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1. Introduction

The context throughout this paper will be the Hilbert spaces l2 of square-summable se-
quences and L2

α(−1, 1) of square-integrable functions on [−1, 1] with the distribution dα,
α nondecreasing. Their inner products are the usual dot product for the former and the
usual integral inner product for the latter.

The Hankel operators in Section 2 are exactly as in [9]. That is, we study the infinite
matrices H = [hi+j ]i,j≥0, where

hj =

∫ 1

−1

xj dα(x), j = 0, 1, 2, . . .

The following result in [9] will be essential:

Widom’s Theorem: The following are equivalent:

(a) H represents a bounded operator on l2.

(b) hj = O(1/j) as j → ∞.

(c) α(1) − α(x) = O(1 − x) as x → 1−, α(x) − α(−1) = O(1 + x) as x → −1+.
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In Theorem 1 we show that H = MM∗, where M : L2
α(−1, 1) → l2 is the bounded operator

that maps each function f ∈ L2
α(−1, 1) to its sequence of moments:

M(f)k =

∫ 1

−1

xkf(x) dα(x), k = 0, 1, 2, . . .

We also show that, for u = 〈uk〉 ∈ l2, we have the formula

M∗u(x) =
∞
∑

k=0

ukx
k

In Section 3, we explore the space Mα of Hausdorff moment sequences given by the range
of the operator M . Extending an idea in [2], we derive in Theorem 2 the following necessary
and sufficient condition for a sequence to belong to Mα. If u = 〈uj〉 ∈ l2 and 〈pk〉 is an
orthogonal sequence of polynomials in L2

α(−1, 1) with

pk(x) =

k
∑

j=0

akjx
j , akk 6= 0, k = 0, 1, 2, . . . (1)

define the sequence c = 〈ck〉 by

ck =
k
∑

j=0

akjuj, k = 0, 1, 2, . . . (2)

Then u = 〈uj〉 ∈ Mα if and only if
∑∞

k=0 |ck|2/‖pk‖2 < ∞.

Finally, in Theorem 3 we use Theorems 1 and 2 to produce combinatorial identities as
follows. Suppose v = 〈vk〉 ∈ l2 and u = Hv. If 〈pk〉 and 〈ck〉 are the sequences described
above in (1) and (2), we obtain one type of identity by equating two ways of expressing
the ck’s. On the one hand,

ck =
k
∑

j=0

akj(Hv)j =
k
∑

j=0

akj

∞
∑

i=0

hj+ivi

On the other hand, the ck’s are Fourier coefficients with respect to the orthogonal poly-
nomials 〈pk〉 for some function f ∈ L2

α(−1, 1). Since Hv = MM∗v = Mf , where
f(x) = M∗v(x) =

∑

k vkx
k, we obtain a second formula for ck in terms of the compo-

nents vk of v. Other identities come from Parseval’s equation.

In Section 4, we explore several examples.
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2. A factorization of Hankel Operators

The Hankel operators we investigate are given by the infinite matrices H = [hi+j]i,j≥0,
where

hj =

∫ 1

−1

xj dα(x), j = 0, 1, 2, . . .

and α is nondecreasing on [−1, 1]. We assume H represents a bounded operator on l2,
which means we have the equivalent conditions on 〈hj〉 and α in Widom’s theorem.

Theorem 1 : For all f ∈ L2
α(−1, 1), let

M(f) = uf = 〈uf
k〉, where uf

k =

∫ 1

−1

xkf(x) dα(x), k = 0, 1, 2, . . . (3)

For all v = 〈vk〉 ∈ l2, let

N(v) = f
v
, where f

v
(x) =

∞
∑

k=0

vkx
k, − 1 < x < 1 (4)

(a) N is a bounded linear operator from l2 into L2
α(−1, 1).

(b) M is a bounded linear operator from L2
α(−1, 1) into l2.

(c) M∗ = N .

(d) H = MM∗.

(e) M is injective.

