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Abstract

In [Fr2,Skr], Frolov and Skriganov showed that low discrepancy point sets in the
multidimensional unit cube [0,1)® can be obtained from admissible lattices in R®. In
this paper,we get a similar result for the case of (F,((z71)))*. Then we combine this
approach with Halton’s construction of low discrepancy sequences.
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1 Introduction.

1.1. Let (5,)n>0 be an infinite sequence of points in an s-dimensional unit cube [0, 1)°.

The sequence (B,)n>0 is said to be uniformly distributed in [0, 1)® if for every box V =
[0,v1) x -+ x [0,v5) C[0,1)*

AV, (BN =#{0<n<N|B,€V}—Nuvy...v,=0(N), N — oo.

We define the L,, and Ly discrepancy of a N-point set (8, n)h—y as

Do)V = sup AV (Bur) D),

0<v1,eesy vs<1 N

1

PG = ([ 1A o P )

1/2

It is known that a sequence (/3,,),>0 is uniformly distributed if and only if
D((B.)Y=y) — 0 for N — oc.



In 1954, Roth proved that there exists a constant C; > 0, such that

—NDy((Bu)n=o)

NDo((Ban)hy) > Ci(InN)Z,  and Tim (I V)2 >0

for all N-point sets (53, ~)YZ) and all sequences (3,)n>0. According to the well-known
conjecture (see, for example, [BC, p.283] and [Ni, p.32]), there exists a constant Cy > 0,
such that

ND((Brx)azo) > ColnN)*™, - and - lim——y HEE > 0

for all N-point sets (3, x)2-; and all sequences (8,)n>0-

Definition 1. A sequence (B, )n>0 s of low discrepancy (abbreviated I.d.s.) if D((8,)N=) =
O(N~'(In N)*) for N — oo.

Definition 2. A sequence of point sets ((B,.n )=y )%_, is of low discrepancy (abbreviated
Ld.p.s.) if D((Ban)g) = O(N"Y(In N)*7Y), for N — oo,
1.2. Brief review of multidimensional (s > 2) low discrepancy sequences (for a
complete review, see [BC], [DrTi], [Mat], and [Ni]).

1.2.1. Halton’s sequences. The existence of multidimensional 1.d.s. was discovered
by Halton in 1960: Let b > 2 be an integer,

n= Z eip(n)b', with e;,(n) € {0,1,...,b—1} (1.1)

>0

the b-expansion of the integer n, and

wp(n) = Z eip(n)b" 1

>0
the radical inverse function. Let by,...,bs > 2 be pairwise coprime integers. Then
(@, (N), -+, @b, (1n))n>0 is a L.d.s. The main tool here is the Chinese Remainder Theorem.

In 1960, Hammersley proved that (¢p, (n), . . ., @p, (1), )N is an s+1-dimensional L.d.p.s.

1.2.2. (t,s) sequences, and (¢, m,s) point sets. A subinterval E of [0,1)* of the
form )

E = [Jlaib™* (a; + 1)b~%),
i=1
with a;,d; € Z, d; >0, 0 < a; < b% for 1 <1i < sis called an elementary interval in base
b>2.

Definition 3. Let 0 < t < m be an integer. A (t,m,s)-net in base b is a point set
X1y ooy Tym in [0,1)% such that #{n € [1,0™]|z, € E} = b" for every elementary interval E
in base b with vol(E) = b'=™.

Let t > 0 be an integer. A sequence xg,x1,... of points in [0,1)% is a (¢, s)-sequence
in base b if, for all integers k > 0 and m > t, the point set consisting of x,, (n €
k0™, (k+ 1)b™) is a (t,m, s)-net in base b.



The theory of (¢, s)-sequences was developed by Sobol [Sol|, [So2] for the case of
b = 2. In 1981, Faure constructed (¢, s)-sequences for prime p > 2. The general case was
considered by Niederreiter (see [Ni], [NiXi]). For the proof of low discrepancy property of
(t,s) sequences, see e.g., [Ni, pp. 54-60].

Let g be an arbitrary prime power, [F, a finite field with ¢ elements, F,[z] a polynomial
ring, F,(x) the quotient field of F [z] (i.e. the field of all formal rational functions of x
over F,), K/F,(z) a finite extension of F,(z), and let N'(K) be the number of rational
places of K. By a rational place of K we mean a place of K of degree 1.

In [Te], Tezuka proved that the above constructions of (¢, s)-sequences can be obtained
by Halton’s (Chinese Remainder Theorem) method, applied to F,(z). Niederreiter and
Xing use a similar approach, applied to the field K. In this way, they obtained a (¢, s)-
sequence with smallest parameter ¢ for s < N (K) (see [NiXi, p. 204]):

t=yg (1.2)

where ¢ is the genus of K. Niederreiter and Xing [NiXi] used s distinct places (instead of
s coprime integers as in Halton’s construction) and also some nonspecial divisor. In this
paper, we obtain the same estimate (1.2). But we do not use an additional nonspecial
divisor.

1.2.3. Lattice nets. In this subsection, we consider l.d.p.s. in [0,1)*"! and l.d.s.
in [0,1)*% based on lattices in R**'. Let K be a totally real algebraic number field
of degree s+ 1, and o the canonical embedding of K in the Euclidean space Rt
o : K3 &= ) = (018),...,001(8) € RFL where {0;}35] are s+ 1 distinct
embeddings of K in the field R of real numbers. Let A\ € K be an algebraic integer,
XNi=oi(N) (i=1,...,s+ 1), f(z) the minimal polynomial of A; A is of degree s + 1 over
Q; F = ()\g_l)f;.il; A = diag(\1, ..., A\s11); and H = EAE™! the companion matrix of
/().

In 1976, Frolov introduced the point set Fr(s+ 1,t) = $EZ*t' N [0,1)*™ (¢t — oo)
with the best possible estimate for the order of magnitude of the integration error on the
Sobolev and Korobov class functions (see [Frl],[Byl],[By2]). In 1980, Frolov [Fr2] proved
that Fr(s+ 1,t) is a Ly low discrepancy point set (i.e., Dy(Fr(s 4 1,t)) = O(t~*(Int)*/?)
for t — 00).

In 1994, Skriganov [Skr| proved that Fr(s+1,t) is a l.d.p.s. He also proved the
following more general result:

Let V C R**! be a compact region, vol(V) the volume of V| tV the dilatation of V'
by a factor ¢ > 0, and let ¢tV + X be the translation of ¢tV by a vector X € R**1. Let
' C R**! be a lattice, i.e., a discrete subgroup of R**! with a compact fundamental set
F(T) = R¥"/T, detl’ = vol(F(T")). Let

NV, T)=card(V NI') = Z x(V,v)

be the number of points of the lattice I' lying inside the region V', where we denote by
x(V,X), X € R¥"! the characteristic function of V. We define the error R(V + X,T') by



setting )
VO

detl’
Definition 4. The lattice T' C R**! is an admissible if

NV +X,T)= + R(V+X,I). (1.3)

NmI'= inf |Nm~y| >0, 1.4
~el'\{0} ‘ Vl ( )
where Nmz = 2129 ... X1, T = (T1,. .., Tsp1).

