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Abstract

Let F (x) =
P

⌫2Nd F⌫x⌫ be a multivariate power series with complex coe�cients
that converges in a neighborhood of the origin. Assume F = G/H for some functions
G and H holomorphic in a neighborhood of the origin. We derive asymptotics for the
coe�cients Fr↵ as r ! 1 with r↵ 2 Nd for ↵ in a permissible subset of d-tuples of
positive reals. More specifically, we give an algorithm for computing arbitrary terms of
the asymptotic expansion for Fr↵ when the asymptotics are controlled by a transverse
multiple point of the analytic variety H = 0. This improves upon earlier work by R.
Pemantle and M. C. Wilson.

We have implemented our algorithm in Sage and apply it to obtain accurate nu-
merical results for several rational combinatorial generating functions.

Keywords: analytic combinatorics, multivariate, asymptotics, higher-order terms
Subject Class: 05A15, 05A16

1 Introduction

In [PW02, PW04] Pemantle and Wilson began a program of analytic combinatorics in several
variables to derive asymptotic expansions of coe�cients of combinatorial generating functions. In
this article we continue that program by improving upon several of their results.

Let F (x) =
P

⌫2Nd F⌫x
⌫1
1

· · ·x⌫dd be a complex power series with complex coe�cients that con-
verges in a neighborhood ⌦ of the origin. Assume F = G/H for some functions G and H holomor-
phic on ⌦. For example, F could be a rational function. We derive asymptotics for the coe�cients
Fr↵ as r ! 1 with r↵ 2 Nd for ↵ in a permissible subset of d-tuples of positive reals.

In [PW02], Pemantle and Wilson derived the general form of the asymptotic expansion of Fr↵

for directions whose asymptotics are controlled by smooth points of the set V = {x 2 ⌦ : H(x) = 0}
of singularities of F , that is, points where V is locally a complex manifold. They gave an explicit
formula for the leading term but no practical method for computing higher order terms. In [RW08],
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a computational extension of [PW02], we devised an algorithm and Maple implementation for
computing these higher order terms.

In [PW04], Pemantle and Wilson generalized [PW02] by deriving the form of the asymptotic
expansion of Fr↵ for directions whose asymptotics are controlled by multiple points of V, that is,
points where V is locally a finite union of complex manifolds. Again, they gave an explicit formula
for the leading term but no practical method for computing higher order terms. This article is
a computational extension of [PW04] analogous to [RW08]. Herein we devise an algorithm and
Sage [S+12] implementation for computing these higher order terms.

Why is it important in asymptotic analysis to have algorithms to compute higher order terms?
There are several reasons. First, the form of the algorithm or formulas itself can be insightful.
For example, the recasting of smooth point results in terms of Gaussian curvature in [BBBP11]
yields a much clearer understanding, independent of coordinates, of how local geometry controls
the asymptotic scale. Second, computing higher order terms often gives one higher numerical
accuracy at small values of r than using the leading term alone. Third, sometimes computing
higher order terms is necessary. For example, computing the variance of random variables via a
generating function often requires third order asymptotics. Fourth, computing higher order terms
can be di�cult or downright infeasible by hand —indeed, this is usually the case with multivariate
asymptotics. An algorithm allows the end user to pass on the task to a computer.

Our Contribution

In this article we give an algorithm for computing arbitrary terms of the asymptotic expansion for
Fr↵ for directions whose asymptotics are controlled by a multiple point of V of order n � 1. We
do this by first deriving an explicit formula in Section 3 for the special case where n  d and the
ideal generated by the germ of H in the ring of germs of holomorphic functions is radical. This
generalizes the formula for the smooth point case n = 1 in [RW08, Theorem 3.2] and improves
upon the formula in [PW04, Theorem 3.5], which gave an explicit formula for only the leading
term. We then show in Section 5 how to reduce the general multiple point case to the special
case. This gives a unified method for the computation of higher-order asymptotics that works for
any value of n and d. Our method of derivation uses Fourier-Laplace integrals as in [PW04], but
avoids the complications of infinite stationary phase sets. We have implemented our algorithm in
an open-source Sage file called amgf.sage that is downloadable from Raichev’s website, and in
Section 6 we employ it to work out examples. Section 7 contains most of our proofs.

To the best of our knowledge, the algorithms here and in [RW08] are the first explicit, practical,
and fairly general methods in the multivariate combinatorics literature for computing higher order
asymptotic expansions.

2 Preliminaries

Throughout this article we make use of basic facts from local analytic geometry, a good reference
for which is [dJP00].