Proof : (a) We use the Cauchy criterion to show that f
v
∈ L2

α(−1, 1):

∥

∥

∥

∥

∥

n
∑

k=m

vkx
k

∥

∥

∥

∥

∥

2

=

∫ 1

−1

(

n
∑

k=m

vkx
k

)(

n
∑

j=m

vjx
j

)

dα(x) =

n
∑

k=m

n
∑

j=m

vkvj

∫ 1

−1

xk+j dα(x)

=
n
∑

k=m

n
∑

j=m

vkvjhj+k ≤
n
∑

k=m

n
∑

j=m

|vk||vj|
p

k + j

for some p > 0, where the inequality uses the fact that hj = O(1/j). Hence, by Hilbert’s
inequality,

∑

k vkx
k converges in L2

α(−1, 1).
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To show that N is bounded, we use the change of variables

∫ 0

−1

g(x) dα(x) =

∫ 1

0

g(−y) dβ(y), where g is integrable and β(y) = −α(−y) (5)

Thus

‖f
v
‖2 =

∫ 1

0

|f
v
(x)|2 dα(x) +

∫ 1

0

|f
v
(−y)|2 dβ(y)

and the matrices A and B defined below are bounded Hankel operators on l2 by Widom’s
Theorem.

A = [aj+k], B = [bj+k], where aj =

∫ 1

0

xj dα(x), bj =

∫ 1

0

yj dβ(y)

Therefore

∫ 1

0

|f
v
(x)|2 dα(x) =

∫ 1

0

∞
∑

k=0

∞
∑

j=0

vkvjx
k+j dα(x) =

∞
∑

k=0

∞
∑

j=0

vkvj ak+j = Av · v ≤ ‖A‖‖v‖2

and

∫ 1

0

|f
v
(−y)|2 dβ(y) =

∞
∑

k=0

∞
∑

j=0

vkvj

∫ 1

0

(−y)k+j dβ(y)

=

∞
∑

k=0

∞
∑

j=0

(−1)kvk(−1)jvj bk+j ≤ ‖B‖‖v‖2

The fact that
∑

k vkx
k converges in L2

α(−1, 1) justifies the above interchanges of limits.
Therefore ‖N(v)‖2 ≤ (‖A‖ + ‖B‖)‖v‖2.

(b) Again using the change of variables (5), we have, for any f ∈ L2
α(−1, 1),

uf
k =

∫ 1

−1

xkf(x) dα(x) =

∫ 1

0

xkf(x) dα(x) +

∫ 1

0

(−1)kykf(−y)dβ(y)

Let ak denote the first of the two integrals on the right and bk denote the second. The
following argument is an adaptation of the proof in [5, Theorem 324]. Let v = 〈vk〉 ∈ l2.
The interchange of limits below is again justified by the fact that

∑

k vkx
k converges in

L2
α(−1, 1):

∞
∑

k=0

vkak =

∫ 1

0

∞
∑

k=1

vkx
kf(x) dα(x) =

∫ 1

0

Nv(x)f(x) dα(x)
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Hence, by the Cauchy-Schwarz inequality and part (a),

∣

∣

∣

∣

∣

∞
∑

k=0

vkak

∣

∣

∣

∣

∣

2

≤ ‖N(v)‖2‖f‖2 ≤ ‖N‖2‖v‖2‖f‖2

Therefore, by the so-called converse of Hölder’s inequality [5, Theorem 15], ‖〈ak〉‖ ≤
‖N‖‖f‖. Similarly, ‖〈bk〉‖ ≤ ‖N‖‖f‖, and so ‖M(f)‖ ≤ 2‖N‖ ‖f‖.

(c) and (d) are straightforward verifications.

(e) Suppose M(g) = 0. Then, for all v ∈ l2,

0 = M(g) · v = 〈g, M∗v〉 = 〈g, f
v
〉

Since the functions f
v

include all polynomials, and since the polynomials are dense in
L2

α(−1, 1), it follows that g = 0.

2

Although the factorization H = MM∗ appears to be new, it is closely related to the well-
known fact [7, Chapter 2] that H is unitarily equivalent to the integral transform T on
L2

α(−1, 1) defined by

Tf(x) =

∫ 1

−1

f(y)

1 − xy
dα(y)

Specifically, one can show that T = M∗M and hence that H and T are unitarily equivalent
whenever M∗ is injective. For M∗ to be injective, it suffices to assume that α has infinitely
many points of increase with a cluster point in the open interval (−1, 1).

3. Orthogonal polynomials and moment sequences

In this section we use a complete orthogonal sequence 〈pk〉 of polynomials in L2
α(−1, 1)

to characterize the elements of Mα, where Mα denotes the space of moment sequences
given by the range of M (see [8]). Although these sequences may be finite or infinite, to
simplify notation, the details below will be expressed as if the sequences are infinite. The
conclusions are valid in all cases, and the finite case will be treated as one of the examples
in Section 4.