For example, I' = EZ*™' (in Frolov’s net) is the admissible lattice. The set of all
admissible lattices is dense in SL(s+ 1,R)/SL(s+ 1,Z), but its invariant measure is
equal to zero. Let K™ = [—1 1] T'= (t1,...,ts1) and TV = {(t121, . . ., tss1Tst1) |
(.1'1, ...,$5+1> € V}

Theorem A. (see [Skr, Theorem 1.1]) If ' C R*™! is an admissible lattice, then for
all T € R¥*Y, one has the bound

sup |R(T.K* + X, T)| < C(T)(In(2 + [NmT))*. (1.5)
XeRs+1
The constant in (1.5) depends upon the lattice I' only by means of the invariants detI’ and
NmlI'.
In [L], we constructed l.d.s. based on Frolov-Skriganov’s approach. In this paper, we
show that a similar approach can be applied to admissible lattices in (F,((z~1)))**.

Now we describe the structure of the paper. In §2, we construct l.d.s. applying
Halton’s (adelic) method to the case of admissible lattices in R**!. In §3, we obtain a
similar result for the case of (F,((z71)))*™. In 84, we give examples of (¢, s)-sequences
obtained from a global function field over F (x) without additional nonspecial divisors.

2 Admissible lattices in R,

2.1. The general case.

In [L], we proposed the following constructions of l.d.s. based on Frolov’s and Skrig-
anov’s nets.

Let s > 1 be an integer, ' = HZ**! an admissible lattice, where H is an (s+1) x (s+1)
nonsingular matrix with real coefficients. Let

W =Tn1[0,1)* x (0, +00).

By Theorem A and (1.3), the set W is infinite. Let (u;, u;s+1) € W with u; € R® and
uis+1 € R, i =1,2. Applying (1.4) to the lattice point (u; — ug, U1 541 — Ugs+1), We have
that uy 541 # ugs+1. Hence W can be enumerated by a sequence (z(n), z541(n))5%, in the
following way:

Z(O> = (07 "'7O)a Zs—i—l(O) - 0, Z(TL) € [O, 1)5 and
zs11(n) < zsmi(n+1) € R,  for n=0,1,.... (2.1)

4



According to [L] (2(n))2%, is a L.d.s. in [0,1)* and (2(n), ze41(n)/2e11 (N))NZ)) is a Ld.p.s.
in [0,1)**!. By Theorem A and (1.3),

N = 21 (N = 1)/det(T)| < C(T)(In(2 + 2441 (N — 1))
Hence there exists a real /Ny such that
IN — 241 (N — 1)/det(I")| < 2C(T")(In(N))* < N, for N > Nj. (2.2)
Thus
Zs41(N — 1) = NdetI' + O((In(N))?). (2.3)

By definition of the lattice I', there exists y(n) = (yi(n),...,ys41(n)) € Z*! such that

(2(n), 2s41(n)) = Hy(n).
Let by, ...,bg > 2 be pairwise coprime integers. Using notations from (1.1), we define

O, (n) =D D eip, (g (m)p, T (24)
120 1<m<s+1
and
¢(n) = (¢u,(n), .., Pu, (1), 2(n)).
Theorem 2.1. With the above notations, (((n))n>o is a l.d.s. in [0,1)**?, and
(C(n), zep1(n) ) 2e4 1 (NN is a Ld.p.s. in [0, 1)5H4FL,
Proof. We will prove the low discrepancy properties of the sequence ({(n)),>o. The

n
proof of the low discrepancy properties of the set (((n)), ze41(n)/2s41(N))NZy is com-
pletely similar. Let

S =10,v1) X ... X [0,V415) with v, €(0,1], i=1,...,d +s.
We need to prove that
#{0<n < N|((n) €S} = Nuvy...vsq + O((In(N))*T). (2.5)
Let
S1 =11 X ... X Iy X [0,0441) X ... X [0,0415),

where
L= [ag /6% (0 + 1) 05), with k>0, 4, €2, j=1,...,d,

and let

I(m) = [0,d,;/o5™), I (m) = [d; /™ 0] with d; = [0,08T™], 5 <s

I

!

V;=1(m) x ... x I;_l(m) X [;./(m) X [0,v41) X ... X [0, Vgss), (2.6)

with m = max;<j<q [3 + 2detT’ + (s + 1)~* log,, (N/Nm(I'))].
Suppose

dni,ne € [0,N —1], j € [1,d] with ({(n;), zs11(n:)/2zs+1(N)) € V; x [0, 1)

5



fori=1,2, N > N; . By (2.4) we have
v = (21(n1) — 21(n2), -y Zsg1(M1) — 2s41(n2)) € b;'T and INmy| < zg11 (N —1).
Bearing in mind (2.2) and that
INmy| > NmbT = 6"V NmD > 2N/(1 + detl),

we have a contradiction. Hence the box V; x [0,1) contains at most one point of the
sequence (C(n), ze11(n:)/2s41(N)AZ) for N > Ny. Similarly to the proof of Halton’s
theorem (see [BC], [Mat] or [Ni]), we obtain from here that the box S can be expressed
as a disjoint union of at most (by...bg)*"1[3 + 2detT + log,(N/Nm(T'))]¢ boxes of the kind
S1, plus a set

V=VUu.uV;el0,1)* with #V N (Upcpen((n)) <d.
From (2.6) we get
vol(Vj) < | (m)| < Nm(T)/N and vol(V) < dNm(T')/N.
Hence to obtain (2.5), it is sufficient to prove that
#{0<n < N|((n) e Sy} = Noy TRy Ry, vges + O((IN(N))*). (2.7)
By (2.4), we have
Py, (n) € I <= y(n) = w; (mod bijSH) j=1,....d

for some w; € Z5t, j=1,....d.
By the Chinese Remainder Theorem, there exists wq € Z**! such that

(O, (1), ey D1y () € Iy X .. X Iy <= y(n) = wo (mod b¥*...b57Z+Y),
Thus
(P, (1) ey D1y (1)) € Iy X o X Iy == (2(n), 2e41(n)) = Hwy (mod b¥..b5T).
Hence

((n) € Sy <= (2(n), z11(n)) = Hwy (mod b ...b5T)

and  z(n) € [0,v441) X ... X [0,0445).
Applying (2.1), we obtain
#{0<n <N |¢(n) € 81} =#{(y1, s Yo41) € VJ03T | i € [—(Huwp)s,
v — (Hwp);), i =1,...,s, Vo1 € [=(Hwo)ss1, 2541 (N — 1) = (Hwo)sp1] }
= #{ (11, - ¥s41) €T [ 75 € [0 by ™ (Huwg);, by ™o (v; — (Hwy ),
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9, = 17 ey 8 Vsl € [—b;kl...b;kd(H’wo)s+1, b;kl...bd_kd(zs+1<N - 1) - (Hwo)erl)}}.

Now by Theorem A and (2.2), we obtain the assertion (2.7), hence Theorem 2.1 is proved.
n

2.2. The case of algebraic lattices.

Let K be a totally real algebraic number field of degree s + 1, O the ring of integers
in K. Denote by A the set of integer divisors of K. For b € A, we denote by L(b) = {« €
O | a =0 (mod b)} the O-ideal associated with b.

Let MM C K be an arbitrary Z-module of rank s + 1. Then the image

L) = o(M) c R¥H! (2.8)

of 9 under the embedding o (see §1.2.3.) is the admissible lattice in R*™!. Since every
ideal of the field K is a Z-module of rank s 4+ 1, (2.8) determines a lattice I'(L(b)) =
o(L(b)) C R*™! corresponding to the ideal L(b).

