' then
there is nothing to prove. Suppose that @ is not (/;, 52)—connected of degree k set (with the
constant C'). Then there exists a set B C @, (1|Q| < |B| < (2|Q| such that (30) does not
hold. Note that |Q| > 2. Let B = Q \ B and cp = |B|/|Q|. We have 3, < cg < 5. Using
Corollary 2.3, we get

Letb=|Bland b= |B|=m —b, D = Dk(Q), D = Dy(B). By inequality (32), we obtain

D > D+ klogm — klogh + 2klog(1 — Ccp) = D + k (log( b(l — Ccp) )) >

9



> D+ klog((1+cp)(1 —2Ccp)) > D + klog(1 + 4i(1 —4C)). (33)
Besides, by the definition of (3;, 32)—connectedness of degree k, we have

1B] > (1= fB2)m = (1 —3)|Q]. (34)

Thus if the set Q is not (5, 32)-connected of degree k then there is a set B C @ such that
(33), (34) hold. Put Q; = B and apply the arguments above to ;. And so on. We get the
sets Qo = @, Q1,Qs, ..., Q5. Clearly, for any Q);, we have Dy(Q;) < 8dlogd + k(d — 1)logk.
Using this and (33), we obtain that the total number of steps of our algorithm does not exceed
Sdlogkﬁ;((fl;ﬁ?(lf i]fg)l)) Q) At the last step of the algorithm, we find the set Q' = Q, C @ such
that Q' is (1, 2)—connected of degree k and such that Dy(Q") > D(Q). Thus @ has the

properties 1) and 3) of the Theorem. Let us prove 2). Using (34), we obtain

8d log d+k(d—1) log k— D (Q)

Q> (1~ fo)'m>m-2 Festema—ioy =)

This concludes the proof.
We shall use Theorem 3.3 in the next section.

4. On large subsets of sum of two dissociated sets.

To prove Theorem 4.9 we need in some lemmas. Lemma 4.3 is the most important one,
other of them are technical. Actually, we just replace crude Proposition 2.5 by the Lemma
4.3 in our proof. The advantage of the last lemma consist in the following. At some step
of our proof we need to count the number of solutions of the equation A\; 4 -+ 4+ Ay, = 0,
where \; € E;, E;, C A, i =1,...,2p and A is a dissociated set. Proposition 2.5 gives an
upper bound for the number of solutions of the last equation in terms of the cardinalities of F;
whereas Lemma 4.3 uses information about the cardinalities of intersections E; N E; of these
sets. It turns out to be more economical than dealing with |E;| (see also discussion in Note
4.4). Further, in Proposition 4.6 we express our quantity 7,(()) in terms of such intersections
and obtain Theorem 4.9.

Let H = (h;;) be a matrix of the size x x y, * < y. By per H denote the permanent of
matrix H. Recall that

per H = Z hlg(l) ce hxg(x) s (35)

where the summation in (35) is taken over all injective maps o : [¢] — [y]. We need in a
well-known Frobenius-Konig’s Theorem on nonnegative matrices (see [25]).

Theorem 4.1 Let p and r be positive integers, r < p, and let H be a nonnegative matrix
of size p x r. Then the permanent of matrix H equals zero iff H contains a zero matrix of size
p—s—+1xs.

Using Theorem 4.1, we prove a simple lemma.

Lemma 4.2 Let p and r be positive integers, and let H = (h;;) be a nonnegative matric
of size p x r. Let also
1) For alli € [p], we have 3 77_, hij > 2.

2) For all j € [r], we have Y7, hij > 1, and, finally,

3) i1 21 hig = 2p.

Deleting from H all columns such that > % hi; = 1, we get matriz Hy. Then the permanent
of Hy does not equal zero.

10



Proof. Let the number of j such that > 7 | h;; = 1 equals e. Without loss of generality we
can suppose that the matrix Hy was obtain from H by deletion of the last e columns. Let
Hy = (h?j), i=1,...,p,j=1,...,r —e =ry. Applying condition 3) of the Lemma, we get

P 22021 h% = 2p — e. Using condition 2), we obtain ry < p. Suppose that our Lemma is
false. If the permanent of Hy equals zero then by Theorem 4.1 the matrix contains a submatrix

of the size s X t, s+t = p+ 1. Using permutations of rows and columns, we can suppose that

HoiS
X Z
HO_(O Y)7

where zero matrix 0 has the size s x t, s+t = p + 1. Denote by s; the number of i €
{p—s+1,...,p} such that Z;():lh?j = 1, and by s, the number of i € {p—s+1,...,p} such
that 3772, h; > 2. Clearly, s; < e. By 2), we obtain s = s; 4 s5. Using condition 1) of the
lemma, we get

T t T
2p—6=izohgj ZZih?j—k Xp: Zoh;?j > 2451425 =20+25— 51 =2p+2—51.

i=1 j=1 j=1 i=1 i=p—s+1 j=1

The last inequality implies s; > e + 2 with contradiction. This completes the proof.

Let p be a positive integer, A C F} be an arbitrary set, A € A(2p), and € = {E4, ..., Ey,}
be a tuple of subsets of A. In the proof of Proposition 2.7 we estimated the number of solutions
of the equation

MA4-+Xp=0, where \N€E, i=1,...,2p. (36)

To calculate the number of such solutions, we used Lemma 2.2 — a simple corollary of Holder’s
inequality. In the proof of the main result of this section — Theorem 4.10, we need in a more
delicate result on the number of solutions of equation (36).

