ON A THEOREM OF SHKREDOV

TOM SANDERS

ABSTRACT. We show that if A is a finite subset of an abelian group with ad-
ditive energy at least c|A|? then there is a set £ C A with |£| = O(c™ ! log |A4])
such that |A N Span(L)| = Q(c!/3|A)).

1. INTRODUCTION AND NOTATION

We shall prove the following theorem which is a slight strengthening of [Shk08a,
Theorem 1.5].

Theorem 1.1. Suppose that G is an abelian group and A C G is a finite set with
114 * Lall2(qy = clA]>. Then there is a set L C A with |L] = O(c™'log|A|) such
that' |A N Span(L)| = Q(c'/3|Al).

It is immediate from the Cauchy-Schwarz inequality that if |A+ A| < K|A| then
114 = 1AH?2(G) > |A|?/K whence the conclusion of the above result applies to A.
This was noted by Shkredov in [Shk08a, Corollary 3.2], however, something slightly
stronger is also true.?

Theorem 1.2. Suppose that G is an abelian group and A C G is a finite set with
|A+ Al < KJ|A|. Then there is a set L C A with |L| = O(K log|A|) such that
A C Span(L).

Before we begin with our proofs it will be useful to recall some well-known tools;
Rudin [Rud90] is the classic reference for these.
A subset L of an abelian group G is said to be dissociated if

Z 0.0 =0g and o € {—1,0,1}* implies that o = 0.
zeLl

Algebraically, dissociativity is particularly useful in view of the following easy
lemma.

Lemma 1.3. Suppose that G is an abelian group and A C G is finite. If L C A is
a mazximal dissociated subset of A then A C Span(L).

Analytically, dissociativity can be handled very effectively using the Fourier
transform which we take a moment to introduce. N

Suppose that G is a (discrete) abelian group. We write G for the dual group, that
is the compact abelian group of homomorphisms from G to S* :={z € C: |z| = 1}

IRecall that Span(£) is the set of all sums > wer Oz-x where o € {~1,0, 1}~
2Since writing this note it has come to the author’s attention [Shk08b] that Shkredov has also
independently proved Theorem 1.2.
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endowed with the Haar probability measure p5, and define the Fourier transform
of a function f € ¢}(G) to be

J:G—=Ciym Y fa)y().

zeG

The following result is a key tool in harmonic analysis.

Proposition 1.4 (Rudin’s inequality). Suppose that G is an abelian group and
L C G is a dissociated set. Then, for each p € [2,00) we have

171l zr gy = OBl fllez(z)) for all f € E(L).

The proof may be found in many places (e.g. [Rud90]) and proceeds for even
integral values of p (from which the general result follows immediately) where one
may apply Parseval’s theorem to get a physical space expression which counts
additive relations; dissociativity tells us that there are few of these and so the norm
is small.

2. THE PROOF OF THEOREM 1.1

Our proof of Theorem 1.1 is guided by Shkredov [Shk08a] although we are able
to make some simplifications and improvements by using some standard facts about
the LP(ug)-norms.

We require the following lemma which is implicit in the paper [Bou90] of Bour-
gain.

Lemma 2.1. Suppose that G is a abelian group, A C G is finite, | is a positive
integer and p > 2. Then there is a set A’ C A such that all dissociated subsets of
A’ have size at most | and

T4 = Tarll oo gy = O(VP/UAI).

Proof. We define sets Ag D Ay D --- D Ag and Ly, L1,..., L, iteratively starting
with Ag := A. Suppose that we have defined A;.

(i) If there is no dissociated subset of A; with size [ then terminate the itera-
tion;

(ii) if there is a dissociated subset of A; with size [ then let £; be any such set
and put Ai+1 = Al \ﬁl

The algorithm terminates at some stage s with s < |A|/l since |A;41| = |4 — 1.
Write A’ := A, which consequently has no dissociated subset of size greater than I.
Since A is the disjoint union of the sets Lg,...,Ls_1 and A’, and the Fourier
transform is linear we have
- - s—1 - s—1 .
T4 = Talloogug) = 1> T loeogug) < DIz Lo ug)-
i=0 i=0