Now let b; € A, i = 1,...,d, be pairwise coprime divisors in K, and let b; = N(b;),
where N is the norm of the extension K/Q. It is easy to see that

#{O/L(b])} =] and #{L(b)) /L6 =b; (j=0,1,2,...),

where L(bY) = O (i =1, ...,d). .
Let i € [1,d], j > 0. A digit set D;; € L(bj) € O is any complete set of coset
representatives for L(b7)/L(b7™"). We have that, for any a € O, and every m > 1

a=diog+diy+ ... +dim1+ Ty

where d; ; € D, j, xm € L(b*). So for each a € O, we can associate a unique sequence
(dio,d;1,d;2,...). Let m;; be a one to one map from D; ; to {0,1,...,b; — 1}, and let

o, () =3 mig(dig) /U0 (2.9)

Jj=0
Consider the sequences (2(n),>o defined in (2.1) with I' = I'(L(O)). Let
C(n) = (9061 (n)> ) gpbd(TL)? Z(n))a
where ¢, (n) = ¢, ((2(n), 2511(n)).

Theorem 2.2. With the above notation ({(n))n>o is a l.d.s. in [0, 1)+
and (C(n)), zs11(n)/2e41(N)AZ) is a Ld.p.s. in [0, 1)5Fd+1,
Proof. Let

S1=11 X ... X Iy X [0,0g41) X ... X [0,0415), where wvgy; € (0,1], i=1,..,s,
and I =[a;/07,(a; +1)/bY), 1, >0,a;€Z, j=1,..d

Similarly to (2.5)-(2.7), it is sufficient to prove that

#{0<n < N|¢(n) €S} = Nby"b, v 1...va1 + O((In(N))*). (2.10)

7



The lattice I' = I'(L(0O)) is admissible. By (2.9) and (2.3), we have
oy, (n) € I; == o 1(2(n), zes1(n))) = at) (mod béj)

for some a¥) € O, j=1,....d.
Applying the Chinese Remamder Theorem, we conclude that there exists r € O such that

(@6, (1), ey 0,(n)) € Iy X ... X Ig <= 07 1(2(n), ze41(n)) = 7 (mod b’...b%)

or

(0o, (N)y ooy pp,(n)) € 11 X oo X Iy <= (2(n), 2541(n)) — o (1) € F(L(blf...bff)).
Therefore
{(2(n), ze1(n)) | ¢(n) € S1, 0 < < N} = {y € T(L(b}...b3)) |
v E [=r1, —r1 + Vgr1) X oo X [=Ts, —Ts + Vgrs) X [—Tsi1, —Tse1 + 201 (N — 1)]}, (2.11)

where r; = oy(r), i=1,...,s + L.

We cannot apply Theorem A directly to prove (2.10) because the constant in (1.5)
depends on the lattice T(L(b!...b%)). To prove (2.10), we will use the following idea from
[NiSkr]: Let {9, ...,9,} be a fixed set of representatives of the ideal class group, and
let A be the class number of the field K. Hence there exists an element € € K such that
OL(bY...b%) = 9, for some j € [1, h]. Therefore

det(D(OM;)) = 6.0, 1det(T(L(b1...6%))) = 6;...0,,1 b bladet(T), (2.12)

with 0, = 0;(0), i=1,...,s + 1.
By (2.11), we get
{0<n<N|[((n)eS}=Tm)V. (2.13)

where
V= [=01r1, 01 (=71 4 var1)) X oo X [=0,75, 05( =15 + Vats))
X[=Oss17511, Os1(—Ts11 + 2541 (N — 1))].
Using (2.12), we have
vol(V))/det(D(9M;)) = v1...vs2sp1 (N — 1)b7 .05 /det(TD).
According to (1.3), we obtain
R(V,T(9%;)) = #T (M) — vy..vsby by 2 (N — 1) /det (). (2.14)
By Theorem A, we obtain
[R(V,T())] < max C(I'(M))(In(2 + 2o (N —1)))°.

1<5<h

Now by (2.3), (2.13) and (2.14), we obtain the assertion (2.10). Theorem 2.2 is proved.
]



3  Uniformly distributed sequences obtained from
lattices in (F,((z~1)))**.

First, we describe Mahler’s variant of Minkowski’s theorem on a convex body in a field of
series for the following special case:

3.1. Mahler’s theorem. Let ¢ be an arbitrary prime power, I, a finite field with
q elements, k = k(z) = F,(x) the rational function field over F,, and k[z] = F,[z] the
polynomial ring over F,. For a = f/g, f,g € k[z], let

v(a) = degg — degf (3.1)
be the degree valuation of k(x). We define an absolute value ||.|| of k(x) by
o] = ¢~ (3-2)

We denote by k = Fy((z~")) the perfect completion of k with respect to this valuation.
Every element « of k has a unique expansion into the field of formal Laurent series with
coefficients from I,

a= Z arr ™" (3.3)

k=—w

with an integer w and all a;, € F,. The degree valuation v on k is defined by v(a) = —o0
ifa=0and v(a)=wifa#0 and (3.3) is written in such a way that a,, # 0.

We will be working in the s+ 1 dimensional vector space over k. A lattice I in k*+! is
the image of (k[z])*™ under an invertible k-linear mapping A of the vector space k**! into
itself. The points of I" will be called lattice points. The absolute value (in the sense of
(3.2)) of the determinant of A will be denoted by det(T'). We introduce on k*** the Haar
measure 4 such that the set {z = (z1,...,2541) | [|z;]| < 1} has measure 1. A distance
function in k*™1 is a function F': k**! — R such that

Flo)=0, Fly)#0 it y#o,
F(ay) = ||\ F(y) for A€k,
F(y —2) < max(F(y), F'(2)).

An inequality of the form F(y) < ¢", defines a convez body, Vi, = V,. Let
Mp(r) = #{(k[z])*" N Vg, } = #{k[2]*T N2 Ve }. (3.4)
A convex body V, has a volume [Ma, eq. 20]

vol(Vy) = lim Mp(r)q~ D0+, (3.5)

r—00

In particular, if F(y) = ||y||, then vol(Vy) = u(Vy) = 1 (see [Ma, p.505] and [DuLu,
p.330]). Let
F(Cv y) = max(q_cl Hyln b g T ||ys+1||)7 (36)

9



where ¢ = (¢, ..., ¢s41). We define the corresponding convex body by V(. We see
V(e) == Vo = {(y1 - Ys1) € ket! | will < ¢, i=1,...,s+1}. (3.7)

Let A be (s+1) x (s + 1) invertible matrix with elements in k. The linear transformation
u = A1y changes F(y) into the new distance function F'(u) = F(y) = F(Au). According
to [Ma, eq. 21],

vol(Vp ) = vol(Vr,)(detA) . (3.8)

In particular,
vol(V(c)) = ¢+t testt, (3.9)

Let T' = A(k[z])*™. Consider the distance function (3.6). Using (3.4), we obtain

(TN Vil = #(7 €T | il < 7*)
= #{u € (k[2])"" | [(Au)ill < ¢} = #{(K[2])"™ N 2"V o} = My (7). (3.10)
By (3.5) and (3.8), we get
lim M (r)g~ T = vol(Vy ) = vol (Vo) (detD)) ™.