Lemma 4.3 Let p a positive integer, A C F3 be an arbitrary set, A € A(2p), and €& =
{E1, ..., By} be a tuple of subsets of A. Suppose that we have a partition of the segment
[2p] onto r classes Cy,...,C.. Let S* C [2p] be an arbitrary set, and S* = [2p] \ S. Let also
M(S*) = (my;) be a matriz of size p X p, my; = |E;(E;|, i € S, j € S*. Then number of
solutions of the equation

A+ o+ Ay =0, where N, € b, 1=1,...,2p (37)

does not exceed

> perM(S7), (38)

5*C2p),[S*[=p

and the summation in formula (38) is taken over all sets S* such that S* contains an element
from any class C; such that |C;| > 2.
Proof. Denote by Z the number of solutions of equation (37). By assumption the set A
belongs to the family A(2p). Hence if (Ay,..., Agy) is an arbitrary solution of (37) then any
Ai, © € [2p] appears even number of times in this solution. Thus (see proof of Proposition 2.5),
we get

p
Z < > - ]Hl () Ea| = 2. (39)

ICJC:{Klv---va}v [QP}:KI C!GKJ'
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The summation in (39) is taken over families of sets K, K = {Ki,...,Ky}, [2p] =
Ki|]---|J K, such that for any j € [p], we have |K;| = 2. Let us prove that

Zy< Y. perM(SY), (40)

5*Cl2p], |S*|=p

and the summation in formula (40) is taken over all sets S* such that S* contains an element
from any class C; such that |C;| > 2. Clearly,

> o N Ej=s > veaM(s) (41)

K,K:{Kl 7777 KP}7 [QP}ZKI KZ) ]:1 S*g[Qp]v‘S*‘:p

Indeed if z is a summand from the left hand side of (41) which corresponds some partition X
then x is present in the right hand side too. To see this let S* be the set of all first elements
of Kj, j=1,...,p. Let a is any of such numbers, & € K;. Then there is quantity |E, ) Ej|
with # € Kj in the right hand side of (41). Taking a product of such quantitaes, we get x.
Further if y is an arbitrary summand from the right hand side of (41) then it is easy to form
a partition K which corresponds to the .

If z is a summand from the left hand side of (40) which corresponds some partition K
and we shall find a set S* such that for all j € [p], we have |K;()S*| = 1 and such that S*
contains an element from any class C; with restriction |C;| > 2 then we shall prove (40). Let
H = (h,s) be a nonnegative matrix p x r such that any element h.s of H equals |K, () Cs].
Clearly, for all v € [p], we have > sh,; = |[K,[ =2 and }_ sh,s = > [K,[ = 2p. Since the
sets Cy, ..., C, form a partition of the segment [2p], it follows that for all § € [r] the following
holds Zv h.s = |Cs| > 1. Using Lemma 4.2, we obtain that the permanent of the matrix H
does not equal zero. Hence Hy contains a diagonal of nonzero elements. Let the size of Hy
be p x ro. Without loss of generality we can assume that the matrix Hy is formed by first r
columnes of H. Then nonzero diagonal Hy is (71,1), ..., (7, 70) and for any i € [r] there is a
number «o; € K., such that o; € C; and |C;| > 2. Let us add elements ay, ..., q, into the set
S*. Besides let us add the first elements of all K, v # 71,...,7, in S*. It is easy to see that
S* contains an element from any class C; such that |C;| > 2. This completes the proof.

Note 4.4 Lemma 4.3 gives us an upper bound for T,(Ey, ..., Ey,). This estimate implies
(up to constants) the bound p? [[?, | E4|"/? for T,(E\, ..., Es,), which can be derived from
Lemma 2.2. Indeed for any sets A and B, we get

A B < min{|Al, |B]} < [A]Y2B2 (42)

So any summand in per M(S*) does not exceed ]2, |E.|"/?. We have exactly p! of such
summands. Thus by Lemma 4.3, we obtain that T},(E\, . .., Fa,) < 22p! [12, | Ea|'2.

The quantity (¢, ...,t,) below will appear in the proof of Theorem 4.9. We need in an
upper bound for the last expression.

Lemma 4.5 Let g > 0 be a real number, r,p be positive integers, p > 200+ 3, 7 > p — dg.
Letty,...,t, be a sequence of natural numbers such thatt; > 2,5 =1,...,r and Z;Zl t; = 2p.
Let also T = maxjep ty, and oy = [{j € [r] + t; 2T —i}|,i=0,1,...,T —2. Let z be a
nonnegative number such that Yo a; < p < Y- oy, and let ¢. = p— Y.iy a;. Then the
quantity

w(ty, ... t) =TT =) ... (T—(z2—1)% T — 2)*

12



does not exceed 2°7 max{ 6, 1}.

Proof. Suppose that 69 > 1. It is easy to see that the sequence ag, aq,...,ar_o is non-
decreasing and ZiT;(f a; = Z;zl t; = 2p. Using the condition Z;Zl t; = 2p one more and
inequalities 7 > p — dp, t; > 2, j € [r], we get T+ 2(r — 1) < 2p and T' < 26p + 2 < 49.
Suppose that ag = --- =a,_1 = ¢, = 1. Then p = Zf:_& a; +q = z+ 1. On the other hand,
there are exactly T"— 1 numbers «;. Hence z does not exceed T"— 1 and we get inequality
p < T <20y + 2 with contradiction. Thus either a,_1 > 2 or ¢, > 2.