The following theorem extends an idea in [2], where it was applied to the shifted Legendre
polynomials.
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Theorem 2 : Let 〈pk〉 be an orthogonal sequence of polynomials in L2
α(−1, 1) with

pk(x) =

k
∑

j=0

akjx
j , akk 6= 0, k = 0, 1, 2, . . . (6)

Let u = 〈uj〉 ∈ l2 and define c = 〈ck〉 by

ck =
k
∑

j=0

akj uj, k = 0, 1, 2, . . . (7)

Then u ∈ Mα if and only if
∞
∑

k=0

|ck|2
‖pk‖2

< ∞ (8)

Furthermore, when (8) holds, then u = M(f), where

f(x) =
∞
∑

k=0

ck

‖pk‖2
pk(x) (9)

Proof : If u = 〈uk〉 ∈ Mα, then there exists f ∈ L2
α(−1, 1) such that u = M(f); that is,

uk =

∫ 1

−1

xkf(x) dα(x), k = 0, 1, 2, . . .

Hence, since 〈pk〉 is a complete orthogonal sequence in L2
α(−1, 1) (see [8]),

f(x) =
∞
∑

k=0

bkpk(x) where bk =
1

‖pk‖2

∫ 1

−1

f(x)pk(x) dα(x)

Therefore, by equations (7) and (6),

ck =

k
∑

j=0

akj

∫ 1

−1

xjf(x) dα(x) =

∫ 1

−1

f(x)pk(x) dα(x) = ‖pk‖2bk

So, by Parseval’s equation,

∞
∑

k=0

|ck|2
‖pk‖2

=
∞
∑

k=0

‖pk‖2|bk|2 = ‖f‖2 < ∞

Furthermore, (9) holds since bk = ck/‖pk‖2.
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On the other hand, if u = 〈uk〉 ∈ l2 and
∑

k |ck|2/‖pk‖2 < ∞, let

f(x) =

∞
∑

k=0

ck

‖pk‖2
pk(x)

Since
∑

k |ck|2/‖pk‖2 < ∞, the above series converges in L2
α(−1, 1) and

ck =

∫ 1

−1

f(x)pk(x) dα(x), k = 0, 1, 2, . . .

This equation can also be written, using (6) and (7), as

k
∑

j=0

akj uj =

∫ 1

−1

f(x)

k
∑

j=0

akj xj dα(x), k = 0, 1, 2, . . .

which implies, since akk 6= 0,

uj =

∫ 1

−1

f(x)xj dα(x), j = 0, 1, 2, . . .

Therefore u = 〈uj〉 = M(f) ∈ Mα. 2

Finally, we use Theorems 1 and 2 to produce combinatorial identities corresponding to
each choice of α.

Theorem 3 : Suppose α is a nondecreasing function on [−1, 1] satisfying

α(1) − α(x) = O(1 − x) as x → 1−, α(x) − α(−1) = O(1 + x) as x → −1+

and let

hj =

∫ 1

−1

xj dα(x), j = 0, 1, 2, . . .

Suppose also that 〈pk〉 is an orthogonal sequence of polynomials in L2
α(−1, 1) with

pk(x) =

k
∑

j=0

akj xj , akk 6= 0, k = 0, 1, 2, . . .

and

xk =
k
∑

j=0

bkj pj(x), k = 0, 1, 2, . . .
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Then, for all non-negative integers k and m,

k
∑

j=0

akj hj+m =

{

‖pk‖2 bmk if m ≥ k

0 if m < k
(10)

and
m
∑

i=k

1

‖pi‖2

i
∑

j=0

aijhj+maik = δmk (11)

Furthermore, for all v = 〈vk〉 ∈ l2,

∞
∑

k=0

1

‖pk‖2

∣

∣

∣

∣

∣

∞
∑

i=0

k
∑

j=0

akj hj+ivi

∣

∣

∣

∣

∣

2

=

∞
∑

k=0

∞
∑

j=0

vkvj hk+j (12)

and
∞
∑

k=0

‖pk‖2

∣

∣

∣

∣

∣

∞
∑

j=k

vjbjk

∣

∣

∣

∣

∣

2

=
∞
∑

k=0

∞
∑

j=0

vkvj hk+j (13)