T—00

Hence by (3.9) and (3.10), we have

lim #{T Nz"V(c)}qg DT+ = gertetesis fqetT . (3.11)
r—00

Mabhler [Ma] proved that there exists s + 1 k-independent lattice points ¥1, ..., Vs11 € I
such that:

a) (1) is the minimum of F() in all lattice points v # o;

b) for j > 2, F(y;) is the minimum of F(v) in all lattice points independent on
Y15 -ee Vi—15

¢) the points 71, ..., 7541 are a basis for I" over k|x];

d) the number o; = F(v;) ,1 < j < s+ 1, (the successive minima of V) depend only
on F(y) and I', and satisfy

0< o1 S (op) S S Os11, and 0102...05411 = det(F)/vol(Vb) (312)

Now let < y,z > be a standard inner product ( < y,z >= y121 + ... + Yssr12541 fOr
y = (Y1, ,Yst1) and z = (21, ..., 2s41)). If I' is a lattice with basis Sy, ..., fs11, then the
polar body Vi and the polar (dual) lattice I't are defined exactly as in the R**! case.
Thus I'* is the lattice with basis f-, ..., f5;,, where < f;, 3" >= 1 and < §;, ;- >= 0 if
i # 7. We define the polar function to F(y) by G(0) = 0 and for z # o by

< >
Gl — p s>
vto  F(y)
Then G(z) is a distance function and Vy is the convex body defined by G(z) < 1. Tt is
easy to see that V) consists of all points z of k*** for with ||< y,2 >|| < 1 for all y € V.
Moreover

det(I')det(I') =1, vol(Vy) = (vol(V,)) ™, (3.13)
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and if 7; are the corresponding successive minima with respect to polar lattice ', then
0iTs—jro=1 (1<j<s+1). (3.14)

By (3.7), we have
V() = {(yi, o Ysr1) €K luill < g7, i=1,...,5+ 1}, (3.15)

3.2. Construction of uniformly distributed sequences. We will consider lat-
ices in s + 1-dimensional space k**! = (F,((z~)))**! to construct uniformly distributed
sequences in [0, 1)°.

Let A C k', r € Z and z € k", We define A+ 2 = {y+2 | y € A} and
c—r=(C1 =Ty yCsp1 —T).

Lemma 3.1. Let ¢y, cq,...,co1 be integers, ¢ = (¢1,...,¢11), I' C kst an arbitrary
lattice with det(T) = ¢®, let z = (21, ..., ze11) € k¥, and let V(¢) contain a basis 3; =
(Bity ey Bist1), @ = 1,...,8 + 1 of I'. Then the shifted box V(c — 1) + z contains exactly
gertTestimco=s=1 Jattice points.

Proof. We see that there exists o; € k with

2=+ ...+ g1 Bt

We consider expansions of a; of the form (3.3). Let a;; (i = 1,..., s+ 1) be corresponding
elements,

Q; = Zaingjfj € k[:L‘], 1=1,....,s+1,

Jj<0
and let
7= (2, '-~7Z;+1> = Q101+ .. + Qsy1Bs41-
By (3.7), we have

/ — PR
o= 2l < max s — @Bl S g max (16l < g

Now let y = (y1,...,yss1) € V(c — 1) + 2. We see that

ci—1

lys = zll = llys — 2 + 2 = 2ill < max(|ly; — zll, 120 = ) < ¢

Hence y € V(c—1) + 2. Similarly, we get that if y € V(c— 1)+ 2, theny € V(c— 1) + 2.
Thus the box V(c — 1) 4 2z coincides with the box V(c — 1) + z'. Bearing in mind that
2 €T, we obtain

#{INV(e-1)+2)}=#{ITNV(-1)}
By (3.3) and (3.7), we get that 2"V(c — 1) can be decomposed as follows:
zV(e—1)= U Vie—=1)+ (z9Q1, ..., =" Qs41)).
Qill<g"—1, Qiek[z], 1<i<s+1
Therefore

TNz V(e—1)} =g DA T N V(e —1)).
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We have from (3.11) that

#DNV(c—1) = lim #{CNa"V(c— 1)} g EH) = gartFesri=s=1 /el

T—00

and Lemma 3.1 is proved. =
Let y = (Y1, .., Ys+1) € |A(S+1,

x
—k
Yi = Z Yi kT
k=—w;

with y; , € F,, ;1 be a one to one map from F, to {0,1,...,¢ — 1}, and let

f(y) = (g(yl)v ) £<ys+1))

with

§(yi) = Z 77i,k<yi,k)q_k-

Let {(T) = {&(v) |y €T}, _
W =€) N[0,1)° x [0, +00).

By the definition of a lattice I it follows that for all v € R¥™! the set £(T')N([0, 1)*T +v) is
finite. The set W can be finite or infinite. We see that (0, ....,0) € W, and #W > 1. Hence
the set W can be enumerated by a sequence (z1(n), ..., Zs41(n))o<n<pw in the following
way:

ziln) e R, 2(0)=0, i=1,...,s+1, zsr1(n) < zgr1(n+ 1),
and (z(n), zs11(n)) # (2(7), 2zs21(7))  for n # j, where z(n) = (z1(n), ..., zs(n)).

Theorem 3.1. Let ' C k**! be an arbitrary lattice. Then the sequence (2(n))pso is
uniformly distributed in [0,1)° if and only if

Pt =01 ve) €TH\{0} with ~5, =0. (3.16)

Proof. First, we consider the case that (3.16) is not valid. Hence there exists 75 =
(*yo%l, . fy&sﬂ) e It \ {0} with fyo%sﬂ =0. Let

m 1
= Imax H :
q 122 1170,

, r=max(0,m), Hv@“ =q™, forsome j € [l,s], (3.17)

and let
V=100, %[ q") x [0, x [0,00).

Suppose that there exist n > 1 with (z(n), zs11(n)) € V. Let
o =< 7 (2(n), zs41(n)), 5 >= €7 (21 ()Y + o+ €7 (Zo41(n)Voasn-
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We see that || (zi(n))|| < ¢ "2 fori € [1,s], i # j, and [|[€(z;(n))]| = ¢ "' Bearing
in mind that ~g,,, = 0, we obtain from (3.17) [la| = ¢" "' < 1. On the other hand,
a € k[z], and by (3.1), (3.2), ||a|| > 1. Thus there are no points (z(n), zs41(n)) in V for
n > 1. We have that the sequence (2(n)),>o is not uniformly distributed.

Now let (3.16) be valid. Take any ¢ > 0, and choose m > 1 such that ¢-™ < e.
Consider the convex body V(c)* with ¢ = (—=m,...,—m,r). By (3.15) and (3.16), there
exists r such that there are no lattice points of 't \ {0} in V(c)t. Using (3.12)-(3.14),
we get 77 > 1. From (3.14), we obtain 0,41 < 1. Therefore, V(c) contains a basis of
. According to Lemma 3.1 for every z € k**! the box V(¢ — 1) + z contains exactly
q" ™5 1 (det(T)) ! lattice points.

Let

V= H JGi+1)g ™) X [Be, (B+1)¢") =[0,¢7")* x [0,¢") +y

with integers G, ...,Gy, B, and y = (G1g™™, ...,Gsq¢"™, Bq") € [0,1)% x [0, 00).
It is easy to see that
ETV)Y=V(e—-1)+=z

for some z. Hence the box V contains exactly ¢"~™~*~!(det(I")) ™" points of the sequence
(2(n), zs41(n))n>0. In particular, for every integer B > 0

#{n > 0] z1(n) € [Bg", (B+1)¢")} = ¢~ H(det(I)) ™ = ¢"

Hence
Z1(n) € [Bg', (B +1)¢") <= n € B¢, (B +1)¢").