Let 7* be the maxiamal value of the function 7 (¢y,...,t,) such that all ¢; satisfy
tid-4t, =2, 422, T>p—0. (43)

If (43) holds for a tuple ti,...,t, then we shall say that this tuple is admissible. Let 7* =
m(t9,...,t2). Without loss of generality we can assume that t9 > ) > ... > Y. We have that
either o, 1 > 2 or ¢, > 2. Suppose that tJ > 3. Then we can consider an admissible tuple
h=04+1t,=t9—1,t3=19,..., % =19 Clearly, 7" = n(9,...,t) < 7(¢1,...,,). Whence
t)=2and 7 < T7T2P < 23”56150.

Now suppose that g < 1. In the case we have T < 4. Using a trivial estimate
m(ty, ..., t,) < TP < 2% we get the required result. This completes the proof.

Let k > 2 be positive integer, and Ay, Ay C FJ be arbitrary disjoint sets such that A | | As
belongs to the family A(4k). Let also @Q be a subset of A; + Ay = A; + Ay. Define the sets
D(\) = Dy and Q(A) = Qa, A € Ay (see proof of Proposition 2.7). Let A € A; and

DN ={\XN : A+ XNe@, Vel },

QN ={qe@Q : qg= 2+ N, NeA}.

Clearly, Q(A) = D(\) + A. Let s; be a number of nonempty sets D). Let these sets are
Dy, ..., Dy, . We shall write D; instead of D,,. Let also sy = |Ay[. Obviously, @ C
{1, A+ Ao
Now we express our quantity 7,,(@) in terms of the cardinalities of intersections |D, (] Dgl.
Proposition 4.6 Let M > 0 be a real number, p > 5 be a positive integer, and
A1, Ay C F3 be arbitrary disjoint sets from the family A(4dp). Let also Q@ be a subset

of Ai + Ao, |Q = max{2ssp, 2°s5pM°®}, o = max{(plog(2eM))/log(|Q|/(s2p)), 1}, and
X =max{ 6%, 1}. Then

n<rxrg Y ()| % H(Zwaﬂw) FOE gy

r=p—[do] ps2 SCls1],|S|=r a€S \BeS
Proof. Let m = |Q|. Consider the equation
Gt tqy =0, (45)

where ¢; € Q, i = 1,...,2p. Denote by o the number of solutions of equation (45). Since
Q C Ay + Ay, it follows that for all ¢ € ), we have ¢ = \; + Aa, where \; € A1, Ay € As.

Let 41,...,19, € [s1] be arbitrary numbers. By o7, i = (41,12, ...,12,) denote the set of
solutions of equation (45) such that for all j € [2p] we have the restriction ¢; € D(\;)),
Ai; € A1, By assumption the set Ay | | Ay belongs to the family A(4k) and A; (A = (). Hence
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if (q1,...,q2) € 07 is an arbitrary solution of (45) then any component of vector i appears
even number of times in this vector. We have

< > Yk (49
N N={N1,....N;.}, 2p|=N1 - Ny jeN

The summation in the right hand side of (46) is taken over families of sets N, N =
{N1,...,N,.}, 2p] = Ny|]---||N, such that for all j = 1,...,r the cardinality of N; is

an even number and |N;| > 2. Let N; = {a(j) |N |} j=1,...,r. By definition i € \ if

for all j € [r] the following holds i = =100 and for any dlfferent sets N;,, N, from the
1 Ny

partition N, we have i, # ig, where « is an arbltrary element from N;,, and 3 is an element

from Nj,.

By r = r(N) denotes the number of the sets N; in the partition N'. We have

p—[do] P
=Y Y Yt Y Y Ydeote @)
r=0 N, r(N)=r 7eN r=p—[8o]+1 N, r(N)=r jeN

Let us estimate the sum ;. Let ¢ be an arbitrary element of the set ). Using the condition
A1 (N Az = () and dissociativity of A, it is easy to see that the sets Q()\) are disjoint. Hence

> D= QM) =m. (48)

For any A € Ay, we have |D,| < sy. Let x > 1 be an arbitrary number. Using formula (48),

we get
Y IDOF =D 1R < s57 Y 1MW) =55 'm. (49)

AEA AEA, AEA
Let S; = {i;}e2p)- Applying Lemma 2.2 and inequality (49), we get

[d0] [d0]
nsY Y Sy Y > &Il
=0 N,r(N)=r jeN a€[2p)] =0 N,r(N)=r ieN a€S;y

Note that if the lengths of the sets IV; are fixed then the set S; does not change after any
permutation of these sets. Let ¢t; = |N,|, j = 1,...,r. Using the inequality m > 2s9p, the
definition of the quantity dp and identity (48), we obtain

p_’VéO] (2p)‘ 1 p_’Vé()—l m T
nxry X A Lacops’y () s
r=0 ti+--+t.=2p r=0 2
p=do 5 2Dy P
m $p\% _ pPm
< 2erprst [ X :2?21”’(—) < . 50
<oegprsy (L) e (1) < 2 (50