Proof : Let H = [hi+j ]i,j≥0, v = 〈vk〉 ∈ l2, and u = Hv = MM∗v. Then u ∈ Mα, and we
use Theorem 2 to find two expressions for the coefficients ck in equation (7). On the one
hand,

ck =

k
∑

j=0

akj uj =

k
∑

j=0

akj (Hv)j =

k
∑

j=0

akj

∞
∑

i=0

hj+ivi (14)

On the other hand,

ck =

∫ 1

−1

f(x)pk(x) dα(x) where f(x) =

∞
∑

k=0

ck

‖pk‖2
pk(x)

Using Theorem 1, we may also write the last expression for ck in terms of the components
of v. Note that Hv = M(f) and Hv = MM∗v = M(f

v
). Since M is injective, we have

f = f
v

a. e. and so

ck =

∫ 1

−1

∞
∑

j=0

vjx
j pk(x) dα(x)

=

∞
∑

j=0

vj

∫ 1

−1

j
∑

i=0

bjipi(x)pk(x) dα(x) = ‖pk‖2
∞
∑

j=k

vjbjk (15)
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Equating formulas (14) and (15) for ck and letting vk = δkm, we obtain the identity (10).
Then, solving for bmk, (m ≥ k) in (10) and substituting into

∑m
k=i bmkaki = δmi (m ≥ i),

we obtain the identity (11).

Furthermore, by Parseval’s equation and MM∗ = H , we have

∞
∑

k=0

|ck|2
‖pk‖2

= ‖f
v
‖2 = ‖M∗v‖2 = 〈M∗v, M∗v〉 = Hv · v =

∞
∑

k=0

∞
∑

j=0

vkvjhk+j

Substituting formulas (14) and (15) for ck in this result yields the identities (12) and (13).
2

Another perspective on Theorem 3

The analysis below shows that, with a different set of assumptions, the identities in The-
orem 3 are quite natural. Thus, some instances of them are likely to be known.

Suppose, instead of a distribution dα as in Theorem 3, we are given the following assump-
tions about a matrix H and a sequence of polynomials 〈pk〉. Let H = [hi+j ]i,j≥0 be any
infinite Hankel matrix with real entries; that is, do not assume hj = O(1/j) as j → ∞.
Also let

pk(x) =
k
∑

j=0

akjx
j , akk 6= 0, k = 0, 1, 2, . . .

be a sequence of polynomials with real coefficients that are orthogonal in the sense that

k
∑

i=0

m
∑

j=0

akihi+jamj

{

= 0 if k 6= m

6= 0 if k = m
(16)

Note that, under the assumptions of Theorem 3, property (16) is the statement that
〈pk, pm〉 = 0 if k 6= m and 〈pk, pk〉 6= 0. So we will denote the left side of (16) by 〈pk, pm〉
even though the matrix H does not necessarily generate a true inner product. Then (16)
can be written as AHA∗ = D, where A denotes the lower-triangular matrix whose (k, j)
entry, for k ≥ j, is akj and D denotes the diagonal matrix whose kth diagonal entry is
〈pk, pk〉. Since the diagonal entries of A are nonzero, A has a formal inverse B. Hence
AHA∗ = D implies AH = DB∗, which is the identity (10). Of course, ‖pk‖2 must be
interpreted as 〈pk, pk〉, which is nonzero but possibly negative. Identity (11) follows from
(10), as in the proof of Theorem 3. The left side of identity (12) can be expressed as
‖D−1/2AHv‖2, where D−1/2 is diagonal and the norm is the usual l2 norm. However, now
we must assume that the sequence v has only finitely many nonzero terms. Then (12)
may be derived as follows:

‖D−1/2AHv‖2 = (D−1/2AHv) · (D−1/2AHv) = (D−1DB∗v) · (AHv) = v · Hv
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Identity (13) may be derived similarly.

4. Examples

In the examples below, some of the instances of identity (10) have been independently
confirmed using the WZ methods in [6]. On the other hand, instances of identities (12)
and (13) do not yet seem to be susceptible of confirmation by such algorithmic methods.