We see that

#{B¢ <n < (B+1)d|zn H ™G+ 1)g™) = ¢
We now consider a subinterval V' of [0, 1) of the form

V' = H (Gi+ Hy)g™)
with integers G;, H; satisfying 0 < G; < G+ H; < g™ for 1 <i < s. Let M¢' < N <
(M + 1)¢ for some integer M > 1. Then
Mq™™ Hy. Hy < [#{0<n < N | 2(n) € V'Y < (M + 1)¢"™™ H,...H,.
Therefore
[#{0<n<N|zn)eV}/N—vol(V)| < Hy..Hq ™M <M <e

if N is large enough. Since for every subinterval V' of [0, 1)® we can find subinterval V;, V5
of the above type with V; C V C V; and vol(V42 \ V1) < 2se , it follows that (2(n)),>o is
uniformly distributed in [0, 1)*. Theorem 3.1 is proved. m
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Remark. For the case of I' = {(Qa1—Q1, ..., Qas—Qs, Q)) | (Q1, ..., Qs, Q) € k[x]*T1},
we obtain a Kronecker lattice (and a Kronecker sequence: (z(k))r>1 (see [LaNi], [La])).

It is proved in [La] that D((2(n)))_;) = O(N"'(In(N))* 1) (InIn(N))*"€) for almost all
(a1, ..., ;) € k°.

Conjecture. We conjecture that this estimate is also true for almost all lattices I'
with respect to the Haar measure on SL(s, k)/SL(s, k[z]).

3.3. Admissible lattices in (F,((z71)))*™ and (¢, s) sequences. We will consider
the s + 1-dimensional space k**! = (F,((z~1)))**! to construct (t,s) sequences.

Lemma 3.2. Let ¢y, 1, ..., co1 be integers, ¢ = (1, ..., ¢s41), I C kST be an arbitrary
lattice with det(T) = ¢, z = (21, ..., zs11) € k*T1, and let V(c)- NT+\ {o} = 0. Then

#{N(V(c—2)+2)} =g tHesrom2s=2

Proof. Consider the box V(c)* and the lattice I't. We see that 7, > 1, and by (3.14)
0511 < 1. Therefore, V(c — 1) contains a basis of the lattice I'. Now applying Lemma 3.1,
we get the assertion of the lemma. m

Definition 5. The lattice ' C k® is admissible if

NmIl'= inf [[Nm~v|| > 0, 3.18
. [Nn (3.15)

where Nmy = v1y2 ... Vou1, V= (Y1, -+ Vst1)-
Examples of such lattices are proposed by Armitage [Arm1, Arm2| (see §4).

Let sy € {1,...,s}, ss =s+1—s1, Hy,...,Hs,, 71, ..., 75, > 0 be integers, and let
W(H,r)=¢I)N[0,1)" x [Hig™, (Hy + 1)¢"™) % ... X [Hy,q"2, (Hy, + 1)g"2).
Theorem 3.2. Let I' C k¥ be an admissible lattice with
det(I't) = g= and Nm(T+)/det(T+) = g7, (3.19)

Then (z(n))n>o s a (t,s) sequence with t = u, and W(H,r) is a (t,m,s,) net witht = u
andm =17y + ...+ 1, — Co.

Proof. Let Gy,...,Gy,, l1,...,15, > 0 be integers, G; < ¢ (1 <i < s;), and let
Gs, G, +1
& g

ﬁ Gy +1

5= [qll’ ¢n

)X X

)X [Hig™, (H1+1)¢"™) X ... X [Hs,q"2, (Hs, +1)q"2).

To obtain the (¢, m, s1) property of the set W (H, ), we need to prove
SWEH ) =" ad  #{ED)NS) = ¢ (3.20)

for Iy + ... + 1, = m —t with ¢t = u. For the case of s; = s, we obtain from here the (¢, s)
property of the sequence (¢(n)),>o0-
Let c = (=l +1,...,—ls, + 1,71 + 1,...,75, + 1). It is easy to see that

ENS) =V(e—2)+ = (3.21)
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for some z.
Let v € Tt \ {o}. By (3.18) and (3.19), we have |[Nmy|| > ¢ “ 5. If v € V(c)t,
then
HNHI")/H S qll+~~~+lS1*7’1*~~~*7"52*5*1 — quuf(erco)fsfl _ q*U*CO*S*]-.

Hence v ¢ V(c)*. Applying Lemma 3.2, we obtain
#FQ(V(C—Q)—FZ) — q(—ll—...—lsl+r1+...+r32+s+1)—co—2s—2 — q(u+c0+28+2)—co—28—2 _ qt' (3'22)

Taking ¢ = (1,...,1,r; + 1,...,75, + 1), we obtain similarly that

#f_l(W(H, T)) _ q(r1+...+rs2+s+1)—co—25—2 _ q(m+co+25+2)—co—2s—2 _ qm‘

Now by (3.21), we obtain (3.20). Theorem 3.2 is proved. =

Using lattices from [Arm1] (see Example 1 below), we obtain (0, s) sequences.
Now let (81, ..., Bs+1) be abasis of I'. For all v € T, there exists polynomials Q1 ..., Qs+1 €

k[x] with
vY=0181 + o + Qsy1Bst1-

Let b € k[z] with deg(b) > 1, D any complete set of coset representatives for k[x]/bk|x],
Q=) eip(Q)b, with e;(Q) € D,
i>0

the b-expansion of the integer polynomial @, 7; ; a one-to-one map from D to
{0,1,...,q%&® — 1} and let

=3 Y nigslein(@y))gt TN Ndes), (3.23)

i>0 1<j<s+1

Let by,...,by € k[z] be pairwise coprime polynomials with b; = deg(b;) > 1 (i = 1, ...,d)
and let

C(n) = (Qobl (n)7 sy Spbd<n)7 Z(”))?
where @p, (1) = ¢, (7 (2(n), 2541(n))).

Theorem 3.3. With the notation above and the assumptions made in Theorem 3.2
(C(n))n>0 is a (t,s + d) sequence with t = u+ s(by + ... + bg) — d.

Proof. Let Gy, ...,Garei1,l1, ..., lgrss1 > 0 be integers, G; < ¢b (1 < i < d+ s),
ld+3+1 = ll + ...+ ld+5 + t, and let
G, Gi+1

S = [%7 qll

Gars Gaps +1
qld+s ! qld+s

) X [Garss1q ", (Gaaorr + 1)g ).

|

To obtain the assertion of the theorem, we need to prove
£{n >0 (C(n),n) € S} =" (3.24)
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Let
li = (s4+1Dbik; —r;, with 0<r <(s+1)b, 1<i<d,

G, =Giq", G = (Gi+1)¢" 1<i<d,

and let
S(H) =1 x..x1I;x 5 x [Gd+s+1qld+s+l7 (Gd+s+1 + 1)qld+5+1),
where
=l L) 1cjca, g = Gt ]y G Gty

qstDbik; 7 g(s+1)bjk; 77 glar1’ gla+ gla+s ' gla+s

We see that

s= U - U sa@E. (3.25)

G\<H\<G| Gl ,<H4<G)

Hence to obtain (3.24), it is sufficient to prove that

#{n =0 ({(n),n) € S(H)} = ¢" (3.26)
with tl =t — rn —...—Tq. Let
S(HY=1 x .. x I; x S X [Gays11q", (Garsr1 + 1)q"), (3.27)

where r = gy 501 +co+ s+ 1.
It is easy to see that (3.26) follows from the following assertion

#{n > 0| (z41(n) € [Bg",(B+1)¢")} = ¢la+s+1, B =0,1,... (3.28)
and  #{(C(n). zuns () € S ()} = g

According to (3.23),
o (n) € I; <= €71 ((2(n), 2541(n))) = w; (mod b'T)

for somes w; € I', j =1,...,d. By the Chinese Remainder Theorem there exists wy € I’
such that

(g (N), sy (n)) € 1 X ... X Iy <= £71((2(n), zs41(n))) = wo (mod blfl...bng).
Using (3.27), we get
(C(n), zs41(n)) € S,(H) < ¢1((2(n), 2s41(n))) = wp (mod b’fl...bfldf‘) (3.29)

and 7' ((2(n), ze11(n))) € V(e = 2) + 61 (Gar /a7, .., Gars /4", Garsiad'),
where ¢ = (—lg11 + 1, ..., —lgrs + 1,7+ 1). By the assumptions made in (3.19) we have

det(b]flbfldr) — q(S+1)(b1k1+...+bdkd)det(F) — qCQ+(S+1)(b1k‘1+...+bdk‘d)

and Nm((blfl...bldf‘if)l) — q—(s+1)(b1k1+...+bdkzd)Nm(F>L — q—u—s—co—(s+1)(b1k1+...+bdkd).
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Hence
Nm((b¥...b5T) L) /det (b ...bET) L) = g7v=s.

