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Abstract. Let PN (R) be the space of all real polynomials in N variables

with the usual inner product 〈 , 〉 on it, given by integrating over the unit
sphere. We start by deriving an explicit combinatorial formula for the bilinear

form representing this inner product on the space of coefficient vectors of
all polynomials in PN (R) of degree ≤ M . We exhibit two applications of

this formula. First, given a finite dimensional subspace V of PN (R) defined

over Q, we prove the existence of an orthogonal basis for (V, 〈 , 〉), consisting
of polynomials of small height with integer coefficients, providing an explicit

bound on the height; this can be viewed as a version of Siegel’s lemma for real

polynomial inner product spaces. Secondly, we derive a criterion for a finite
set of points on the unit sphere in RN to be a spherical M -design.

1. Introduction and notation

Siegel’s lemma originated as an important combinatorial principle that a system
of homogeneous linear equations with integer coefficients should have a nontrivial
integral solution vector whose entries are comparable in size to the coefficients of the
system. Although this observation was already made by Thue [15] in 1909, the first
formal proof of such a result by an application of the pigeonhole principle appeared
in the paper [12] of Siegel in 1929. In its modern formulation, Siegel’s lemma is a
statement about the existence of a ”short” basis for a vector space over a global
field, where the size of the vectors is measured with respect to a height function, a
standard tool of Diophantine geometry which generalizes the naive sup-norm over
integers. A general result like this was first proved over number fields by Bombieri
and Vaaler [2] in 1983 with further extensions by a variety of authors following in
the consequent years. In particular, given a symmetric bilinear space one may ask
for a short orthogonal basis over a fixed field or ring. Results of this nature were
recently obtained in [5] and [6], where the height of basis vectors in question were
bounded in terms of the heights of the vector space and the coefficient vector of the
bilinear form. One goal of the present note is to produce a similar result for real
polynomial spaces. We start by setting up some notation.

Let N ≥ 2 be an integer, and let us consider the algebra of all polynomials in N
variables with real coefficients

PN (R) := R[X1, ..., XN ]
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as an infinite-dimensional real vector space with the standard inner product on it
(see, for instance Chapter IV of [13]), given by

(1) 〈F,G〉 =
1
αN

∫
ΣN−1

F (x)G(x)dx,

for each F,G ∈ PN (R), where ΣN−1 is the unit sphere in RN , we integrate with
respect to the usual Lebesgue measure on RN , and αN is the generalized surface
area of ΣN−1:

(2) αN =


(2π)N/2

2×4×···×(N−2) if N is even
2(2π)(N−1)/2

1×3×···×(N−2) if N is odd.

Let M ≥ 1 be an integer, and write

(3) M(M,N) =

{
m ∈ ZN≥0 : w(m) :=

N∑
i=1

mi ≤M

}
for a set of multi-indexes, arranged in lexicographic order; we call w(m) the weight
of the index vector m. Define PMN (R) to be the space of all polynomials in PN (R)
of degree ≤M , then each polynomial F (X1, ..., XN ) ∈ PMN (R) can be written as

(4) F (X) =
∑

m∈M(M,N)

cF (m)Xm,

where Xm = Xm1
1 ...XmN

N , cF (m) ∈ R for each m ∈ M(M,N); here and for the
rest of the paper we adopt the convention that X0

i = 1, even when Xi = 0. We also
write cF = (cF (m))m∈M(M,N) ∈ RL(M,N) for the vector of coefficients of F , where

(5) L(M,N) := |M(M,N)| = dimR PMN (R) =
M∑
k=0

(
N + k − 1

k

)
.

An important tool we need is an explicit combinatorial formula for 〈F,G〉 in terms
of the coefficients of polynomials F (X) and G(X).

Let us fix M ≥ 1, and let L = L(M,N) as given by (5). Let us also define the
double factorial m!! for any integer m ≥ −1 to be

(6) m!! =

 m(m− 2)(m− 4) . . . 5× 3× 1 if m > 1 is odd
m(m− 2)(m− 4) . . . 6× 4× 2 if m > 1 is even
1 if m = −1, 0, 1.