Example 1 (Hilbert matrices and binomial coefficients): For any r > 0, let α(x) = xr if
0 ≤ x ≤ 1 and α(x) = 0 if −1 ≤ x ≤ 0. Then hj = r/(j +r) and so H = [r/(i+j+r)]i,j≥0.
In [3], Berg shows that the corresponding orthogonal polynomials may be written as

pk(x) =

k
∑

j=0

(−1)j

(

k

j

)(

k + j + r − 1

j

)

xj

It follows that ‖pk‖2 = r/(2k + r) and

xk =
1

(k + r)
(

2k+r
k

)

k
∑

j=0

(−1)j

(

2k + r

k − j

)

(2j + r)pj(x)

Hence equations (10), (11), (12) and (13) become, respectively,

k
∑

j=0

(

k

j

)(

k + j + r − 1

k

)

(−1)j

j + m + r
=

(−1)k
(

2m+r
m−k

)

(

2m+r
m

)

(m + r)

m
∑

i=k

i
∑

j=0

(

i

j

)(

i + j + r − 1

i

)(

i

k

)(

i + k + r − 1

i

)

(−1)j+k(2i + 1)

j + m + r
= δmk

∞
∑

k=0

(2k + r)

∣

∣

∣

∣

∣

∞
∑

i=0

k
∑

j=0

(

k

j

)(

k + j + r − 1

k

)

(−1)jvi

j + i + r

∣

∣

∣

∣

∣

2

=
∞
∑

k=0

∞
∑

j=0

vkvj

k + j + r

∞
∑

k=0

(2k + r)

∣

∣

∣

∣

∣

∞
∑

j=k

(

2j+r
j−k

)

vj

(j + r)
(

2j+r
j

)

∣

∣

∣

∣

∣

2

=
∞
∑

k=0

∞
∑

j=0

vkvj

k + j + r

where 〈vj〉 ∈ l2.

Example 2 (Legendre polynomials): We begin by considering all Jacobi polynomials:

p
(α,β)
k (x) =

(α + 1)k

k!
2F1(−k, α + β + k + 1; α + 1; (1 − x)/2)
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where 2F1 denotes the Gauss hypergeometric series, (α + 1)k denotes a shifted factorial,
and α, β > −1. The Jacobi polynomials are orthogonal on [−1, 1] relative to the weight
function w(x) = (1 − x)α(1 + x)β , and

‖p (α,β)
k ‖2 =

2α+β+1Γ(α + k + 1)Γ(β + k + 1)

k! Γ(α + β + k + 1)(α + β + 2k + 1)

Using Euler’s integral representation of Gauss’ hypergeometric series [1, Theorem 2.2.1],
we find the moments to be

hj =

∫ 1

−1

xj(1 − x)α(1 + x)β dx

= j!

(

(−1)j 2F1(−α, 1 + j; 2 + β + j;−1))

(1 + β)1+j

+
2F1(−β, 1 + j; 2 + α + j;−1)

(1 + α)1+j

)

Rather than writing out identities (10), (11), (12), and (13) for this general case, we write
the more compact versions for the special case α = β = 0. Then hj = 2/(j +1) if j is even,

hj = 0 if j is odd, and pk = p
(0,0)
k is the kth Legendre polynomial; hence ‖pk‖2 = 2/(2k+1)

and

pk(x) =
k
∑

j=0
j+k even

(−1)(k−j)/2

2k

(

k
k−j
2

)(

k + j

k

)

xj

xk =

k
∑

j=0
j+k even

k!(2j + 1)

2(k−j)/2(1
2
(k − j))!(j + k + 1)!!

pj(x)

Note: The double factorial n!! is defined to be 1 when n = 0 and, for positive integers n,

n!! = n(n − 2)(n − 4) · · · (1 or 2)

where the terminal factor in this product is 1 when n is odd and 2 when n is even.

Hence equations (10), (11), (12), and (13) become, respectively,

k
∑

j=0
j+k even
j+m even

(

k
k−j
2

)(

k + j

k

)

(−1)(k−j)/2

2k(j + m + 1)
=

{

m!
2(m−k)/2( 1

2
(m−k))!(k+m+1)!!

if m + k even, m ≥ k

0 otherwise

m
∑

i=k
i+k even

i
∑

j=0
i+j even
j+m even

(−1)i−(j+k)/2

22i(j + m + 1)

(

i
i−j
2

)(

i + j

i

)(

i
i−k
2

)(

i + k

i

)

= δmk
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∞
∑

k=0

(2k + 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

i=0

∞
∑

j=0
j+k even
j+i even

(

k
k−j
2

)(

k + j

k

)

(−1)k−j)/2vi

2k(j + i + 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

∞
∑

k=0

∞
∑

j=0
j+k even

vivj

k + j + 1

∞
∑

k=0

(2k + 1)

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

j=k
j+k even

j!vj

2(j−k)/2(1
2
(j − k))!(k + j + 1)!!