Similarly to (3.22), from (3.29) we get

#{(C(n), Zor1 (n)) c S/(H)} _ q(—ld+1...—ld+s+r+s+1)—co—(s+1)(b1k1+...+bdkd)—23—2
_ q(co+t+s+1+11+~-~+ld)—CO—(5""1)(b1k1+~~+bdkd)_s_1 = qt_rl_“‘_” = qtl. (330)
Taking ¢ = (1,...,1,7 + 1), we obtain

#{n > 0] (2541(n) € [Bg", (B +1)¢")} = #(T' N (V(c —2) +£7((0,....0, Bg")))

(r+s+1)—co—2s—2 _ _(lgts+1t+cot+25+2)—co—25—2 _ qld+s+1
)

=4q q

hence the assertion (3.28) and Theorem 3.3 are proved. m

4 Constructions of (¢,s) sequences from global func-
tion fields.

In [Arm1], [Arm2], Armitage gave examples of admissible lattices by constructing a special
algebraic extension K of F,(z) (see Example 1 and Example 2 below). According to §3.3
we get (0, s) sequences from the lattices described in Example 1, and (g, s) sequences from
the lattices described in Example 2, where ¢ is the genus of K.

In [Arm3], Armitage constructed a lattice I' from an arbitrary algebraic extension of
F,(z) (see Example 3). In this section, we use this lattice I' to obtain a (¢, s) sequence
without additional nonspecial divisors (compare with [NiXi, p. 204, 213]).

4.1. Armitage’s examples:

Example 1. [Arml] Case s < ¢. The field F, contains at least s distinct elements,
say [, ..., 0s. Let f(y) = (y —z)(y — B1)...(y — Bs) — 1. It is proved in [Arml] that the
polynomial f(y) is irreducible over k(z), and the equation f(y) = 0 has s 4 1 roots in k,
say A1, ..., Ast1. We consider linear forms L; = uy +us i+ ...+ usi 1 A (i =1, ..., s+1) with
u; € k[z]. Let D be the determinant of these forms. Then | D|| = ¢°, and ||L;...Ls1]| > 1
for all uy, ..., us11 not all 0 in k[z] (see [Arm1]). Hence I' = (L4, ..., Ls41) is the admissible
lattice with u = 0 (see (3.19)). We note that in [Arm1] the algorithm how to find the
roots Aq, ..., As11 is described.

Example 2. [Arm2]| Case s > ¢. Let K be a finite algebraic extension of k(z) with
genus ¢, and let s + 1 denote the number of places of K of degree 1. It follows from
Riemann-Roch’s theorem that there exists y € K that has simple poles at the places
of degree 1 and no other singularities. Thus K is a "totally reel” extension of k(z) of
degree s + 1; that is, K has an imbedding 6 : K — kx ...xk along the diagonal,
where at each infinite place K is to be viewed as contained in k. If the integral closure O
of k[z] in K has an k[z]|-basis (o, ..., as41) and if 6(c;) = (ai1, ..., @i s+1) then the matrix
A = (a;;) gives rise to a lattice I and a corresponding set of linear forms (I' = (Ly, ..., Ls41)
with L; = u1a;1 + ... + us410;541). The determinant detA is D with ||D] = ¢, and
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|Li...Lsyq]| > 1 for all uy, ..., usr1 not all 0 in k[z]. The proof of these assertions follows
easily from [Arm3]. See also Example 3 below. By (3.19), I" is the admissible lattice with
u=g.

Example 3. [Arm3| Let k = k(z) = F (), k[z] be defined as above and let K be a
finite algebraic extension of k of degree s+ 1. Let v be the valuation of k defined in (3.1)
and let ? be the prime divisor of k corresponding to v. Let S = {By,...,B,} be the set
of extensions of 0 to K. The corresponding normalized exponential valuations of K will
be denoted by vy, ...,v,. Let e;, f; denote the ramification index and residue class degree,
respectively, of B; over 0. Let k = F,((z7')), and let K, denote the perfect completion of
K with respect to ;. The unique extensions of B; and v; to RZ will be denoted by B; and
v;. Set K, = k @ K. Then one has a canonical homomorphism, p, of R—algebras

h
pKD_>HRZ
=1

defined by a continuous extension of the canonical diagonal embedding v = (1, ..., ¥y)

h
i K=K, 1<i<h and ¢:K—=]]K, (4.1)
=1

[Bou], Chap. 6, §8, No. 2). By ([VS], p.137, or [Bou, Chap. 6, §3, No. 5, Th. 2, Cor.

A

(
2]) p is an isomorphism of k-algebras.

Write [K; : k| = n;. Then [VS, p.137] we have e, f; =n; Mt ..tny=s+1

As is known, there exists a B;-integral basis for K;/k ([We], p. 52, Th. 2.3.2). In
particular, such a basis is given by

wym (1<j<f;0<1<e—1)

where w;; are integral elements at ‘B;, whose residue class mod B; are linearly independent
over the residue class field of k mod 0, and ; is a prime element for 9B, that is, v;(m;) = 1.

Then for a € K, we have

Ji ei—1
i(a) = Z Zwijﬂll-al(;%ﬂ with al(}zﬂ. €k (4.2)
=1 1=0

and we define a k-linear injection )
by | |
0;(c) = (\V, ..., a) (@} € k).

Y n;

These maps define a k-linear injection 6 = (64, ..., 0y,)

0:K— kit (4.4)
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At the same time, one has the k-linear injection
h A ~
9 [[Ki = ket (4.5)

For a € K, we have

0(a) = I(()). (4.6)
Let (51, ..., Bs+1) be a basis of K. By [Bou, Chap 6, §7, No.2, Th.1; §8, No.2, Prop.2],
the set ¥(K) is everywhere dense in K, = Hl ) K;. Hence the set (1), ...,0(Bss1)
generates K, as a k vector space. Bearing in mind that dim;(Ky) = s + 1, we obtain
V(B1), .o; 0(Bsrr) is a basis of Ky, and 0(81), ..., 0(Bs11) is a basis of k*+1. In particular, ¢
is a k-linear isomorphism. Let @ denote the integral closure of k[z] in K. Denote by ®(K)
the group of divisor of K. The group ®(K) can be written as a direct sum D(K) =S ® S
, where & and S are the groups of "finite” and ”infinite” divisors respectively. A given

divisor U = [T B*® (with x(B, L) = v (L)) of K can be written in the form £ = 441,

with
de= [ B*®Y, s, =[] B (4.7)

BEG BeS
We set
L(ik) = LU, 6) = {a € K| va(a) > vg(U), B € &},

L) = L, S) = {a € K| vg(a) > va(U), B € S} (4.8)

Now L(4l,) is an O-ideal. By ([ZS], p. 267, Th.9), L(4l.) has an k[z]-basis of s+ 1 elements.
Hence T'(81) = A(L(8L,)) is a lattice in k**'. In particular, To = 0(O) is a lattice in k**™.
Let I'(40) be the lattice defined by L(iL.).