For brevity we write a power series
P

⌫2Nd a⌫(x1 � p
1

)⌫1 · · · (xd � pd)⌫d as
P

⌫ a⌫(x � p)⌫ and
use the multi-index notation ⌫! = ⌫

1

! · · · ⌫d!, r⌫ = (r⌫
1

, . . . , r⌫d), ⌫ + 1 = (⌫
1

+ 1, . . . , ⌫d + 1), and
@⌫ = @⌫1

1

· · · @⌫d
d , where @j is partial di↵erentiation with respect to component j.

Let O(⌦) denote the C-algebra of holomorphic functions on an open set ⌦ ✓ Cd and Op the
C-algebra of germs of holomorphic functions at p 2 Cd. The latter algebra is a local Noetherian
factorial ring whose unique maximal ideal is the set {f 2 Op : f(p) = 0} of non-units.
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We refer often to both d-tuples and (d � 1)-tuples and write â = (a
1

, . . . , ad�1

) given a tuple
a = (a

1

, . . . , ad). For simplicity we assume d � 2, though our formulas below also apply in the case
d = 1 of univariate functions, after making the simple changes described in [RW08, Remark 3.6].

Let ⌦ ✓ Cd be a neighborhood of the origin (an open subset of Cd containing the origin) and
F (x) =

P
⌫ F⌫x⌫ 2 O(⌦). Assume F = G/H for some relatively prime G,H 2 O(⌦). Let V be the

set of singularities of F , namely the analytic variety {x 2 ⌦ : H(x) = 0} determined by H. We
will derive asymptotics for the ray coe�cients Fr↵ as r ! 1 with r↵ 2 Nd for ↵ in a permissible
subset of Rd

+

, the set of d-tuples of positive reals. For asymptotics of F⌫ when d = 2 and ⌫ ! 1
along more general paths see [Lla06].

To begin we recall several key definitions from [PW02, PW04].
Just as in the univariate case, asymptotics for the coe�cients of F are determined by the

location and type of singularities of F , that is, by the geometry of V. Generally the singularities
closest to the origin are the most important. We define ‘closest to the origin’ in terms of polydiscs.
For p 2 Cd, let D(p) = {x 2 Cd : 8j |xj |  |pj |} and C(p) = {x 2 Cd : 8j |xj | = |pj |} be the
respective polydisc and polycircle centered at the origin with polyradius determined by p.

Definition 2.1. We say that a point p 2 V is minimal if V \D(p) is contained in the boundary
of D(p), that is, if there is no point x 2 V such that for all j, |xj | < |pj |. We say that p 2 V is
strictly minimal if V \D(p) = {p}, and we say that p is finitely minimal if V \D(p) is finite.

Note that V always contains minimal points. To see this, let p 2 V and define f : V \D(p) ! R
by f(x) =

q
x2
1

+ · · ·+ x2d. Since f is a continuous function on a compact space, it has a minimum,

and that minimum is a minimal point of V.
The singularities of F with the simplest geometry are the smooth/regular points of V. Asymp-

totics for Fr↵ dependent on smooth points were derived in [PW02, RW08]. Here we focus on
asymptotics dependent on points with the next simplest geometry, that is, multiple points.

Definition 2.2. Let p 2 V and consider the unique factorization of the germ of H in Op into
irreducible germs. Choosing representatives for these germs gives a factorization H = Ha1

1

· · ·Han
n

valid in a neighborhood of p. We say that p is a multiple point of order n if

• for all j we have Hj(p) = 0, and

• every set of at most d vectors from {rH
1

(p), . . . ,rHn(p)} is linearly independent.

We say that p is a convenient multiple point of order n if p is a multiple point of order n and
there exists an index k such that for all j we have pk@kHj(p) 6= 0.

In other words, p is a multiple point of V i↵ V is locally a union of n complex manifolds that
intersect transversely at p ⇤. In particular, the multiple points of V of order n = 1 are exactly the
smooth points of V, and so multiple points are generalizations of smooth points. Notice also that
the definition above depends only on information about H in an arbitrarily small neighborhood
of p and so it is independent of the germ representatives chosen. Lastly, to derive an asymptotic
expansion of the coe�cients Fr↵ we will need to consider the singularities of F relevant to the
direction ↵. We call these singularities critical points, and they arise when approximating the
Fourier-Laplace integrals we use to approximate Fr↵ (in Lemmas 4.4 and 4.5). They also have a

⇤In keeping with [PW08] we are simplifying matters by assuming transversality. For a more general
definition of ‘multiple point’ see [PW04].
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stratified Morse theoretic interpretation which, in the interest of simplicity, we will not pursue here;
for more details see [PW08, Section 3.1].