Thus partitions A with small number 7(A) make a small contribution in 7),(¢)). At the second
part of the proof we consider partitions N with large number of the sets N;.
Let us estimate the sum 0. Consider the sets D;,, ..., D;, . Let C; = N;. So we get a

partition of [2p| onto the sets C;. Using Lemma 4.3, we obtain

Yoo > D paM(s)|. (51)

r=p—[8o| N,r(N)=r jeN \S*C[2p],|5*|=p
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By Lemma 4.3 the summation in formula (51) is taken over all sets S* such that S* contains
an element from any set N;. Further let Mx(S*) = (map) be a matrix of size p X p, map =
|Di, N\ Ds,|, o € S*, 3 € S*. Let M: be a matrix of the size rx2p, M2 = (|Do () Di|)aes;,pep2)-
Using formula (35), we get

per M) <[] > " Di, () Disl | - per MZ. (52)

a€S*,in¢S; \ BeES*

Applying the last inequality and a trivial estimate |D,| < s5, A € Ay, we have

per Mz(S*) < H Z D; () Z Di,(x) | - per M < pP™"sh "per M. (53)

QES*ia¢S; \TEA2 peS*

Using (35), it is easy to see that

perM;'gW(tl,...,tr)H Z|D ﬂDﬁ| ;

0465,7 GS—‘

where the quantity (¢, ...,t,) was defined in Lemma 4.5. Using the bound for 7 (t1,...,t,)
from the lemma and inequalities (51), (53), we get

o< uai 1) Y prgr Y SISm0

r=p— |—50 N,T‘(N)ZT‘ ;EN aES{ ,BGS;

If we make a permutation of components of the vector i by different parts N ; of our partition
N then the set Sy does not change. Besides, if the lengths of sets N, are fixed then the set S;
does not change after any permutation of these sets. Hence

2p)! 1
oy < 2P max{ 5%, 1 Z pPrshT Z t(i—r'

t,! r!
r=p—[do] t1+-+tr=2p

Z H (Z | Da m Dﬁ|> < 2" max{ 5%, 1 }p*Psh-

SC[s1],|S|=r a€S \BeS

> (pi) 2 H(Z\DM%\) - (54)

r:p—"(so] Sg[sl],|s|:r a€esS pes

Combining inequalities (50), (54) and formula (47), we get inequality (44). This completes
the proof.

To prove Theorem 4.10 we need in a combinatorial lemma and a well-known lemma of E.
Bombieri (see e.g. [27]).

Let p be a positive integer, and Ay,..., A, be a sequence of sets such that any two of
them A; and A; either disjoint or equals. By p denote the number of different sets among
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Ay, ..., A, Let the set A} appears in the sequence A,,..., A, exactly [; times, A5 — exactly

I times, ..., A7 exactly [, times.
Lemma 4.7 Let w be a positive integer, 2 < p < € (0, ] be a real number, and
Sy ..., 8, be some different sets, |S;| = p, S; = {s o Ep },i=1,...,q. Let also for all

1€ [ ] and for all sets S;, we have 3( €A;,j=1,...,p. Suppose t hat

p *|n *|n
(pw)” [Af[™ . AD
722 Z w! Z ml...on,l
w=[¢p] ni+--+np,=p—w,n; <l;
Then there are sets Sy, ..., Sy, from the sequence Si,..., S, such that for an arbitrary | =

2,...,w, we have |(U_} Sn,) ) Sn,| < Cp.
Proof. We use a greedy algorithm. Let S,,, = S;. Suppose that sets .S,,,,...,S,,_, have been

constructed and find S,,,. Let C; = (JZ} S,,,. Clearly, |C)| < wp. Let C; = Cf||---||C
where CF C Af, i =1,...,p. Let also a; = |A}|, ¢; = |Cf], i = 1,..., p. The number of sets F
belong to A7 ]---|| A}, |[E| = p and such that |E()C;| > (p does not exceed

RS 3 R

w=[¢p] Mmit++mp=w,m;<c; ni+--+ny=p—w,n;<min{a;—c;,l; }
m n
ay — 1 ctoiep” a’fl...app<
X . E g E . <
ny myl...m,! ngl.. . nyl

w=[¢p] mit-+mp=w ni+-+n,=p—w,n;<l;

p ny Tp
Z (c1+- +cp) . Z ap ---Gp
nil.oon,! T
w=[¢p] ni+-+np,=p—w,n; <l;
p w ny Np
< (pw) ‘ ap'...a’ _
- Z w! Z nil...np!
w=[(p] ni+-+np=p—w,n; <l;

By assumption ¢ > 20*. Hence ¢ > w and, consequently, ¢ — (I — 1) > ¢ —w > o*. Thus
there is a set S,, from Si,...,S, such that S,, does not equal S,,,...,5,,_, and such that
(U2} S,) N Syl < Cp. This completes the proof.

Lemma 4.8 (Bombieri) Let g be a positive integer, A > 0 be a real number, B be a finite
set. Suppose that By, ..., B, are subsets of B such that |B;| > X B|. Then for allt < \q there
are different positive integers ji,...,J; € [q] such that

B, (Bl > <)\— 2) (3)_113\.