For each m = (m1, ...,mN ) ∈M(M,N), define

(7) P (m) =
∏N
i=1(2mi − 1)!!∏w(m)

k=1 (N − 2 + 2k)
,

where an empty product
∏0
k=1 is interpreted as equal to 1. For each a ∈ RL, we

write a = (a(m))m∈M(M,N). Let

2M(M,N) = {2m : m ∈M(M,N)} ,

and let

E(M,N) = {(m1,m2) ∈M(M,N)×M(M,N) : m1 + m2 ∈ 2M(M,N)} .
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Define a bilinear form LM,N : RL × RL −→ R by

(8) LM,N (a, b) =
∑

(m1,m2)∈E(M,N)

P

(
m1 + m2

2

)
a(m1)b(m2),

for each (a, b) ∈ RL × RL, and let LM,N (a) := LM,N (a,a) be the corresponding
quadratic form. Notice in particular that if (m1,m2) ∈M(M,N)\E(M,N), then
the coefficient of LM,N (a, b) corresponding to the monomial a(m1)b(m2) is equal
to zero. Then we have the following result.

Theorem 1.1. For each F (X), G(X) ∈ PMN (R),

(9) 〈F,G〉 = LM,N (cF , cG),

where cF , cG are coefficient vectors of F and G, respectively.

Remark 1.1. An immediate implication of (9) is that the quadratic form LM,N (a)
must be positive definite, since it is a norm form.

We prove Theorem 1.1 in section 2. Next, let V be a n-dimensional subspace of
PN (R) defined over Q, n ≥ 1, and define degree of V to be

d = deg(V ) := min
{
M ∈ Z : V ⊆ PMN (R)

}
.

Then (V, 〈 , 〉) is a finite-dimensional Q-inner product space, so there must exist an
orthogonal basis for V consisting of polynomials with integer coefficients. We will
prove the existence of a basis like this with each polynomial having relatively small
height, which is a version of Siegel’s lemma for polynomial spaces with additional
orthogonality conditions.

For each polynomial F (x) ∈ PN (R), define the height of F by

(10) H(F ) = |cF | := max
m∈M(M,N)

|cF (m)|,

where M = deg(F ). Let L = |M(d,N)|, and define an injective linear map ϕ :
V → RL by ϕ(F ) = cF . Let f1, . . . , fk be a basis for V , and let C = (cf1 . . . cfk

)
be the corresponding L× k basis matrix for ϕ(V ). Then define the height of V by

H(V ) = D−1
√
|det(CtC)|,

where D is the greatest common divisor of the determinants of all k × k minors
of C; H(V ) is well-defined, i.e. this definition does not depend on the choice of a
basis for V . With this notation, we can now state our main result.

Theorem 1.2. Let V be as above. Then there exists an orthogonal basis g1, . . . , gn
for (V, 〈 , 〉) consisting of polynomials with integer coefficients so that

(11)
n∏
i=1

H(gi) ≤ L
3n(n+1)

2 H(V )n.

We prove Theorem 1.2 in section 3. Our main tools are Theorem 1.1 and a
version of Siegel’s lemma due to Bombieri and Vaaler [2]. In fact, we prove a more
general statement than Theorem 1.2, Theorem 3.6, where 〈 , 〉 is replaced by an
arbitrary bilinear form defined on V . Finally, in section 4 we derive an application
of Theorem 1.1 to spherical designs, presenting a necessary and sufficient criterion
for a finite set of points on the unit sphere in RN to be a spherical M -design (see
Theorem 4.1).
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2. Proof of Theorem 1.1

Let us write M for M(M,N), E for E(M,N), and L for LM,N . First notice
that

(12) 〈F,G〉 =
∑

m1∈M

∑
m2∈M

cF (m1)cG(m2)S(m1,m2),

where

(13) S(m1,m2) =
1
αN

∫
ΣN−1

xm1+m2dx =
1
αN

∫
ΣN−1

N∏
i=1

xεi
i dx,

where the weight w(m1 + m2) =
∑N
i=1 εi ≤ 2M , εi ∈ Z≥0 for all 1 ≤ i ≤ N .

Consider a change to spherical coordinates (see, for instance, page 181 of [4]) 0 ≤
θi ≤ π for all 1 ≤ i ≤ N − 2, 0 ≤ θN−1 ≤ 2π, given by

(14) xi = cos θi

i−1∏
j=1

sin θj ,

for all 1 ≤ i ≤ N − 1, and xN =
∏N−1
j=1 sin θj . The Jacobian of this coordinate

change is

(15) J =
N−2∏
i=1

sinN−1−i θi.

Then

S(m1,m2) =
1
αN

(
N−2∏
i=1

∫ π

0

cosεi θi sinβi θi dθi

)
×

×
∫ 2π

0

cosεN−1 θN−1 sinβN−1 θN−1 dθN−1,(16)

where βi = N − 1− i+
∑N
j=i+1 εi, for all 1 ≤ i ≤ N − 1; in particular, βN−1 = εN .