Now each summand is O(,/p||1,
ITa = Tallnug) = O(sv/pl) = O(Vp/IIA)),

in view of the upper bound on s. (I

;) = O(v/pl), by Rudin’s inequality, whence
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Proof of Theorem 1.1. Write p := 2 + log |A| and let [ be an integer with | =
O(pc=P=2)/P|A|2/P) = O(c™ ' log|A|) such that when we apply Lemma 2.1 to A we
get a set A’ C A for which

(2.1) ||TZ - fX’HLP(u@) < cP=2/2p 4| = D/P /4,

Let £ be a maximal dissociated subset of A’. We have |£]| < I = O(c"!log|A|) by
the choice of I, and A" C Span(£) by Lemma 1.3, whence |A N Span(L)| > |A’| and
the result will follow from a lower bound on |A’|.

By the log-convexity of the LP(juz) norms we have

(2p—8)/ 2 2 —2

1T = Tarllfagyy < T4 = Dol G0 72T — Ta I35
2 8 2 2 2
= a0 PN = T e

- 2 2
< |A|(P 4)/(p—2) ||1A7 1A,|| 11/(29 ) )’

by Parseval’s theorem and the fact that A’ C A. Now, inserting the bound in (2.1)
we get that

[Ta— 1A,||ﬁz4(%) < JA|P=0/P=2) | A|Cr=D)/(p=2) jodr/(P=2) ||1A\|i4(#@)/24~
On the other hand, by the triangle inequality,
1T = Tarllzagug) = 1Tallcogug) — ITarllze g
whence, on combination with the previous, we have
(2.2) arllZa gy = alZau,) /2" = AP /2%
Finally, we note that
1Ty < T T [y < AP,

by Holder’s inequality, Parseval’s theorem and the Hausdorff-Young inequality. The
result follows on taking cube roots. O

3. THE PROOF OF THEOREM 1.2

The proof is essentially Theorem 6.10 of Lépez and Ross [LR75] coupled with
Lemma 1.3.

Proof of Theorem 1.2. Write f :=1444%1_4. Then

T /|ﬂ+7<v> Al ()

([ mraeRaugty ) (/u Idug()> :
= VIA+A|- A < VKA,

by the Cauchy-Schwarz inequality, Parseval’s theorem and the doubling condition
|A 4 A| < K|A]. Furthermore || f|¢(c) < |A] and || flle1(e) = |Al|A + Al and so

112200y = 1122y < Flles eyl flleray < TAPIA+ Al < K|AP,
by Parseval’s theorem, Holder’s inequality and the doubling condition. Whence, by
log-convexity of the L”,(u@) norms, we have

£l o (1g) SVE|APYP for all p' € [1,2].
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Suppose that £ is a maximal dissociated subset of A and (p,p’) is a conjugate
pair of exponents with p’ € (1,2]. Then, by Rudin’s inequality, we have

1£1220y = (Fles Freg) < I el e ua) 11 o g
= OWPlfllewlfllLe ug))-

The construction of f ensures that for any a € A, f(a) = 1aya * 1_a(a) > |A4| so,
canceling || f||¢2(z) above we get

ILLTAE < fllee ey = OWBIFll o (ug)) = O(VPEIAPH).

Putting p = 2 + log |A| and some rearrangement tells us that |£]| = O(K log|A]).
Since £ was maximal Lemma 1.3 then yields the result. |

4. CONCLUDING REMARKS

In some ways the results are close to best possible. In Theorem 1.2 suppose that
A is the union of K highly dissociated points and a long arithmetic progression (or
subgroup if G has a lot of torsion). It is easy to see that in this case if £ is such
that A C Span(L) then |£| = Q(K + log|A|). If K is around log®®) |A| then this
is close to the upper bound in the theorem; if K = logo(l) |A| then there are better
results known: this is the celebrated Green-Ruzsa-Freiman theorem [GROT].

In Theorem 1.1 the ¢'/3 cannot be improved: consider an arithmetic progression
(or, again, subgroup if G has a lot of torsion) of length ¢!/3|A| unioned with |A|
dissociated points. This satisfies the lower bound on the energy but one cannot hope
to find any structure other than the progression, i.e. in more than a proportion
Q(c'/3) of the set. Of course, this bound is not the important bound in the result;
the bound on £ is what is really of interest.
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