Now we can prove the main result of the section.
Theorem 4.9 Let K,n > 0 be real numbers, n € (0,1/2], p be a positive integer, and
A C F% be an arbitrary set from the family A(4p). Let also @Q be a subset of A+ A, K* :=
max{1, K}, p > 23°K*/n, and
p¥|QP

- (55)

T,(Q) >
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Suppose that p < log |A|/loglog |A| and

2 lo 230K lo plog K*
|Q|2260+"(K*)17p3!/\\'maX{(230(K*)11p)”p\A|"10g\A\>exp( SR o)

108;(@)

K*

Then there are sets L1, LY, ..., Ly, L}, from A such that L;( L =0, Li+L; CQ,i=1,...,h,
j=1,....h

og(waym) o 1 (101 Y
1> gy 16> g7 () 0
(Li+LHONL;+L)=0,4,5=1,...,h,i#j and
RO ((er+ e Leen+2)| = 16@*) . (57)

If p is an arbitrary and

@

1 — < ) >2%0og(2'K*)1 58
og<16(K*)9p’A’) > 2% log( )logp, (58)

then there are sets Ly, L, ..., Ly, L}, from A satisfying (57) and such that

|L;| > min{Q’lgi 27%log [ e |}, L] > ! @ v .
- K+ 16(K*)%p )~ —32p7 \ (K7)°[A

Note 4.101f K = O(1) e.g. K <1 then inequalities (57), (59) hold if we have more weaker

bound than (58), namely |Q| > 960+ T (K*)Tp3|A.
Proof of the theorem. Let m = |Q, 51 = 1/4, 3, = 1/2. Let also

log(224(K*)? )log(plliggf*)>}
log(*72) |

K*

—~

59)

M = 275 (K*)TpP|A] - max {(227(K*)”p)"”!A\"10g |Af,exp (

Since T,(Q) > p*|QIP/K?, it follows that D,(Q) > plog(p/K). Using Theorem 3.3 with
parameters d = 2 and C' = 1/8, we get (1, #2)—connected set Q1 C @ of degree p such that
my = |Q1] > m/(2K?) and T,(Q1) > p**mY/K?. Let a = [|A|/2]. We have

> Y amew-2(" e (60)

ACA,|Al=a MeA, XaeA\A

Using (60), it is easy to see that there is a set A C A, |A| = a such that |Q; (A4 (A\A))| >

2777, (‘2' 12) (‘A‘)_l =2m 1|A(|‘(?/‘\|77a1)) Z m1/2 Put A1 = /NX, AQ =A \ ]\ and QQ = Ql m(Al + A2>
Certainly, we can find a set Q3 C Q2 such that Q3 = [my/2]. Let mg = |Q3|. Since the set

Q1 is (1, B2)—connected of degree p and C' = 1/8; it follows that

2pm3

r@) =2 (™) = LS.

1
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Using notation of Proposition 4.6, taking M = 27K and applying this Proposition to the set
Q3 C A1 + Ay, we get

e () X H(Tene))zdm o

S
r=p—[do] P32 SC[s1],|S|=r a€S \BeS

Recall that the quantity &y equals 69 = max{(plog(2eM))/log(|Qs|/(s2p)), 1}, and the number
X is max{ 33,1}, If m > M or m satisfy (58) then &, < max{(plog(2'°K))/(2logp),1} <

p/2 and Xl/p < K. Let Ky = 2BKX'/P < 22'K?. Suppose that either m > M or m
satisfy (58). Then mg > 2Kp|A|. Using the last inequality and (61), we obtain that there is
a positive integer p; € [p — [do], p] such that

> TI(Zwe o) =5 @

SCls1], |S|=p1 a€S \peS

Let S C [s1] be a set, |S| = p1, and @ € S be an arbitrary element of the set S. Let also
e =1/(16K,). If M < 1/2 then X = 1, and by inequality p > 2%°K*/n, we get ¢ > 1/p;.
Suppose that M > 1/2 and either m > M or m satisfy (58). In the case the inequality ¢ > 1/p;
can be derived from the condition p > 23°K* /n. A slightly more accurate computations show
that in the both cases, we have ¢ > 16/(np). Define the sets

={zeD, ZDﬁ >epr }
pes

In other words, G, is the set of x from D, such that = belongs to at least ep; the sets Dg,

6 € S. We have
> Do\ Dsl = ) Dalz) ) Dy(x) =
Bes TEA2 pes
> Do) Ds(x)+ Y Dalz)d D(x) < pr|Gsal + epi] Dol - (63)
€G3 o BeS z¢Gs,a BeSs

Let S be the family of sets S, S C [s1], [S| = p1 such that for any S € S there is a € S such
that |Gsa| > €|Das| and |D,| > ems/se. Let also & be the family of sets from S, S C [s4],
|S| = p1 do not belong to the family S. Let us prove that

a=> 11 (Zyp ﬂDﬁy> < 2Kp1 . (64)
SeS aeS \peSs
Let Y(S)={a €S : |Gsal <e|Dal|}, and Y(S) = S\ Y (S). Using (63), we get

f-X T (Zened) I (Smnei)s

S€S a€eY (9),|Dal<ems/sa \BES a€Y (S) \BeS

p1 epyms 1Y (9)|
< > ()T e <

=0 SC[s1],1S|=p1, Y (S)|=p1—! a€Y(S)
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() () T

Cls1], |8"|=p1—1 a€S’

p1
< omom Z (8P1m3) ppl 181 —z< 1 l) mgl -1 < 2 26 plsplm Z “ l
S2 b1 — Pl -

oyt
2K

= 2(4e)PrePrmbt < 201 tePimbl =

and inequality (64) is proved. Hence

oa=>_]] <Z|D ﬂD5|> > 2Kp1 . (65)

