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Abstract

Let π = π1π2 · · · πn be any permutation of length n, we say a descent πiπi+1 is a lower,
middle, upper if there exists j > i + 1 such that πj < πi+1, πi+1 < πj < πi, πi < πj,
respectively. Similarly, we say a rise πiπi+1 is a lower, middle, upper if there exists
j > i + 1 such that πj < πi, πi < πj < πi+1, πi+1 < πj, respectively. In this paper
we give an explicit formula for the generating function for the number of permutations
of length n according to number of upper, middle, lower rises, and upper, middle,
lower descents. This allows us to recover several known results in the combinatorics
of permutation patterns as well as many new results. For example, we give an explicit
formula for the generating function for the number of permutations of length n having
exactly m middle descents.
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1. Introduction

Almost a hundred years ago, MacMahon [6] started the theory of permutation statistics
by studying the number descents in a permutation. This statistic still play an important
role in the theory. The descent set (respectively, rise set) of a permutation π =
π1π2 · · · πn is the set of indices i for which πi > πi+1 (respectively, πi < πi+1), and the
number of descents (respectively, rises) in a permutation π is the cardinality of the
descent set (respectively, rise set). The distribution of the number of descents (rises)
in the set of permutations of length n is given by the Eulerian numbers A(n, k). More
precisely, the number of permutations of length n with exactly k descents (rises) is
given by the Eulerian number A(n, k), see [3].

By the definition, πiπi+1 is a descent (respectively, rise) in a permutation π1π2 · · · πn if
and only if πi > πi+1 (respectively, πi < πi+1). In this paper we consider the refinement
of the notion of a descent (rise) by fixing an element πj of the right side of πi+1, namely
j > i + 1, such that either πj < m = min{πi, πi+1}, πj > M = max{πi, πj+1}, or
m ≤ πj ≤ M . We provide exact formulas for the distribution generating functions of
our new statistics.

Let Sn denote the set of permutations of length n (permutations of [n] = {1, 2, . . . , n}).
For any π = π1π2 · · · πn ∈ Sn, we say a descent πiπi+1 is a lower, middle, upper if there
exists j > i + 1 such that πj < πi+1, πi+1 < πj < πi, πi < πj, respectively. Similarly,
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we say that a rise πiπi+1 is a lower, middle, upper if there exists j > i + 1 such that
πj < πi, πi < πj < πi+1, πi+1 < πj, respectively. We define the following six statistics:

• DesL(π) = {i | πiπi+1 is a lower descent}, desL(π) = #DesL(π),
• DesM(π) = {i | πiπi+1 is a middle descent}, desM(π) = #DesM(π),
• DesU(π) = {i | πiπi+1 is a upper descent}, desU(π) = #DesU(π),
• RisL(π) = {i | πiπi+1 is a lower rise}, risL(π) = #RisL(π),
• RisM(π) = {i | πiπi+1 is a middle rise}, risM(π) = #RisM(π),
• RisU(π) = {i | πiπi+1 is a upper rise}, risU(π) = #RisU(π).

For example, if π = 316425 ∈ S6, then DesL(π) = {3}, DesM(π) = {1, 3}, DesU(π) =
{1, 4}, RisL(π) = ∅, RisM(π) = {2}, and RisU(π) = ∅. Then desL(π) = 1, desM(π) =
desU(π) = 2, risL(π) = risU(π) = 0 and risM(π) = 1.

Clearly, desX(π) = risX(πc) for each permutation π of length n and X ∈ {L,M,U},
where πc = (n+ 1− π1)(n+ 1− π2) · · · (n+ 1− πn) denote the complement of π.

Our main goal is to find an explicit formula for the generating function

GG(x) =
∑
n≥0

xn ∑
π∈Sn

∏
X∈{L,M,U}

(d
desX(π)
X r

risX(π)
X )

 ,

see the next section. In Section 3 we present several application for our main goal,
Theorem 2.8. In particular, we show that the generating function for the number of
permutations of length n with exactly one middle descent is given by

1−
√

2
√

1− 4x− 1

2x
− 1√

1− 4x
,

and the generating function for number of permutations of length n with exactly two
middle descent is given by

1−
√

2
√

2
√

1− 4x− 1− 1

2x
+

x

(1− 4x)
√

1− 4x
− 1
√

1− 4x
√

2
√

1− 4x− 1
.

2. Derivation an explicit formula for GG(x)

Denote the generating function for the number of permutations π of length n with
π1 · · · πm = i1 · · · im according to the statistics desX and risX , X ∈ {L,M,U}, by
f(n|i1 · · · im) = f(n; dL, dM , dU , rL, rM , rU |i1 · · · im), that is,

f(n|i1 · · · im) =
∑

π=i1i2···imπ′∈Sn

∏
X∈{L,M,U}

(
d
desX(π)
X r

risX(π)
X

)
.