∣

∣

∣

∣

∣

∣

∣

∣

2

=
∞
∑

k=0

∞
∑

j=0
j+k even

vivj

k + j + 1

where 〈vj〉 ∈ l2.

Example 3 (Fibonacci numbers and Fibonomial coefficients): We begin by considering all
little q-Jacobi polynomials [4, Section 7.3]:

pk(x; a, b; q) =

n
∑

j=0

(q−k; q)j(abqk+1; q)j

(q; q)j(aq; q)j
(xq)j

where (a; q)j denotes the q-shifted factorial. We assume that |q| < 1, |aq| < 1, and |b| ≤ 1,
which suffices to show that these polynomials satisfy the orthogonality property

∞
∑

i=0

pk(q
i; a, b; q)pm(qi; a, b; q)

(bq; q)i

(q; q)i
(aq)i =

δkm

hm(a, b; q)
(17)

where

hm(a, b; q) =
(abq; q)m(1 − abq2m+1)(aq; q)m(aq; q)∞

(q; q)m(1 − abq)(bq; q)m(abq2; q)∞
(aq)−m

We can express the orthogonality property (17) in terms of an integral on [−1, 1] as follows.
Let pk(x) = pk(φx; a, b; q), where φ > 1, and define the discrete signed measure µ by

µ =
∞
∑

i=0

(bq; q)i

(q; q)i

(aq)iδqi/φ (18)

Then (17) becomes
∫ 1

−1

pk(x)pm(x) dµ(x) =
δkm

hm(a, b; q)

The corresponding moments are

hj =

∫ 1

−1

xj dµ(x) =
∞
∑

i=0

(bq; q)i

(q; q)i

(aq)i
(

qi/φ
)j

12



When b = 1, this sum is a geometric series:

hj =
1

φj

∞
∑

i=0

(

aqj+1
)i

=
1

φj(1 − aqj+1)

The following interesting special case was found by Berg [3]. For any α ∈ N, let

b = 1, φ =
1 +

√
5

2
, q =

1 −
√

5

1 +
√

5
, a = qα−1, and

µα = (1 − qα)

∞
∑

i=0

qiαδqi/φ, α = 1, 2, 3, . . .

Note that µα is the signed measure (18) multiplied by 1− qα so it becomes a measure with
total mass 1. Berg shows that hj = Fα/Fα+j, j = 0, 1, 2, . . ., that

p
(α)
k (x) = pk(φx; qα−1, 1; q) =

k
∑

j=0

(−1)jk−(j
2)
(

k

j

)

F

(

α + k + j − 1

k

)

F

xj

and
∫ 1

−1

p
(α)
k (x)p (α)

m (x) dµα(x) = δkm(−1)kα Fα

Fα+2k

where Fj denotes the jth Fibonacci number (with F0 = 0, F1 = 1) and
(

k
j

)

F
denotes the

Fibonomial coefficient
∏j

i=1
Fk−i+1

Fi
.

When α is even, µα is a probability measure that, together with the polynomials p
(α)
k (x),

satisfies the hypotheses of Theorem 3. Note that ‖p(α)
k ‖2 = Fα/Fα+2k. Hence, equations

(11) and (12) become

m
∑

i=k

i
∑

j=0

(−1)i(j+k)−(j
2)−(k

2)
(

i

j

)

F

(

i

k

)

F

(

α + i + j − 1

i

)

F

(

α + i + k − 1

i

)

F

Fα+2i

Fα+j+m
= δmk

∞
∑

k=0

Fα+2k

∣

∣

∣

∣

∣

∞
∑

i=0

k
∑

j=0

(−1)jk−(j
2)
(

k

j

)

F

(

α + k + j − 1

k

)

vi

Fα+j+i

∣

∣

∣

∣

∣

2

=
∞
∑

k=0

∞
∑

j=0

vkvj

Fα+k+j

where α = 2, 4, 6, . . . and 〈vj〉 ∈ l2. Furthermore, the analysis following Theorem 3 shows
that both identities also hold for α = 1, 3, 5, . . ., provided vj = 0 for all but finitely many

values of j. For such α, note that 〈p (α)
k , p

(α)
k 〉 < 0 when k is odd.