SeS aeS \pes

Consider the case p < log|A|/loglog |A|. Let ug = [log sy], and AV = {a € [s1] : 2071 <
|Do| < 27}, j = 1,...,uo. Applying inequality Y ., [Do|l < m, we derive that |AD)| <
2m277. Let (j1,...,7Jp,) be a tuple from [uo’*. By p = p(ji,...,Jp ) denote the number of
different j; in (j1,...,Jp,) and let an element ji appears in the tuple exactly [; times, an
element j; appears exactly [ times, ..., and an element j; appears exactly [, times, and all
elements ji,j3,...,j, are different. We have

02<ZPP1H|D |_pllz Z S(ar)...S(ap,)|Day| .. |Da,, | =

Ses  aes S€S a0, — different

Y Y o

SES j1,.. ,jpl—l
X > S(an)...S(ap)|Dayl. .- |Da, |- (66)
a1€AGD) oy €AUP) oy .0, — different
Using formula (66), we obtain that there is a tuple (jy, . .. ,jpl) such that

> [[10u > bt
ppl P1 4Kf1

SeS8, S={sM) .. 5P} s el aesS

By the definition of the sets AU), we get

. . ... 1) mh!
_ R g ¢} (p1) ©) () 1 p L3
e |{S e S . S = {S 5. .78 1 }’ S E A }| Z plljlug12j1+m+jp1 4Kf1 .

Using Dirichlet’s principle, we obtain that there is a € [s1] such that

Wl mp

_ N S g (Y (p1) () ()
={SeS : S={s",... sP} sV e A ’aES}|2p’1’1u§12J’1+"‘+jm Is K7

Let A; = AU =1,...,p, and A = AU, i =1,...,p. We want to apply Lemma 4.7
to the sets A;, A7 with parameter w = [log(mg/SQ) (e2p11log(2%/¢?))]. Since m > M and
ms > m/(8K?), it follows that

L.l my' — (pw)® [Af[™ . A

q = ppl P12j111+ +]plp 48 Kpl - w! Tl1|np‘

(67)
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Indeed, by assumption m > M > p;wss. Hence

pP1

ittt < o Y (prw)” 3 sy

w! nil.oon,l T
w=[¢p1] ni+--+np=p1—w,n; <l;

b1 w w —w p1(1-C)
< QPP Z (plu‘)) (ﬁ) : PP ; < oip (ﬁ) owmpl(l—g)Sgpl (68)
weTcp1] w! m P1 w . P1

(we used the identity 1/(w!(p — w)!) = (P)/p! in the last inequality). To check (67) we need
to verify inequality

1(1-¢) SP1 /e
ms > 27u0K1wcp1m1_Csi/msg > 32 (%—%) uoKlwcml_Csi/m 55 (69)
1: e bp:

But the last inequality easily follows from € > 16/(np), ms > m/(8K?®) and
m>M > 244(K*)4p’A‘1+n log |A’(227<K*>11p>np > |A|wp . (Sl/m log |A’ 227(K*)11p2>1/§ .

Applying Lemma 4.7 to the sets A;, A7, we get new sets S7,...,S; € S such that for all
1 =2,3,...,w, we have [(UZ] Sf) N Si| < (p1. Note that [Gs: | > &[Dyl, i =1,...,w and
|Do| > ems/sy. Applying Lemma 4.8 with parameter ¢ = [ew/2] to the sets Ggs o, ..., Gz o0 C
D,,, we get a set of indices i; < --- < i; from [w] such that if G* = G5;1 o ng«t,a then
|G*| > 5(1’)_1|Da|/2. Let x be an arbitrary element of D,, and I';(z) = {# € S} : = € Ds}.
Clearly, for any © € Gg: o, we have |Ti(2)] > epi. Let E = J;_, Sf and I = {iy,... i}
Obviously, |E| < wp;. Consider the set

t
Z ={x€ D, : xbelongs to at least % different sets Dg, B € E }.

Let us prove that G* C Z. Let x € G*. Then = belongs to the sets Dg, 5 € J
us estimate the cardinality of | J,.; I';(z). We have

ULl =1 U L@+ i@ =1 {J Tae)(Tal2)] 2

iel iel\{it} i€l\{it}

il

* * epit
> | n@l+em—-1C U sH)si=1 U ri<x)|+gp1_gp12...271_
iel\{ir} icl\{it} iel\{it}

Whence G* C Z and, consequently, |Z| > |G*| > e(f)_l\Da\/Q. Let | = [ep1t/4]. Then

7 C U (Dnﬂ---ﬂpm).

r1,..,meE — different

Thus there is a tuple of indices r; < --- < r; from E such that
pLw ! pLw “Lrw\ T em 1 m K
D.(---(\D.| > Zl> (" 3 > .
Vo= (7)) 2= () () 5 = e ()
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Put £ ={\,,...; A\t and £, =D, (- Dy Then LiNL, =0, L1 + L C Q5 CQ
and

1£1] =

log(%g’) - log(m)
N 3210g(§—§) — 210]og(220K*)

Now we can use an iterative procedure. If |£; + £]] > |Q3]/2 then we finish our procedure.
Otherwise consider the set Q3 = @3\ (£; + £}) and use our previous arguments. We find sets
Ly C Ay, L, C Ay such that Lo Ly =0, Lo+ L, € Q3 € Q and such that

log( gz o)

1Ly > —— 2L > L | n.
—2810g(212[(*)’ 2 _210])2 (K*)Q‘M

By dissociativity of the sets A and Ay (A2 = 0, we get (£ + L) N(L2 + L) = 0. If
|L1+ L)) 4+ | Lo + L] > |Q3]/2 then we finish our algorithm. At the end we construct sets
Ly, LY, ..., Ly, L) such that inequality (57) holds.