At first, let us present a recurrence relation for the polynomials f(n|i).
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Proposition 2.1. Let n ≥ 3 and 3 ≤ i ≤ n− 2. Then

f(n|1) = rUf(n− 1|1) + rUrM
n−2∑
j=2

f(n− 1|j) + rMf(n− 1|n− 1),

f(n|2) = dUf(n− 1|1)

+rUrLf(n− 1|2) + rUrMrL
n−2∑
j=3

f(n− 1|j) + rMrLf(n− 1|n− 1),

f(n|i) = dUdMf(n− 1|1) + dUdMdL
i−2∑
j=2

f(n− 1|j) + dUdLf(n− 1|i− 1)

+rUrLf(n− 1|i) + rUrMrL
n−2∑
j=i+1

f(n− 1|j) + rMrLf(n− 1|n− 1),

f(n|n− 1) = dUdMf(n− 1|1) + dUdMdL
n−3∑
j=2

f(n− 1|j) + dUdLf(n− 1|n− 2)

+rLf(n− 1|n− 1),

f(n|n) = dMf(n− 1|1) + dMdL
n−2∑
j=2

f(n− 1|j) + dLf(n− 1|n− 1).

Proof. By the definitions we have that

f(n|i) =
i−1∑
j=1

f(n|ij) +
n∑

j=i+1

f(n|ij),

for all n ≥ 3. Now let us find the equation of f(n|1). It is not hard to see that
f(n|12) = rUf(n− 1, 1), f(n|1j) = rUrMf(n− 1|j − 1) for all j = 3, 4, . . . , n− 1, and
f(n|1n) = rMf(n− 1|n− 1). Therefore,

f(n|1) = rUf(n− 1|1) + rUrM

n−2∑
j=2

f(n− 1|j) + rMf(n− 1|n− 1).

All the other equations can be obtained by using similar arguments as above. �

The above proposition generates quickly the polynomials f(n|i), see Table 1.

n f(n|1) f(n|2) f(n|3) f(n|4)

1 1
2 1 1
3 rU + rM dU + rL dM + dL
4 r2

U + rUrM+ dUrU + dUrM+ dUdMrU + rLdL+ dMrU + dMrM+
rUrMrL + rMdL+ rLrUdU + rUr

2
L+ d2

UdL + dUdLrL+ dUdMdL + dMdL+
rMdM + rUrMdU rMrLdM + rMrLdL rLdM + dUdMrM rLdMdL + d2

L

Table 1. The polynomials f(n|i) for all 1 ≤ i ≤ n ≤ 4.
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Define f(n) = f(n; dL, dM , dU , rL, rM , rU) to be the generating function for the number
of permutations of length n according to the statistics desX and risX , that is,

f(n) =
∑
π∈Sn

∏
X∈{L,M,U}

(
d
desX(π)
X r

risX(π)
X

)
.

Clearly, for all n ≥ 1, f(n) =
∑n

i=1 f(n|i). For example, Table 1 gives

f(1) = 1,

f(2) = 2,

f(3) =
∑

X∈{U,L,M}(rX + dX),

f(4) = (rU + rM)(dUdM + dU + dM + rU) + (rM + dL)(rMrL + rL + rM + dL)
+(dU + rL)(rUrL + rUrM + dLdU + dLdM).

Now, we introduce the multivariate generating function

F (x, v, w) = F (x, v, w; dL, dM , dU , rL, rM , rU)

for the number of permutations π = π1π2 · · · πn of length n according to the statistics
desX and risX , X ∈ {L,M,U}, and π1 (the leftmost element of π) as

F (x, v, w) =
∑
n≥0

Fn(v, w)xn =
∑
n≥0

xn

(
n∑
i=1

f(n|i)vn−iwi−1

)
.

Clearly,

(2.1) f(n|n) = Fn(0, 1), f(n|1) = Fn(1, 0) and f(n) = Fn(1, 1), for all n ≥ 1.

In this section we interest to find an explicit formula for the generating function
F (x, v, w). In order to do that let us write a recurrence relation for the polynomi-
als Fn(v, w). Proposition 2.1 gives