By ([Arm3], eq. (38)-(40) and (44)), we have

[detT (L) = ¢ with  §(80) =~ deg(B)r(8l), (4.9)

where g is the genus of K. In particular,
|detTol| = ¢9*°.
Now let & = BJ*...85". We define

LL,S) :={a = (ay,....a H >a; =vp, (W), i=1,...,h}  (4.10)

and

(L), S) := V(ay, ..., ap). (4.11)

Let y = (ygl),. ,ygl),. ,y%h),. ,ynh) € kst We consider the isomorphism (4.5) and the
representation (4.2). We see that

fi ei—1

Zzwljwlyl(;_w 1 SZSha Zj: (glw-'agh) :ﬁil(y)

7j=1 1=0
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By (4.10) and (4.11), we have

fi ei—1

yefi(al,..., n) <= vi(y;) = Zwaﬂylfﬂ > a;, 1<i<h. (4.12)
=1 1=0

For some integer m;, we have a; = me; +1;, 0 <1, <e; (1 <i<h).
Let a = (agl), ...,a%ll), .. ag ), ...,a,({;)) € 75+ with

(4.13)

o m; + 1, for 0<I<pr;—1
Uitd = Y my, for r<l<e—1, 1<j<f;, 1<i<h.

According to [Arm3, eq. (27),(28)], (4.12) is equivalent to

y € Var, . a) <> vlylp, ) >a),, 0<i<e—1,1<j<fi, 1<i<h

Using (3.2) and (3.15), we see that
hart ot fuan= > >0 D al) and V@)t =V(ar,.,a).  (4.14)

1<i<h 1<j<f; 0<l<e;

4.2. Construction of (¢,s) sequences. Let

1 h
=D, Ay e TS

with ‘ A '
7](?) - Z ’yf??’kx_k, and ’yr()?k elF,, 1<m<n,. (4.15)
k>—w;,m(v)

Let 777(2)1@ be a one-to-one map from F, to {0,1,...,¢ — 1} with 777(2)1@(0) =0, and let
5(7) - (5(7)1’ "‘75(7>h)

with €)= > 3. > nfx(, g it

]{;Su)(l) (fy) 1<5<fi 0<I<e;

where 1w (7) = MaXi<m<e; f; wz‘,m(W)'

Let £(T5) = {&(v) | v € T}
W =€) N[0,1)"1 x [0, +00).

We have that for all v € R the set £(I'5)N([0, 1)"+v) is finite. We see that (0, ....,0) € W,
and #W > 1. Let (uj,u;p) € W with u; € R" ! and w;, € R, i = 1,2, and uyp, = ugp.
Hence 0, (¢ ((ug,urp)) = 0, (6 ((ug, ugp)) € K. Applying (4.3)-(4.4), we have that
uy = ug. Thus W can be enumerated by a sequence (z(n), z,(n))o<n<xw in the following
way:

z(n) = (z1(n), ..., zn_1(n)), zi(n) €R, 2(0)=0, i=1,..., h,
and zn(n) <zp(n+1)€eR, for n=0,1,.. (4.16)
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Now let by,...,by be pairwise coprime integer divisors with b, = b.; (see 4.7), and
fo,, = deg(b;) > 2 (i = 1,...,d). Let i € [1,d]. A digit set D;; C T'(b;%)* associated

with b, is any complete set of coset representatives for T'(b;*)*/T'(b;* 1)L k > 0, where

L(69)+ =T4. By (4.9), we get
#Dip = q", k> 0.
We have that, for any v € I's and every m > 1,
y=do4di+ ...+ dp1+ T (4.17)

where d;;, € D;y, k € [0,m — 1] and z,, € ['(b;™)*. So for each v € I'5 , we can
associate a unique sequence (d;,d;1,d;2,...). Let n;; be a one-to-one map from D, j, to
{0,1,...,¢" — 1},

00, (0) = (i) /a0, (1.18)
and let i
C(n) = (90171 (n)v -+ Pby (n)’ Z(TL)) (419)

where P, (n) = gbbi (gil(z(n)v Zh(n)))

Theorem 4.1. With the above notation, (((n))n>0 is a (t,h 4+ d — 1) sequence with
t=g+fit+. .+ fotfy +. +fo,—h—d

4.3. Proof Theorem 4.1. First, we need the following variant of the Chinese
Remainder Theorem :

Lemma 4.1. Let My, Ny be pairwise coprime integer divisors, and let m; = deg(M;),
[, = TOGY), i = 1,2, Then for all ay,ay € T, there exists a € T'§ with a =
a;(mod T'}), and

{veTls|v=a; (mod (I7)), i=1,2} ={y €T |7 = a (mod (N, 9, ")H)}.

Proof. By the Chinese Remainder Theorem, we have L(91;'9t, H)=L(M; ) UL(OL ).
Hence (M9, 1) =I'(M; 1) UM, ). By (4.9), we get
#{T;/To} = ||det(T;)/det(To)|| = ¢™, i=1,2, and
#{(D1UT,)/To} = ||det(T (') /det(Lo)|| = g™ ™. (4.20)
It is easy to prove that
(TyUly)t =T NIy, (4.21)

In fact, let 8 € (I'y UTy)t. Then for all y € T'; UT, we have < 3,y >€ k[z]. Hence
B €T} fori=1,2. Nowlet 3 € I+ NI'y. Then < B,y >€ k[z| for all y € T;, i = 1,2.
Thus 8 € (I'; UTy)*.

By (4.20), (4.21) and (3.13), we get

#{T5/T=q™, i=1,2 and #{I'5/(TLNTy)}=qg™ .
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Let T'3 = I'{ NTy. Bearing in mind that T'5 D I'f D 'y, we obtain
(F5/T5)/ (T /Ts) =T/

Therefore #{I'1 /T'3} = ¢™2. Now let 31, ..., 3, € ' be any complete set of coset repre-
sentatives for I'{/T's with [ = ¢™2. Suppose that a; + 8 = oy + f; (mod I'y) for some
k,j € [1,1], k # j. Then B = B; (mod I'}t) for i = 1,2. So B = B; (mod I's). We have
a contradiction. Hence oy + f1, ..., a1 + [; is the complete set of coset representatives for
I'5/Ty. Thus there exists j € [1,1] with ap = a3 + 8; (mod I'y). Lemma 4.1 is proved =

We obtain immediately by induction the following assertion:
Corollary 4.1. Let ky,...,kqg > 0 be integers. Then for all ay,...,aq € TS, there exists
a € TS with a = oy (mod T'(b; ")), and

{(yeT5 |y =a; (mod TH(b; %)), i =1,....,d} = {y €T | v = o (mod T'(b7* .6, ") 1)},

(2

where by, ..., by are pairwise coprime integer divisors.
Lemma 4.2. Let N be an integer divisor with 9t = N,, f = deg(N), z = (21, ..., 2s11) €
k$t, a; integers 1 < i < h, a € Z*™! defined in (4.13), ¢ = (c1, .., Cs11);s Crytotms1+j =

agl) (1<j<n; 1<i<h), andlet fiay + ... + frap —f > 0. Then
PN N {V(c—2) + 2} = g totemmeom2e2

where ¢cg = —g — s+ 6(N).
Proof. Suppose that there exists

yeV@)I NI\ {o}. (4.22)