For each 1 ≤ i ≤ N − 2,

(17)
∫ π

0

cosεi θi sinβi θi dθi = (1 + (−1)εi)
∫ π/2

0

sinεi θi cosβi θi dθi = 0,

unless εi is even. Similarly,∫ 2π

0

cosεN−1 θN−1 sinεN θN−1 dθN−1

= (−1)εN−1+εN

∫ π

−π
cosεN−1 θN−1 sinεN θN−1 dθN−1

= (−1)εN−1(1 + (−1)εN )
∫ π

0

cosεN−1 θN−1 sinεN θN−1 dθN−1

= (−1)εN−1+εN (1 + (−1)εN )
∫ π/2

−π/2
sinεN−1 θN−1 cosεN θN−1 dθN−1

= (1 + (−1)εN−1 + (−1)εN + (1)εN−1+εN )×

×
∫ π/2

0

sinεN−1 θN−1 cosεN θN−1 dθN−1 = 0,(18)
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unless εN−1 and εN are both even. So assume that for each 1 ≤ i ≤ N , εi = 2ti
for some ti ∈ Z+; notice that in this case the weight w(m1 + m2) = 2

∑N
i=1 ti, we

will just call it w until further notice. Then βi = N − 1 − i + 2
∑N
j=i+1 tj , and so

(−1)βi = (−1)N−1−i. Putting things together, we see that S(m1,m2) = 0 unless
(m1,m2) ∈ E, in which case combining (16), (17), (18) and using the standard
integral formulas, as for instance (5-41) and (5-42) on page 182 of [4], produces

αNS(m1,m2) = 2
N−1∏
i=1

(
2
∫ π/2

0

sin2ti θi cosβi θi dθi

)

= 2

N−1∏
i=1

Γ
(

2ti+1
2

)
Γ
(
βi+1

2

)
Γ
(

2ti+βi

2 + 1
)


= 2

N−1∏
i=1

√
π(2ti − 1)!!Γ

(
βi+1

2

)
2tiΓ

(
2ti+βi

2 + 1
)

 ,(19)

where 2ti+1+βi+1
2 + 1 = βi+1

2 , and so

αNS(m1,m2) =
Γ
(
βN−1+1

2

)
Γ
(

2t1+β1
2 + 1

)2π
N−1

2

N−1∏
i=1

(2ti − 1)!!
2ti

=
2π

N
2
∏N
i=1(2ti − 1)!!

2w/2Γ
(
N+w

2

)
=


2π

N
2

QN
i=1(2ti−1)!!

2w/2( N−2+w
2 )!

if N is even

2π
N
2

QN
i=1(2ti−1)!!

2w/2Γ( N+w
2 ) if N is odd

=
αN
∏N
i=1(εi − 1)!!∏w/2

k=1 (N − 2 + 2k)
.(20)

The result of Theorem 1.1 now follows by combining (12) and (20).

Remark 2.1. Let K be a number field, and let M(K) be its set of places. For each
v ∈M(K), write Kv for the completion of K at v; in particular, if v is archimedean,
then Kv = R or C. Write ΣvN−1 for the unit sphere centered at 0 in KN

v . A standard
norm on the space of homogeneous polynomials of degree M in N variables over
Kv is usually defined by

(21) ‖F‖v =

{ (∫
Σv

N−1
|F (x)|2vdx

)1/2

if v is archimedean

sup
{
|F (x)|v : x ∈ ΣvN−1

}
if v is non-archimedean,

where the measure dx in the archimedean case is normalized so that
∫

Σv
N−1

dx = 1

(see, for instance, [1] and [9] for details). In case Kv = C, a well-known identity
(see [11], pp. 16-17) provides

(22) ‖F‖2v =
(
N +M

N

)−1 ∑
m∈M(M,N)

(
M

m

)−1

|cF (m)|2v,
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where
(
M
m

)
= M !

m1!...mN ! . If, on the other hand, v - ∞ then we have (see [1]) an
identity

(23) ‖F‖v = max
m∈M(M,N)

|cF (m)|v.

Our Theorem 1.1 can be viewed as a counterpart of these formulas when Kv = R.

3. Proof of Theorem 1.2

Unless stated otherwise, the notation in this section is as in the statement of
Theorem 1.2. Our argument is similar to the proof of Theorem 2.4 of [5]. First we
recall a version of Siegel’s lemma, which is essentially Theorem 2 of [2].

Theorem 3.1. Let V be as in Theorem 1.2. Then there exists a basis f1, . . . , fk
for V consisting of polynomials with integer coefficients so that

(24)
k∏
i=1

H(fi) ≤ H(V ).

We will also need a few height-comparison lemmas. The first one is an immediate
corollary of Theorem 1 of [14].