f(n|1)︸ ︷︷ ︸
〈0〉

= rUf(n− 1|1)︸ ︷︷ ︸
〈1〉

+ rUrM

n−2∑
j=2

f(n− 1|j)︸ ︷︷ ︸
〈6〉

+ rMf(n− 1|n− 1)︸ ︷︷ ︸
〈7〉

,

f(n|2)︸ ︷︷ ︸
〈0〉

= dUf(n− 1|1)︸ ︷︷ ︸
〈2〉

+ rUrLf(n− 1|2)︸ ︷︷ ︸
〈5〉

+ rUrMrL

n−2∑
j=3

f(n− 1|j)︸ ︷︷ ︸
〈9〉

+ rMrLf(n− 1|n− 1)︸ ︷︷ ︸
〈8〉

,

f(n|i)︸ ︷︷ ︸
〈0〉

= dUdMf(n− 1|1)︸ ︷︷ ︸
〈3〉

+ dUdMdL

i−2∑
j=2

f(n− 1|j)︸ ︷︷ ︸
〈11〉

+ dUdLf(n− 1|i− 1)︸ ︷︷ ︸
〈10〉

+ rUrLf(n− 1|i)︸ ︷︷ ︸
〈5〉

+ rUrMrL

n−2∑
j=i+1

f(n− 1|j)︸ ︷︷ ︸
〈9〉

+ rMrLf(n− 1|n− 1)︸ ︷︷ ︸
〈8〉

,
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f(n|n− 1)︸ ︷︷ ︸
〈0〉

= dUdMf(n− 1|1)︸ ︷︷ ︸
〈3〉

+ dUdMdL

n−3∑
j=2

f(n− 1|j)︸ ︷︷ ︸
〈11〉

+ dUdLf(n− 1|n− 2)︸ ︷︷ ︸
〈10〉

+ rLf(n− 1|n− 1)︸ ︷︷ ︸
〈14〉

,

f(n|n)︸ ︷︷ ︸
〈0〉

= dMf(n− 1|1)︸ ︷︷ ︸
〈4〉

+ dMdL

n−2∑
j=2

f(n− 1|j)︸ ︷︷ ︸
〈12〉

+ dLf(n− 1|n− 1)︸ ︷︷ ︸
〈13〉

.

Multiplying the equation of f(n|i) in the above system by vn−iwi−1 and summing over
all possibly values i = 1, 2, . . . , n, we obtain that the contribution of all the terms
assigned in the above system by 〈a〉, a = 0, 1, . . . 14, in the polynomial Fn(v, w) is
given by

• Case a = 0:
n∑
i=1

f(n|i)vn−iwi−1 = Fn(v, w),

• Case a = 1: rUv
n−1f(n− 1|1) = rUv

n−1Fn−1(1, 0),
• Case a = 2: dUv

n−2wf(n− 1|1) = dUv
n−2wFn−1(1, 0),

• Case a = 3:

dUdM
n−1∑
i=3

vn−iwi−1f(n− 1|1) = dUdMv
n−3w2Fn−1(1, 0)

n−1∑
i=3

(
w
v

)i−3

= dUdMFn−1(1, 0)
vw2(vn−3 − wn−3)

v − w
,

• Case a = 4: dMv
0wn−1f(n− 1|1) = dMw

n−1Fn−1(1, 0),
• Case a = 5:

rUrL
n−2∑
i=2

f(n− 1|i)vn−iwi−1

= rUrLv (Fn−1(v, w)− wn−2Fn−1(0, 1)− vn−2Fn−1(1, 0)) ,

• Case a = 6:

rUrMv
n−1

n−2∑
j=2

f(n− 1|j) = rUrMv
n−1 (Fn−1(1, 1)− Fn−1(0, 1)− Fn−1(1, 0)) ,

• Case a = 7: rMv
n−1f(n− 1|n− 1) = rMv

n−1Fn−1(0, 1),
• Case a = 8:

rMrL
n−2∑
i=2

vn−iwi−1f(n− 1|n− 1) = rMrLFn−1(0, 1)v
2w(vn−3−wn−3)

v−w ,
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• Case a = 9:

rUrMrL
n−3∑
i=2

vn−iwi−1
n−2∑
j=i+1

f(n− 1|j)

= rUrMrLv
n−2w

n−2∑
j=3

(
j−3∑
i=0

wi/vi
)
f(n− 1|j)

= rUrMrL
vn−1w
v−w

n−2∑
j=2

(1− wj−2/vj−2)f(n− 1|j)

= rUrMrL
vn−1w
v−w (Fn−1(1, 1)− Fn−1(1, 0)− Fn−1(0, 1)))

−rUrMrL v2

v−w (Fn−1(v, w)− vn−2Fn−1(1, 0)− wn−2Fn−1(0, 1)),

• Case a = 10:

dUdL
n−1∑
i=3

vn−iwi−1f(n− 1|i− 1)

= dUdLw
n−2∑
i=2

f(n− 1|i)vn−1−iwi−1

= dUdLw(Fn−1(v, w)− vn−2Fn−1(1, 0)− wn−2Fn−1(0, 1)),

• Case a = 11: Similarly as in the case a = 9 we have that

dUdMdL
n−3∑
i=2

vn−2−iwi+1
i∑

j=2

f(n− 1|j)

= dUdMdL
w2

v−w (Fn−1(v, w)− vn−2Fn−1(1, 0)− wn−2Fn−1(0, 1)))

−dUdMdL vw
n−1

v−w (Fn−1(1, 1)− Fn−1(1, 0)− Fn−1(0, 1)),

• Case a = 12:

dMdLw
n−1

n−2∑
i=2

f(n− 1|i) = dMdLw
n−1(Fn−1(1, 1)− Fn−1(1, 0)− Fn−1(0, 1)),

• Case a = 13: dLw
n−1f(n− 1|n− 1) = dLw

n−1Fn−1(0, 1),
• Case a = 14: rLvw

n−2f(n− 1|n− 1) = rLvw
n−2Fn−1(0, 1).