13



Example 4 (finite dimensional spaces): Let α be a step function with positive jumps Jk

at the distinct points zk ∈ (−1, 1), k = 0, 1, . . . , r. Then L2
α(−1, 1) has dimension r + 1,

and

hj =
r
∑

k=0

z j
k Jk, j = 0, 1, 2, . . . (19)

In what follows, we will frequently use the following submatrices of the infinite Hankel
matrix H = [hi+j ]i,j≥0: Let Hk denote the upper-left (k + 1) × (k + 1) submatrix of H .
From equation (19), we see that

Hk = VkDrV
T

k , k = 0, 1, . . . , r (20)

where Vk is rows 0 through k of the Vandermonde matrix whose row 1 is [z0, z1, . . . , zr],
and where Dr is the diagonal matrix with diagonal entries J0, J1, . . . , Jr.

In seeking an orthogonal basis of polynomials for L2
α(−1, 1), we choose their leading coef-

ficients to be 1:

pk(x) = xk +

k−1
∑

j=0

akj xj , k = 0, 1, . . . , r

The remaining coefficients are then uniquely determined; we compute them as follows. Let
h(p, q) denote the vector with components hp, . . . , hq, and let a(k) denote the vector with
components ak0, . . . , ak,k−1. We claim that

Hk−1 a(k) = −h(k, 2k − 1), k = 1, . . . , r (21)

which may also be written

k−1
∑

j=0

hm+j akj = −hm+k, k = 1, . . . , r, m = 0, . . . , k − 1

Since Hk is nonsingular when k = 0, 1, . . . , r, equation (21) uniquely determines the co-
efficients akj. One may confirm (21) by a straightforward calculation to show that the
resulting polynomials are mutually orthogonal. By Cramer’s rule, we then have the ex-
plicit formula

pk(x) = xk − 1

detHk−1

k−1
∑

j=0

det(Hk−1(j,h(k, 2k − 1)))xj , k = 0, 1, . . . , r (22)

where M(j,w) denotes the matrix M with its jth column replaced by the vector w. A
similar calculation shows that

‖pk‖2 =
detHk

detHk−1

, k = 0, 1, . . . , r

14



where we assign the value 1 to detH−1.

Next we express each monomial xm as a linear combination of the basis polynomials
p0, p1, . . . , pr:

xm =

r
∑

k=0

bmk pk(x), m = 0, 1, 2, . . .

By equations (10) and (22),

bmk =
1

‖pk‖2

k
∑

j=0

akj hj+m

=
detHk−1

detHk

(

hk+m − 1

detHk−1

k−1
∑

j=0

det(Hk−1(j,h(k, 2k − 1)))hj+m

)

=
1

detHk

(

(detHk−1)hk+m −
k−1
∑

j=0

det(Hk−1(j,h(k, 2k − 1)))hj+m

)

=
det(Hk(k,h(m, m + k)))

detHk

To confirm the last step above, evaluate det(Hk(k,h(m, m+k))) by the Laplace expansion
down the last column of the matrix. For the jth entry of that column, j = 0, 1, . . . , k − 1,
the expansion formula assigns the sign (−1)k+j. We must also move the vector h(k, 2k−1)
from column j to column k − 1, and the corresponding transposes change the sign of the
determinant by the factor (−1)k−1−j. Thus, the overall sign factor is (−1)k+j+k−1−j = −1.
Having confirmed the above computation of bmk, we conclude

xm =

r
∑

k=0

det(Hk(k,h(m, m + k)))

detHk
pk(x), m = 0, 1, 2, . . .

Hence equation (13) becomes

r
∑

k=0

1

(detHk)(detHk−1)

∣

∣

∣

∣

∣

∞
∑

j=k

vj det(Hk(k,h(j, j + k)))

∣

∣

∣

∣

∣

2

=
∞
∑

k=0

∞
∑

j=0

vkvjhk+j

where 〈vj〉 ∈ l2.

Acknowledgment : I thank my colleague C. French for suggesting the analysis following
Theorem 3.
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8. G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc., 1975.

9. H. Widom, “Hankel Matrices,” Trans. Amer. Math. Soc., v. 121 (1966), 1-35.

16