We need to consider the case when (58) holds but either estimete p < log |A]/loglog |A|
is not true or m < M. If inequality (58) holds then X = 1. Using (65) and a simple bound
|D.| < sy, we obtain that the number of sets in the family S is at least m%' /(2K pl'sh').
Applying condition (58), we see that the last quantity is at least 1. Hence there is a set S and
a number « € [s1] such that |Gg,| > €|D,| and |D,| > ems/ss. Let

Z={x €D, : xbelongs to at least ep; different sets Dg, 5 € S }.

Then Ggo C Z. We have [epy/2] > 2718 > 1. Put | = min{[ep,/2], [log(ms/s2)/8]}. We

have . U (Drlm”.mDrl) |

Tl TIES — different

Whence there is a tuple of indices r; < --- < r; from S such that

D0 ()-N0n = () geaz Sy (3
" = Sel =060 s, T 16p2 \(K*)9A])

Put £; ={\,,..., A\, } and £ = D,, ()---() Dy,- Using the arguments as above, we get the
required result. This concludes the proof.

Note 4.11 1t is easy to see that the bound for the cardinalities of £; from inequality (56) is
best possible. We give a scheme of the proof of the last statement. Let us preserve all notations
of Theorem 4.9. Let K > 1 be a fixed constant, Aj, Ay C A, A; (A =10. Let Q@ C A+ Ay be
a set which we will describe later, and m := |Q|. Let also |A1] := s, |Aa] = [mK/s]. Suppose
that sets D, C Ay, o = 1,...,s are random sets. It means that for any o € [s| an arbitrary
element from A,, belongs to set D, with probability 1/K. Clearly, with positive probability,
we have |D,| = m/s,a =1,...,5 |Do(Ds| = m/(sK), a« # 3, a,5=1,...,s, and

L@=rr 5l (Zwaﬂmi) >

SCls], |S|=p aeS \BeS

Thus inequality (55) holds. Nevertheless if £1 C Ay, Lo C Ag, |Lo| =1 >0, L1+ L2 C Q then
|L2] < Doy NN Do,| < m/(sK') and we get a bound | < log(m/s)/log K.
Theorem 4.9 has a simple corollary.
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Proposition 4.12 Let K,n > 0 be real numbers, n € (0,1/2], K > 1, p,d be positive
integers, d > 3, and A C F% be an arbitrary set, A € A(2dp). Let also Q) be a subset of dA,
|A| > 8d?, p > 259T8Kd/n and

p|Q

)@ > T (70)

Suppose that p < log |A|/loglog |A| and
Q| > 260+50d+%M17K2dp3d7d‘A’dfl %

log M
log (239 M20) log(%)> }

log(25™2)

X max {(230M11p)”p|/\|’7 log |A[, exp (

where M = 2'3(8K)?~1. Then there are sets L, L' C A and elements \; + -+ + A\g_2 from A
such that Li( L =0, \i ¢ L, L,

|Qd
|£| > 10g(2140+80dK3d|A|d71)’ |£,| > 1 ‘Q’dd n ’ (71)
910 10g (24084 [ d) 210p2 \ Q140+80d [('3d| \|d—1
and
M+ F+ Mo+ L+LCQ. (72)

Note /.13 The proposition above is a very simple inverse theorem for subsets of sums of

more than two dissociated sets. In Theorem 4.9 we proved that our set () contains a sum of two
dissociated sets whereas in Proposition 4.12 we have just inclusion A\;+---+Xg_2+ L+ L C Q.
One could expect that, actually, condition (70) implies that there are some sets Lq,...,L; C A
such that £; 4+ ---4+ L4 € (). The author is going to prove such an analog of Theorem 4.9 for
subsets of dA, A is a dissociated set, d > 3 in forthcoming papers.
Proof. Let m = |Q|, /i = 47% By = 4%+ 1/\/m, and a = [|A]|/d]. Since T,(Q) >
p®|QP/K@VP it follows that D,(Q) > (d — 1)plog(p/K). Using Theorem 3.3 with pa-
rameters d and C' = 275 we get (3, 32)—connected set @Q; C @ of degree p such that
my = Q1] > m/(dK*¥ V) and T,(Q;) > p¥m}/K@=YP. Let also a; =a,i=1,...,d — 1
and ag = |A] — 3277 a;. Since |A| > 8d?, it follows that [A|/(2d) < ag < |A|/d. Tt is easy to
see that

Q(a:):( dl(|A] — @)! )!)_1 3 (Qﬂ(81+---+5d))($)- (73)

— ... —1
(al ) (ad S1yeees Sd7|Si|:ai7F?:1 Si=A

Using formula (73), we obtain that there is a tuple of disjoint sets Sy, ...,Sq C A such that