Therefore, adding the above contributions, Cases a = 1, 2, . . . , 14, we obtain a recur-
rence relation for the polynomials Fn(v, w):

(2.2)

Fn(v, w) =
(
rUrLv + dUdLw − rUrMrL v2

v−w + dUdMdL
w2

v−w

)
Fn−1(v, w)

+
(
rUrMv

n−1 + dMdLw
n−1 + rUrMrL

vn−1w
v−w − dUdMdL

wn−1v
v−w

)
Fn−1(1, 1)

+

(
ruv

n−1 + dUwv
n−2 + dUdM

vw2(vn−3−wn−3)
v−w + dMw

n−1

−rUrLvn−1 − rUrMvn−1 + rUrMrLv
n−1 − dUdLwvn−2

−dUdMdLw
2v(vn−3−wn−3)

v−w − dMdLwn−1

)
Fn−1(1, 0)

+

(
rMv

n−1 − rUrLvwn−2 − rUrMvn−1 + rMrL
v2w(vn−3−wn−3)

v−w

−rUrMrL v
2w(vn−3−wn−3)

v−w − dUdLwn−1 + dUdMdLw
n−1

−dMdLwn−1 + dLw
n−1 + rLvw

n−2

)
Fn−1(0, 1),
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with the initial conditions F0(v, w) = F1(v, w) = 1 and F2(v, w) = v + w. Multiplying
(2.2) by xn and summing over all possibly values n ≥ 3 we obtain the following result.

Proposition 2.2. Define

K(x, v, w) = 1− x
(
rUrLv − v2rUrMrL

v−w + dUdLw + w2dUdMdL

v−w

)
,

A11(x, v, w) = −rUrMx
(
1 + wrL

v−w

)
,

B11(x, v, w) = −dMdLx
(
1− vdU

v−w

)
,

A10(x, v, w) = −x
(
rU(1− rM)(1− rL) + wdU

v

(
1 + wdM

v−w

)
(1− dL)

)
,

B10(x, v, w) = −dMx(1− dL)
(
1− vdU

v−w

)
,

A01(x, v, w) = −rMx(1− rU)
(
1 + wrL

v−w

)
,

B01(x, v, w) = −x
(
dL(1− dU)(1− dM) + vrL

w

(
1− vrM

v−w

)
(1− rU)

)
,

and

H(x, v, w)

= 1 + x+ (v + w)x2 − x(1 + x)

(
rUrLv + dUdLw − v2rUrMrL

v−w + w2dUdMdL

v−w

)
−x(1 + xv)

(
rU(1− rM)(1− rL) + rM(1 + wrL

v−w ) + wdU

v
(1− dL)(1 + wdM

v−w )

)
−x(1 + xw)

(
dL(1− dM)(1− dU) + dM(1− vdU

v−w ) + vrL
w

(1− rU)(1− vrM
v−w )

)
.

Then the generating function F (x, v, w) satisfies the

(2.3)

K(x, v, w)F (x, v, w)
+A11(x, v, w)F (xv, 1, 1) +B11(x, v, w)F (xw, 1, 1)
+A10(x, v, w)F (xv, 1, 0) +B10(x, v, w)F (xw, 1, 0)
+A01(x, v, w)F (xv, 0, 1) +B01(x, v, w)F (xw, 0, 1) = H(x, v, w).

Now, let us express the generating functions F (x, 1, 0) and F (x, 0, 1) in terms of
F (x, 1, 1).

Lemma 2.3. Define

r(x) = 1 + (1− rU − dL + dMdL)x+ (1− dL − dM(rM − dL))(1− rU)x2

+(rM − dL)(1− dM)(1− rU)x3,

r′(x) = xrM(rU − xdL(ru − dM)),

s(x) = 1 + (1− rU − dL + rUrM)x+ (1− rU − rM(dM − rU))(1− dL)x2

+(dM − rU)(1− dL)(1− rM)x3,

s′(x) = xdM(dL − xrU(dL − rM)),

t(x) = (1− xrU(1− rM))(1− xdL(1− dM))− x2dMrM(1− rU)(1− dL).

Then

(2.4) F (x, 1, 0) =
r(x)

t(x)
+
r′(x)

t(x)
F (x, 1, 1) and F (x, 0, 1) =

s(x)

t(x)
+
s′(x)

t(x)
F (x, 1, 1).
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Proof. Applying (2.2) for v = 1 and w = 0 we obtain that

Fn(1, 0) = rU(1− rM)Fn−1(1, 0) + rUrMFn−1(1, 1) + rM(1− rU)Fn−1(0, 1)

with the initial conditions F0(v, w) = F1(v, w) = 1 and F2(v, w) = v + w. Rewriting
the above recurrence relation in terms of generating functions we arrive at

(2.5)
(1− xrU(1− rM))F (x, 1, 0)− xrM(1− rU)F (x, 0, 1)

= 1 + x(1 + x)(1− rU)(1− rM) + xrUrMF (x, 1, 1).