By (4.14), we obtain v € V(ay, ...,az). Let ¥ = (51, ..., 71) = 9~ (7). According to (4.11)-
(4.13), we get
vi(%i) 2 @i, 1<i<h

We have 67!(v) € K. Using (4.1) and (4.6), we obtain
WO ) =% and G(07'(7) =%, 1<i<h

Hence
vi(i(071 (7)) > @i, 1<i<h (4.23)

and
vi(0'(y) > a;, 1<i<h. (4.24)

Using (4.22) and (4.8), we get
v (071 (7)) > ve(M!) forall B e 6. (4.25)
Let ) = OMB~4. B~ . By (4.24) and(4.25), we have

1/%(9_1(7)) + V%(ul) Z 0 VBedD.
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Thus 0~!() belong the Riemann-Roch space of the divisor i; (see, for example, [NiXi,
p. 5]). Bearing in mind that

deg(MB~ .. B™) =f — fia; — ... — fran < 0,

we get that the Riemann-Roch space of the divisor i; is empty. Hence supposition
(4.22) is false: V(a) NT'(M1) \ {o} = 0. Taking into account that c,, . 1n, ,+; > ag-l)
(1 <j<mny 1<i<h), weobtain V(c)* C V(a)*. Therefore

VOENTM )\ {o} = 0.

According to (4.9), [|detD(91)*|| = ¢7¢~*HY. Now using Lemma 3.2 with I' = (9 1)*,
we obtain the assertion of Lemma 4.2. m

End of Proof of Theorem 4.1. Let G4, ..., Gayn, l1, ..., layn > 0 be integers, G; < ¢*
(1 S 1 S d+ h — 1), ld+h = ll + ...+ ld+h—1 —|—t, and let

G, Gi+1 Gith-1 Gagn—1 +1 I I
o [J’ T) S [qld+h_1 S ) X [Garng ™t (Gapn + 1)g ).
We need to prove
£{n> 0] (((n),n) € S} = ¢ (4.26)
Let
li = fo,ki —ps, with 0<p; <fy, 1 <0<d,
and let
G, =Gig", G, = (G + )" 1<i<d.
Now let
S(H) =11 x ... x Iy x 81 X Iy, and S1=1Igp1 X oo X Tgpn_1,
where
H: H +1 Gari Gapi +1
Li=[%% ?’b k; ), avi=| S ), Jarn = [Garnd ", (Gasn + 1)g" "),

with 1 <7 <d, 1 <i < h. We see that

s= U - U S(H).

G\<H\<G| Gl ,<Han<Gly,,
Hence to obtain (4.26), it is sufficient to prove that

#{n>0](¢(n),n) € S(H)} = ¢" (4.27)

withty =t —p; — ... — pa.
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Let

—lari — 1 = fi(virei +vi2) + v; 3, lavh — 9 = fo(vn1en + Vn2) + Uns

with 0 < w0 <e;, 0 < w3 < fi, 1 <i < h. Wesee that v;; <0 for 1 <i < h. We define

¢=(c1, .., copn) and a = (al .. a2l . a) as follows:

Vi1 + 2, for 0<I<wi9s—1 or l=v;9 and j<w;3+1
Crni+todn_1+Hfiti =

vl + 1, otherwise, 1<7<fi, 1<i<h
and
S0 Jvint2, for 0<I<w-1
Uit — v+ 1, otherwise, 1<5<fi, 1<i<h.

It is easy to see that

al) < Cuptnsigey  for 1<1<e, 1<j<fi,1<i<h (4.28)
and

Z Z Cratotng a+ifitj = (Vi1 + 1) fie; + fivio +vig + 1, 1<i<h.

1<5<fi 0<I<e;

Hence

1+ .ot csr=lagn—lgg1— . —lgon1— g+ s+ 2. (429)
We have similarly that

Z Z alf+] v11+1>fzez+fo12

1<5<f; 0<i<e;

Now we define ay, ..., a according to (4.13). By (4.13), we have

frar+ o4 fran =30 cin Dicics Do<ice; @ l(fﬂrj > i<icnin + 1) fiei + fivig

=layn —laggr — o —layh1 —9g+s+2—h—viz— ... —vp3
Hence
fra1 + .+ fran + deg(b7F1 075 = fiay + ...+ faan — krfo, — ... — kafe,
:ld+h_ld+1_-u_ld-i—h—l_g+3+2_h_vl,3_~~_Uh,3_l1_m_ld_pl_-u_pd
:t—g+8+2—h—1}173—...—Uh,g—pl—...—deS—l—Q—hZ1. (430)

Consider the decomposition (4.15). Let

¥(n) = (1 (1), oo W (1), ooy W (1), oo 78 (1)) = €71 (2(n), 21(n)) € T,

1 1 h h _ _ _
= (2§ ) Zﬁll)a .. Z§ )7 .. 27(Lh)) :g 1<Gd+1q ll7 (XD Gd+h—1q ld+h717 Gd+hqld+h)‘
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It is easy to verify that
(2(n), 20(n)) € St % Ty == V(i (0) = 24)) = Consctn gy — 2
forall0 <[l <e; —1,1<j<f;, 1<i<h,where
Lion = 0 " Lapn = [Gasng™ 9 (Gasn + 1)gl 79t
(we need the factor ¢79*! to prove (4.33)). Hence
(2(n), za(n)) € Sy x I, <= v(n) € V(c —2) + z.
By (4.17)-(4.19), we have
) (n) € I; <= €71 (2(n), 24(n)) = wy(mod T(6;%)*)

for some w; € 'S, j=1,...,d.
Using Corollary 4.1, we get

(06, (1), ooy o, (1)) € ) X ... X Iy <= £ (2(n), 2n(n)) = wo (mod T(b7....6;")+)
(4.31)
for some wy € T'g, 1 <14 < d. By (4.31), we have

(2(n), zn(n)) € I1 X .. x Igx Sy x I, == £ H(2(n), 2541(n))) = wo
(mod T'(b;™ .6, ")) and  €7((2(n), ze1(n))) € V(c — 2) + . (4.32)

Therefore

¢ = #{n >0 (C(n),zn(n)) € 1 X .. x Iy x Sy x Iy}
= #{y e T(b7" ... ") | v —wy € V(e —2) + 2)}.

Bearing in mind (4.28) and (4.30), we get that the suppositions of Lemma 4.2 are true.
Thus
pr=0C1+ ...+ cCsy1 —Cco— 25 — 2,

where ¢y = HdetF(bl_kl....b;kd)lH. By (4.9), we get

co=—9g—s+kifoe, +...+kifo,=bL+...+lag+p1+...+pi—9—5.
According to (4.29), we have
c14...tcsi1—co—25—2=lgp—li—..—lgsp 1—9+s+2—p1—...—Pg+g+5—25—2 = 1.
Therefore the assertion

#{n > 0 | (C(n),zh(n)) - ]1 X ... X Id X Sl X I;Jrh} = qtl
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is true for all Iy, ..., 13 p > 0 with lgop, =13 + ... + lgyp—1 +t. In particular, for I; =0, ¢ =
1,...d+h—1and lg., =t, we obtain

#{n >0 2(n) € [Bg™" (B+1)¢")} =¢" (4.33)
for all B > 0. Hence
#{n > 0| z0(n) € [Bg=o, (B + 1)glern=o)) = govn
for all B > 0 and l4y, > t. Thus

#{n >0 (¢(n),n) € S(H)} = ¢".

Hence assertion (4.27) and Theorem 4.1 are proved. m
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