Lemma 3.2. Let U1 and U2 be finite-dimensional subspaces of PN (R). Then

H(U1 ∩ U2) ≤ H(U1)H(U2).

Next let M =M(d,N), E = E(d,N), and L = L(d,N) = |M|. Let us also write
L for the bilinear form Ld,N and let L = (lij)1≤i,j≤L be the coefficient matrix of L,
so

L(x,y) = xtLy,

for each x,y ∈ RL. Then diagonal entries of L are equal to the corresponding
coefficients of L while the off-diagonal entries are the corresponding coefficients
of L multiplied by 1/2. Let height of L, denoted by H(L), be the maximum of
absolute values of entries of L, and let H(L) be defined in the same way as height
of a polynomial is defined in (10). Then we have the following simple bound.

Lemma 3.3. Let the notation be as above, then

(25) H(L) ≤ H(L) = max
(m1,m2)∈E

P

(
m1 + m2

2

)
≤ max

m∈M
P (m) ≤ 1.

Proof. Notice that

H(L) ≤ H(L) = max
(m1,m2)∈E

P

(
m1 + m2

2

)
≤ max

m∈M
P (m)

= max
m∈M

∏N
i=1(2mi − 1)!!∏w(m)

k=1 (N − 2 + 2k)
≤ max

m∈M
P (w(m), 0, ..., 0)

= max
m∈M

(2w(m)− 1)!!∏w(m)
k=1 (N − 2 + 2k)

≤ 1,

which proves the lemma. �
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Let us write ‖ ‖ for the usual Euclidean norm on vectors. Let us also write
H(A) = max1≤i,j≤L |aij | for every L× L matrix A = (aij)1≤i,j≤L with real coeffi-
cients.

Lemma 3.4. Let f ∈ PdN (R), and let A = (aij)1≤i,j≤L be an L × L real matrix.
Then

‖ctfA‖ ≤ L3H(f)H(A).

In particular,

(26) ‖ctfL‖ ≤ L3H(f)H(L) ≤ L3H(f),

where the second inequality follows by (25).

Proof. Recall that our indexing set M = {m1, . . . ,mL} is lexicographically or-
dered, and hence

ctfA =

(
L∑
i=1

cf (mi)ai1, ...,
L∑
i=1

cf (mi)aiL

)
.

Then, by Cauchy-Schwarz inequality

‖ctfA‖2 =
L∑
j=1

∥∥∥∥∥
L∑
i=1

cf (mi)aij

∥∥∥∥∥
2

≤
L∑
j=1

(
L∑
i=1

‖aij‖2
)(

L∑
i=1

‖cf (mi)‖2
)

= ‖A‖2‖cf‖2 ≤ L6H(A)2H(f)2,

where ‖A‖2 =
∑L
i=1

∑L
j=1 |aij |2, and so (26) follows. �

The next lemma is a simple version of the well known Brill-Gordan duality
principle [7] (also see Theorem 1 on p. 294 of [8]).

Lemma 3.5. Let f ∈ PdN (R) be a polynomial with integer coefficients, and let

U = {t ∈ PdN (R) : ctfAct = 0},

where A is as in Lemma 3.4 above. Let γ(f) be the greatest common divisor of the
coordinates of the vector ctfA. Then

(27) H(U) = γ(f)−1‖ctfA‖.

We will now state and prove a generalization of Theorem 1.2.

Theorem 3.6. Let V be as in Theorem 1.2, and let B be a symmetric bilinear
form on PdN (R) with L× L coefficient matrix B, meaning that

B(f, g) = ctfBcg, ∀ f, g ∈ PdN (R).

Then there exists an orthogonal basis g1, . . . , gn for (V,B) consisting of polynomials
with relatively prime integer coefficients so that

(28)
n∏
i=1

H(gi) ≤
(
L3H(B)

)n(n+1)
2 H(V )n.
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Proof. We argue by induction on n. First suppose that n = 1, then pick any
nonzero polynomial g1 ∈ V with relatively prime integer coefficients, and observe
that

H(g1) = |cg1 | ≤ ‖cg1‖ = H(V ),

where ‖ ‖ is Euclidean norm. Next assume that n > 1 and the theorem is true for
all 1 ≤ j < n. Let 0 6= f1 ∈ V be a vector guaranteed by Theorem 3.1 so that

(29) H(f1) ≤ H(V )1/n.

First assume that f1 is a non-singular point in (V,B). Then

V1 = {t ∈ V : B(t, f1) = 0} = {f1}⊥ ∩ V

has dimension n− 1; here

{f1}⊥ = {t ∈ PdN (R) : B(t, f1) = 0} = {t ∈ PdN (R) : ctf1Bct = 0}.