Now applying (2.2) for v = 0 and w = 1 we obtain that

Fn(0, 1) = dL(1− dM)Fn−1(0, 1) + dMdLFn−1(1, 1) + dM(1− dL)Fn−1(1, 0)

with the initial conditions F0(v, w) = F1(v, w) = 1 and F2(v, w) = v + w. Rewriting
the above recurrence relation in terms of generating functions we arrive at

(2.6)
(1− xdL(1− dM))F (x, 0, 1)− xdM(1− dL)F (x, 1, 0)

= 1 + x(1 + x)(1− dL)(1− dM) + xdMdLF (x, 1, 1).

Solving the system equations (2.5) and (2.6) we get the desired result. �

Using the expressions of the generating functions F (x, 1, 0) and F (x, 0, 1) as described
in (2.4) together with Proposition 2.2, we obtain that the generating function F (x, v, w)
satisfies

(2.7)

K(x, v, w)F (x, v, w)

+
(
A11(x, v, w) + A10(x, v, w) r

′(xv)
t(xv)

+ A01(x, v, w) s
′(xv)
t(xv)

)
F (xv, 1, 1)

+
(
B11(x, v, w) +B10(x, v, w) r

′(xw)
t(xw)

+B01(x, v, w) s
′(xw)
t(xw)

)
F (xw, 1, 1)

= H(x, v, w)− A10(x,v,w)r(xv)+A01(x,v,w)s(xv)
t(xv)

− B10(x,v,w)r(xw)+B01(x,v,w)s(xw)
t(xw)

,

where the rational functions K(x, v, w), Aij(x, v, w) and Bij(x, v, w) are given in the
statement of Proposition 2.2, and the polynomials r(x), r′(x), s(x), s′(x) and t(x) are
given in the statement of Lemma 2.3.

Define FF (x,w) to be the generating function F (x, 1, w), that is,

FF (x,w) = FF (x,w; rU , rM , rL, dU , dM , dL) = F (x, 1, w; rU , rM , rL, dU , dM , dL).

Then (2.7) for v = 1 gives

Theorem 2.4. Let

K(x,w) = K(x, 1, w),

A(x,w) = A11(x, 1, w) + A10(x, 1, w) r
′(x)
t(x)

+ A01(x, 1, w) s
′(x)
t(x)

,

B(x,w) = B11(x, 1, w) +B10(x, 1, w) r
′(xw)
t(xw)

+B01(x, 1, w) s
′(xw)
t(xw)

,

H(x,w) = H(x, 1, w)− A10(x,1,w)r(x)+A01(x,1,w)s(x)
t(x)

− B10(x,1,w)r(xw)+B01(x,1,w)s(xw)
t(xw)

,

where the rational functions K(x, v, w), Aij(x, v, w) and Bij(x, v, w) are given in the
statement of Proposition 2.2, and the polynomials r(x), r′(x), s(x), s′(x) and t(x) are
given in the statement of Lemma 2.3. Then the generating function FF (x,w) satisfies

(2.8) K(x,w)FF (x,w) + A(x,w)FF (x, 1) +B(x,w)FF (xw, 1) = H(x,w).
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The above functional equation, namely (2.8), can be solved systematically using the
kernel method (see [1, 5]). In this case, if we assume that there is a small branch
w = u(x) such that K(x, u(x)) = 0 then we obtain

A(x, u(x))GG(x) +B(x, u(x))GG(xu(x)) = H(x, u(x)),

where GG(x) = GG(x; rU , rM , rL, dU , dM , dL) = FF (x, 1; rU , rM , rL, dU , dM , dL). Define,

(2.9) u(x) =
1− xrUrL(1− rM)

1− x(rUrL − dUdL)
C
(
xdUdL(1− dM)(1− xrUrL(1− rM))

1− x(rUrL − dUdL))2

)
,

and C(t) = 1−
√

1−4t
2t

is the generating function for the Catalan numbers 1
n+1

(
2n
n

)
. Note

that u(x) is the zero of the following quadric equation

K(x, u) = (1− xrLrU(1− rM))− (1− x(rLrU − dUdL))u+ xdUdL(1− dM)u2 = 0.

Hence, Theorem 2.4 gives a functional equation that GG(x) satisfies.

Theorem 2.5. Let H(x,w), A(x,w), B(x,w) defined as in the statement of Theo-
rem 2.4. Then, the generating function

GG(x) =
∑
n≥0

f(n)xn =
∑
n≥0

xn ∑
π∈Sn

∏
X∈{L,M,U}

(d
desX(π)
X r

risX(π)
X )


satisfies

A(x, u(x))GG(x) +B(x, u(x))GG(xu(x)) = H(x, u(x)).

Note that the functional equation in Theorem 2.5 can be solved easily if hold either
A(x, u(x)) = 0 or B(x, u(x)) = 0. In general, to obtain an explicit formula for the
generating function GG(x) we need the following lemmas.

Lemma 2.6. Let Q(x) be any generating function satisfies f(x) = p(x)+q(x)f(xu(x)).
Then

f(x) =
∑
j≥0

p(wj(x))

j−1∏
i=0

q(wi(x)),

where w0(x) = x and wj(x) = wj−1(xu(x)) for j ≥ 1.