(|A] — d)! AL N
’le(sl+'”+5d>’Zmld!(al—l)!...(ad—l)! (all...ad!> B

ai...aq

(JA] = 1)...(JA| —d+1)

1
= mad! ny > 5e*dml : (74)

Put Q2 = Q1 (51 + -+ + Sa).
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Let di be a positive integer, di < d, li,...,ls, be different numbers from [d], L =
{h,-- - la,}, L=1[d]\ L. Let also w, € S, be arbitrary elements, i € [d1], @ = (wy,, ..., wy, )
be a vector, and W = {wy,, ..., wy, }. Define the sets D(W), Q(W)

W)= A D M+ weQl, QUWV)={¢eQ :qg=) N+) w}
i€l i€l (S = ieL
Clearly, D(W) = Q(W) + _,., wi- We shall write D(w), Q(w) instead of D(W), Q(WW). By
assumption the set A belongs to the family A(2dp). Using this, it is easy to see that the sets
QW U{l}) and Q(W U{l2}), M1 # A2 are disjoint. Besides, Q(W (J{l}) € Q(W). Whence,

for all x > 1, we have
Z UV NI < [l 12 V! =lem). (75)

Let x1,x9 > 1 be arbitrary numbers. Using bound (75) and Cauchy—Schwartz, we get

Z\Q Wi JODIPZ oW I < jown) [ 2Qmw) /2. (76)

Clearly, there is an analog of formula (76) for larger number of sets Q(W; J{\}).

By @5 denote the union of the sets Q2(@), @ € S; X ... x S4_2 such that |Qq(a)| >
|Qa]/(4]S1] .. |Sa—2]). Then |Q5] > [@Q2]/2. Certainly, we can find a set Q" C Q% such that
Q| = 4~ mﬂ and such that Q' = | |Q2(a@), Q2(@) > |Q2|/(16]S1]...|Sa-2]). Let m’ = |Q’|.
Since the set @ is (831, 82)—connected of degree p and C = 276, it follows that

) 1 m' 2p pdpm/
1,(Q) =277 (m—l) T(Q1) > 2y e d—Tp (77)
Consider the equation
G+t gy =0, (78)
where ¢; € @', i =1,...,2p. By ¢’ denote the number of solutions of (78). Let dy,...,d;_» be
arbitrary vectors from Sy x...xSq_s, and let v = (dy, . .., dzp). Denote by o(0) = o(ds, ..., dsp)

the set of solutions of equation (78) such that ¢; € Q(a;), ¢ € [2p]. Further by M denote the
family of partitions of the segment [2p] onto p sets {C1,...,C,}, |Cj] =2, j € [p]. Let also V
be the collection of all partitions {M;,..., My o}, M; € M, i € [d — 2]. Clearly, the total
number of different tuples {C},...,C,} in V does not exceed pP¢~2). By definition a vector
U = (di,...,dy) belongs to V if for any j = 1,...,d — 2 and for all set C of partition M,
C = {a, 8}, we have A\, = A\g. Obviously

a<Z Z 0((@, - da2))l = YD Lo (@) (79)

..... Gy 2)EV vV gev

Using Lemma 2.2, we get

2p 1/2p
o ()] < (_H Tp@)) . (80)

Suppose that for all vectors @ from S7 X ... X Sy o, we have

p?|Q@)"

p( ) — MPp ) (81)
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where M = 2'3(8K)@~1. By the last inequality and (79), (80), we obtain

_jwp§j > e, (82)

(@1,.,8q—2)€V 1=1

Using formulas (75), (76) several times, we get

2p AP
/< p P < p
a_jgm_ iy

We obtain a contradiction with (77). Hence there is vector @ from S; X ... X Sy_o such that

inequality (81) does not hold and

Q@) > 12 m > md
= 251 |Saa] ~ G4ded (AR )@ D[Sy] . [Su ] ~ 2OKZA[A[Z

Let @ = (a1,...,a4-2). Put \; = a;, i € [d —2]. Applying Theorem 4.9 to the set Q(a) C
Sa—1 + Sa, we get sets £, L' such that inequalitiy (71) holds and inclusion (72) is true. This
completes the proof.

5. Appendix.

In the section we prove an analog of Theorem 1.3 for an arbitrary Abelian group G.
Theorem 5.1 Let 6, a be real numbers, 0 < a < 0, A be a subset of G, |A| = 6|G|, k> 2
be a positive integer, and the set R, be as in (3). Suppose that B C R, be an arbitrary set.

Then
Yo

Tw(B) > = |B|2’“

Proof. Let r € G. Define the quantity 6(r) € S by the formula A(r) = |A(r)|6(r). We have

aN\B|<Z\A |_ZZB (—r-x).

reB

Using Holder’s inequality, we obtain

(@N[B)* <> 1Y B(r)o!

Let us prove a simple lemma.

Lemma 5.2 Let f : G — C be an arbitrary function, and k > 2 be a positive integer.
Then Ty, (f) < Ti(|f1])-
Proof of the lemma. Using the triangle inequality, we get for any functions g,h : G — C
the following holds |(g * h)(x)| < (|g| * |h|)(x), = € G. By definition of T)(f) we obtain the
required result.

Using the last lemma and (83), we get Ty(B) > Ti(B - 07) > | B|*. This concludes
the proof.

.(ZA(:;;)) _ = NT.(B-07")(0N)*1. (83)
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