By Lemma 3.5, Lemma 3.4, and (29)

(30) H
(
{f1}⊥

)
≤ L3H(B)H(V )1/n.

Then by Lemma 3.2 and (30) we obtain

(31) H(V1) ≤ H
(
{f1}⊥

)
H(V ) ≤ L3H(B)H(V )

n+1
n .

Since dimR(V1) = n− 1, the induction hypothesis implies that there exists a basis
f2, . . . , fn for V1 of polynomials with relatively prime integer coefficients such that
B(fi, fj) = 0 for all 2 ≤ i 6= j ≤ n, and

n∏
i=2

H(fi) ≤
(
L3H(B)

)n(n−1)
2 H(V1)n−1

≤
(
L3H(B)

)n2+n−2
2 H(V )

n2−1
n ,(32)

where the last inequality follows by (31). Combining (29) and (32), we see that
f1, . . . , fn is a basis for V satisfying (28) so that B(fi, fj) = 0 for all 1 ≤ i 6= j ≤ n.

Now assume that f1 is a singular point in (V,B). Since f1 6= 0,, it must be true
that cf1(mj) 6= 0 for some mj ∈M = {m1, . . .mL}. Let

Tj = {t ∈ PdN (R) : ct(mj) = 0},

and define V1 = V ∩ Tj , then f1 /∈ V1, B(f1, t) = 0 for every t ∈ V1, and

(33) H(V1) ≤ H(V )H(Tj) = H(V ),

by Lemma 3.2, since H(Tj) = 1 by Lemma 3.5. Since dimR(V1) = n − 1, we can
apply induction hypothesis to V1, and proceed the same way as in the non-singular
case above. Since the upper bound of (33) is smaller than that of (31), the result
follows. �

Proof of Theorem 1.2. Apply Theorem 3.6 with B = L and use Lemma 3.3. �



ORTHOGONAL SIEGEL’S LEMMA FOR REAL POLYNOMIAL SPACES 9

4. Spherical designs

In this section we apply Theorem 1.1 to obtain a criterion for spherical designs.
Let M,N,M(M,N), and PMN (R) be as in section 1. A finite subset S of the unit
sphere ΣN−1 is called a spherical M -design if for every F (X) ∈ PMN (R),

(34)
1
αN

∫
ΣN−1

F (x) dx =
1
|S|
∑
y∈S

F (y).

Spherical designs have been extensively studied, in particular in the recent years in
connection with lattices, the sphere packing problem, and minimization of Epstein
zeta function (see [10] and [3] for details). For instance, recent results of B. Venkov
on criteria for spherical designs and their applications are summarized in Chapter 16
of [10]. We use our Theorem 1.1 to give another criterion for a set to be a spherical
design in the general spirit of Proposition 16.1.2 and Theorem 16.1.4 of [10].

Theorem 4.1. Let S ⊂ ΣN−1 be a finite set, write S = {x1, . . . ,xk}, where
|S| = k. Let

M∗(M,N) =M(M,N) ∩ 2M(M,N).
Then S is a spherical M -design if and only if for every m ∈M(M,N),

(35)
k∑
j=1

xm
j =

{
kP
(

m
2

)
if m ∈M∗(M,N)

0 if m ∈M(M,N) \M∗(M,N).

Proof. Let us write 1 ∈ PMN (R) for the constant polynomial equal to 1, i.e.

c1(0) = 1, c1(m) = 0 ∀ 0 6= m ∈M(M,N).

Then for each
F (X) =

∑
m∈M(M,N)

cF (m)Xm ∈ PMN (R),

we have

(36)
1
αN

∫
ΣN−1

F (x) dx = 〈F,1〉 = LM,N (cF , c1) =
∑

m∈M∗(M,N)

P
(m

2

)
cF (m).

On the other hand, (34) implies that S is a spherical M -design if and only if

1
αN

∫
ΣN−1

F (x) dx =
1
k

k∑
j=1

∑
m∈M(M,N)

cF (m)xm
j

=
∑

m∈M(M,N)

1
k

k∑
j=1

xm
j

 cF (m).(37)

Hence we must have

(38)
∑

m∈M∗(M,N)

P
(m

2

)
cF (m) =

∑
m∈M(M,N)

1
k

k∑
j=1

xm
j

 cF (m),

for all F (X) ∈ PMN (R), which means that the linear forms in the variables cF on
the right and left hand sides of (38) must be equal identically, i.e. their respective
coefficients must be equal. Then (35) follows. �
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