Proof. Applying the equation f(x) = p(x) + q(x)f(xu(x)) infinite number of times we
get the desired result. �

Let H(x,w), A(x,w), B(x,w) defined as in the statement of Theorem 2.4. Define

P (x) =
H(x, u(x))

A(x, u(x))
and Q(x) = − B(x, u(x))

xA(x, u(x))
.

Then the following result holds immediately from the definitions (can be checked using
any mathematical programming such as Maple and Mathematica).

Lemma 2.7. The generating functions P (x) and Q(x) are analytical functions at x = 0
with P (0) = 1 and limx→0Q(x) 6= 0.

Theorem 2.5 together with Lemmas 2.6-2.7 states an explicit formula for the generating
function GG(x).
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Theorem 2.8. The generating function

GG(x) =
∑
n≥0

f(n)xn =
∑
n≥0

xn ∑
π∈Sn

∏
X∈{L,M,U}

(d
desX(π)
X r

risX(π)
X )


is given by

GG(x) =
∑
j≥0

xjP (wj(x))

j−1∏
i=0

Q(wi(x)),

where w0(x) = x and wj(x) = wj−1(xu(x)) for j ≥ 1.

Note that u(0) = 1 and wj(0) = 0 for all j ≥ 0. Thus P (wj(0)) = 1 and limx→0Q(wj(x)) 6=
0 for all j ≥ 0. Hence, the expression of the generating function GG(x) its useful when
we calculate the first terms of the power series GG(x).

3. Counting permutations according to a statistic in
{risU , risM , risL, desU , desM , desL}

Let f be any statistic defined on the set of permutations of length n, that is, f is a
function from the set of permutations Sn to the set of nonnegative integer numbers.
Define

Kf (x; q) =
∑
n≥0

xn
∑
π∈Sn

qf(π) =
∑
m≥0

Kf ;m(x)qm.

In this subsection we study the generating function Kf (x; q), where either f = risX
or f = desX with X ∈ {U,M,L}. Indeed by using simple symmetric operations, the
reversal (that is, π1π2 · · · πn 7→ πn · · · π2π1) and the complement (that is, π1π2 · · · πn 7→
(n+ 1− π1)(n+ 2− π2) · · · (n+ 1− πn)), we obtain that

KrisU
(x; q) = KdesL

(x; q), KrisM
(x; q) = KdesM

(x; q), KrisL
(x; q) = KdesU

(x; q).

Now, we are ready to present an explicit formula for the generating functionKdesX
(x; q),

where X ∈ {U,M,L}.

3.1. The generating function KdesL
(x; q). Let rU = rM = rL = dU = dM = 1

and dL = q. Then u(x) = 1
1−x(1−q) , A(x, u(x)) = 1

1−q , B(x, u(x)) = q − x(1−q)
1−x(1−q) ,

and H(x, u(x)) = 1. Then Theorem 2.5 gives that the generating function KdesL
(x; q)

satisfies

KdesL
(x; q) = 1− q +

(
q +

x(1− q)
1− x(1− q)

)
KdesL

(
x

1− x(1− q)
; q

)
.

Applying the above functional equation infinity number of times, we get the following
result.

Corollary 3.1. We have

KdesL
(x; q) = (1− q)

∑
j≥0

j∏
i=1

(
q +

x(1− q)
1− ix(1− q)

)
.
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Corollary 3.1 for q = 0 gives

KdesL;0(x) =
∑
n≥0

xn∏n
j=0(1− jx)

,

which recovers the well known enumeration of permutations of length n with no lower
descent (that is, avoid the pattern 32−1, or equivalently, there no i, j such that i+1 < j
and πi > πi+1 > πj) by the n-th Bell number (see [2]).

Now let us find an explicit formula for KdesL;1(x). Differentiating KdesL
(x; q), see

Corollary 3.1, respect to q we obtain
∂
∂q
KdesL

(x; q)

= (1− q)
∑
j≥0

(
j∏
i=1

(
q + x(1−q)

1−ix(1−q)

) j∑
i=1

1− x
(1−i(1−q)x)2

q+
x(1−q)

1−ix(1−q)

)
−
∑
j≥0

j∏
i=1

(
q + x(1−q)

1−ix(1−q)

)
.

which implies that the generating function for the number of permutations of length n
with exactly one lower descent is given by

KdesL;1(x) =
∂

∂q
KdesL

(x; q)

∣∣∣∣
q=0

=
∑
j≥0

xj∏j
i=0(1− ix)

(
j∑
i=1

(1− ix)2 − x
x(1− ix)

− 1

)
.

3.2. The generating function KdesU
(x; q). Let rU = rM = rL = dL = dM = 1

and dU = q. Then u(x) = 1
1−x(1−q) , A(x, u(x)) = 1−x(1−q)

1−q , B(x, u(x)) = − q+x(1−q)2
1−q ,

and H(x, u(x)) = 1 − x(1 − q). Then Theorem 2.5 gives that the generating function
KdesU

(x; q) satisfies

KdesU
(x; q) = 1− q +

(
q +

x(1− q)
1− x(1− q)

)
KdesU

(
x

1− x(1− q)
; q

)
.

Applying the above functional equation infinity number of times, we get the following
result.

Corollary 3.2. We have

KdesU
(x; q) = KdesL

(x; q) = (1− q)
∑
j≥0

j∏
i=1

(
q +

x(1− q)
1− ix(1− q)

)
.

3.3. The generating function KdesM
(x; q). Let rU = rM = rL = dU = dL = 1

and dM = q. Then from the definitions we have u(x) = C(x(1 − q)), A(x, u(x)) =
1

(1−q)C2(x(1−q)) , B(x, u(x)) = − q
(1−q)C(x(1−q)) , and H(x, u(x)) = 1

C(x(1−q)) , where C(t) =
1−
√

1−4t
2t

is the generating function for the Catalan numbers 1
n+1

(
2n
n

)
. Then Theorem 2.5

gives that the generating function KdesM
(x; q) satisfies

KdesM
(x; q) = (1− q)C(x(1− q)) + qC(x(1− q))KdesM

(xC(x(1− q)); q).
Applying the above functional equation infinity number of times, we get the following
result.

Corollary 3.3. We have

KdesM
(x; q) = (1− q)

∑
j≥0

qjpj(x; q),
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where p0(x; q) = C(x(1−q)) and pj(x; q) = pj−1(x; q)C(x(1−q)pj−1(x; q)) for all j ≥ 1.

Corollary 3.3 for q = 0 gives

KdesM ;0(x) = C(x) =
1−
√

1− 4x

2x
,

which recovers the well known enumeration of permutations of length n that avoid the
pattern 31 − 2 (that is, there no i, j such that i + 1 < j and πi > πj > πi+1) by the
n-th Catalan number (see [2]).

Now let us find an explicit formula for KdesM ;1(x). Differentiating KdesM
(x; q), see

Corollary 3.3, respect to q we obtain

∂
∂q
KdesM

(x; q)
∣∣∣
q=0

= −p0(x; 0) + p1(x; 0) + ∂
∂q
p0(x; q)

∣∣∣
q=0

= −C(x) + C(x)C(xC(x))− 1√
1−4x

+ C(x)

= C(x)C(xC(x))− 1√
1−4x

,

which implies that the generating function for the number of permutations of length n
with exactly one middle descent is given by (see Sequence A122892 in [7])

KdesM ;1(x) = C(x)C(xC(x))− 1√
1− 4x

=
1−

√
2
√

1− 4x− 1

2x
− 1√

1− 4x
.

Differentiating KdesM
(x; q) exactly twice, we get that the generating function for the

number of permutations of length n with exactly twice middle descent is given by

KdesM ;2(x) =

√
1−4x

3
√

2
√

1−4x−1

„
1−
q

2
√

2
√

1−4x−1−1

«
+2x2
√

2
√

1−4x−1−2x(1−4x)

2x
√

1−4x
3
√

2
√

1−4x−1
.

In general, by Faá di Bruno’s formula for the m-th derivative of the composition of
two functions1 and Corollary 3.3 we can compute the formula for KdesM ;m(x) by the
following result.

Theorem 3.4. The generating function KdesM ;m(x) is given by

m∑
j=0

p
(m−j)
j (x; 0)

(m− j)!
−

m∑
j=1

p
(m−j)
j−1 (x; 0)

(m− j)!
,

where the d-th derivative of pj(x; q) at q = 0, namely p
(d)
j (x; 0), satisfies the following

recurrence relation

p
(d)
j (x; 0) =

d∑
i=0

∑
k1+2k2+···+iki=i

d!p
(d−i)
j−1 (x;0)C(k1+···+ki)(xpj−1(x;0))

(m−i)!k1!k2!···ki!

i∏
p=1

(
x(p

(p)
j−1(x;0)−p(p−1)

j−1 (x;0))

p!

)kp

with the initial condition p
(d)
0 (x; 0) = (−x)dC(d)(x) for all d, j ≥ 0.

1see http://mathworld.wolfram.com/FaadiBrunosFormula.html
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4. Further results and open questions

In this section we describe several applications of Theorem 2.8 which generalize several
known results. In Section 3 showed that (see [2])

• the number of permutations of length n that avoid the generalized pattern either
32− 1 or 21− 3 is given by the n-th Bell number, and
• the number of permutations of length n that avoid the generalized pattern 31−2

is given by the n-th Catalan number 1
n+1

(
2n
n

)
.

Ones can refine these results by studying the generating function for the number of
permutations without either upper, middle, or lower descent according to the length
of the permutation and the statistic f ∈ {risU , risM , risL, desU , desM , desL}. For
instance, Theorem 2.8 for desL = 0 (that is, the case of permutations avoiding the
generalized pattern 32− 1) gives the following result.

Corollary 4.1. We have

(1) The generating function g(x) = GG(x; q, 1, 1, 1, 1, 0) satisfies

g(x) =
q

q + x(1− q)
+

x

(1− xq)(q + x(1− q))
g

(
x

1− xq

)
.

(2) The generating function g(x) = GG(x; 1, q, 1, 1, 1, 0) satisfies

g(x) = 1 +
x

1− x
g

(
x(1− x+ xq)

1− x

)
.

(3) The generating function g(x) = GG(x; 1, 1, q, 1, 1, 0) satisfies

g(x) = 1 +
x

1− x
g

(
x

1− xq

)
.

(4) The generating function g(x) = GG(x; 1, 1, 1, q, 1, 0) satisfies

g(x) =
1− xq
1− x

+
x(x+ q − 2xq)

(1− x)2
g

(
x

1− x

)
.

(5) The generating function g(x) = GG(x; 1, 1, 1, 1, q, 0) satisfies

g(x) =
1− x

1− 2x+ xq
+

1− 2x+ xq

(1− x)2
g

(
x

1− x

)
.

Also, Theorem 2.8 for desU = 0 (that is, the case of permutations avoiding the gener-
alized pattern 21− 3) gives the following result.

Corollary 4.2. We have

(1) The generating function g(x) = GG(x; q, 1, 1, 0, 1, 1) satisfies

g(x) =
(1− xq)2 + (q − 1)x3(q − 2 + (2q − 1)x)

(1− xq)2 + x2(q − 1)
+
x(1− xq)(1 + x2(q − 1))

(1− xq)2 + x2(q − 1))
g

(
x

1− xq

)
.
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(2) The generating function g(x) = GG(x; 1, q, 1, 0, 1, 1) satisfies

g(x) =
1 + (q − 2)x(1 + (q − 1)x)

1 + (q − 2)x+ (q − 1)2x2
+

x(1 + (q − 1)x)2

1 + (q − 2)x+ (q − 1)2x2
g

(
x(1 + (q − 1)x)

1− x

)
.

(3) The generating function g(x) = GG(x; 1, 1, q, 0, 1, 1) satisfies

g(x) =
1

q + (1− q)x
+

x

(1− xq)(q + (1− q)x)
g

(
x

1− xq

)
.

(4) The generating function g(x) = GG(x; 1, 1, 1, 0, q, 1) satisfies

g(x) =
1− x

1− 2x+ xq
+

xq

1− 2x+ xq
g

(
x

1− x

)
.

(5) The generating function g(x) = GG(x; 1, 1, 1, 0, 1, q) satisfies

g(x) =
1

1− x+ xq
+

x(q + x− xq)
(1− x)(1− x+ xq)

g

(
x

1− x

)
.

Finally, Theorem 2.8 for desM = 0 (that is, the case of permutations avoiding the
generalized pattern 31− 2) gives the following result.

Corollary 4.3. We have

(1) The generating function GG(x; q, 1, 1, 1, 0, 1) is given by

g(x) =
q − 1

q(1− x)
+

1

q(1− x+ xq)
C
(

xq

(1− x+ xq)2

)
.

(2) The generating function GG(x; 1, q, 1, 1, 0, 1) is give by

1 +
x

1− 2x
C
(

x2q

1− 2x

)
.

(3) The generating function GG(x; 1, 1, q, 1, 0, 1), g(x) = GG(x; 1, 1, 1, q, 0, 1) and g(x) =
GG(x; 1, 1, 1, 1, 0, q) are given by

g(x) =
1− x− 2q + xq +

√
(1 + x− xq)2 − 4x

2(1− q − 2x+ xq)
.

Applying the above results, Corollaries 4.1-4.3, for q = 0 we get explicit formula for
the generating functions for the number of permutations of length n avoiding two
generalized patterns of length three from the set GP = {12 − 3, 13 − 2, 21 − 3, 23 −
1, 31 − 2, 32 − 1}, see [4]. More generally, ones can use Theorem 2.8 to obtain the
generating function for the number of permutations avoiding a set of pattern T ⊆ GP .

We end this section by presenting two open problems:

• Theorem 3.4 gives an explicit formula for the generating function KdesM ;m(x)
for the number of permutations π of length n having desM(π) = m. Can ones
give explicit formula for KdesU ;m(x)? We remark that by Corollaries 3.1-3.2 we
have that KdesU ;m(x) = KdesL;m(x).
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• Corollary 3.1 gives

KdesL
(x; q) = (1− q)

∑
j≥0

j∏
i=1

(
q +

x(1− q)
1− ix(1− q)

)
.

This formula it is not “nice” when we assume q 6= 1. For example, the sub-
stitution q = −1 is not legal in this generating function, otherwise we get

2
∑

j≥0(−1)j 1−2(j+1)x
1−2x

which does not converge. In order to restrict this problem,

we need to write the generating function KdesL
(x; q) as

∑
n≥0 an(q)xn and then

we can substitute q = −1. But this it is extremely hard! Thus, can ones find
another formula for KdesL

(x; q) that is suitable for substitutions q = 0, 1,−1?
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