Definition 2.3. Let ↵ 2 Rd
+

and let p 2 V be a convenient multiple point and choose an index k
such that pk@kHj(p) 6= 0 for all j = 1, . . . , n. Consider the scaled logarithmic gradient vectors

�j(p) =

✓
p
1

@
1

Hj(p)

pk@kHj(p)
, . . . ,

pd@dHj(p)

pk@kHj(p)

◆

for j = 1, . . . , n. We say that p is critical for ↵ if
✓
↵
1

↵k
, . . . ,

↵d

↵k

◆
=

nX

j=1

sj�j(p)

for some sj � 0, that is, if ↵ lies in the conical hull of the �j(p), which we call the critical cone

of p.

3 The full asymptotic expansion: special case

Let p 2 V be a convenient multiple point of order n, and letH = Ha1
1

· · ·Han
n be a local factorization

of H about p as above.
Without loss of generality and for concreteness and ease of notation, suppose pd@dHj(p) 6= 0

for all j. Henceforth we breaking symmetry and base our explicit calculations on the index d. For
instance, when we talk about critical points, we divide by the index-d terms pd@dHj(p).

Remark 3.1. For the remainder of this section we assume the special case of a
1

= . . . = an = 1
and n  d.

To state our main results we need to define several auxiliary sets and functions, most of which
are derived from G and H and arise from the integration procedures we use to approximate Fr↵.
Feel free to skim over these definitions on a first reading, and move on to the main results starting
at Theorem 3.3.

We parametrize the dth coordinate in terms of the first d � 1 coordinates. Since @dHj(p) 6= 0
for all j, we can apply the Weierstrass preparation theorem to each Hj to get

Hj(w, y) = Uj(w, y)

✓
y � 1

hj(w)

◆

in a neighborhood of p, where Uj is holomorphic and nonzero at p, hj is holomorphic in a neigh-
borhood of bp with 1/hj(bp) = pd, and @dHj(w, 1/hj(w)) 6= 0. Thus

H(w, y) =U(w, y)
nY

j=1

✓
y � 1

hj(w)

◆aj

=U(w, y)
nY

j=1

✓
�y

hj(w)

◆aj nY

j=1

✓
1

y
� hj(w)

◆aj

=U(w, y)
nY

j=1

�y

hj(w)

nY

j=1

✓
1

y
� hj(w)

◆
(since a

1

= · · · = an = 1)
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in a neighborhood of p, where U = U
1

· · ·Un. We use reciprocals, because they turn out to be
convenient for proving Lemma 4.5 later on.

For n � 2 let � = {s 2 Rn�1 : sj � 0 for all j and
Pn�1

j=1

sj  1}, the standard orthogonal
simplex of dimension n� 1. This simplex comes from the residue calculation in Lemma 4.2.

Let W be a neighborhood of bp on which the hj are defined. For j = 0, . . . , n � 1 and ↵ 2 Rd
+

define the functions h : W ⇥ � ! C, Aj : dom(U) ! C, e : [�1, 1]d�1 ! Cd�1, and eAj ,eh, e� :
e�1(W \ C(bp))⇥� ! C by

Ǧ(w, y) =
G(w, y)

U(w, y)

nY

j=1

�hj(w)

y

h(w, s) = s
1

h
1

+ · · ·+ sn�1

hn�1

+ (1�
n�1X

j=1

sj)hn

Aj(w, y) = (�1)n�1y�n+j

✓
@

@y

◆j

Ǧ(w, y�1)

e(t) = (p
1

exp(it
1

), . . . , pd�1

exp(itd�1

))

eh(t, s) = h(e(t), s)

eAj(t, s) = Aj(e(t),eh(t, s))

e�(t, s) = � log(pdeh(t, s)) + i
d�1X

m=1

↵m

↵d
tm

Note that F (w, y) = Ǧ(w, y)/
Qn

j=1

(y�1 � hj(w)) and that eh, eAj , and e� are all p1 functions. The

function h comes from the residue calculation in Lemma 4.2, and the functions e,eh, eAj , and e�
come from the exponential change of variables in Lemma 4.3.

Let J
log

(H, p) denote the n ⇥ d logarithmic Jacobian matrix, the jth row of which is the log-
arithmic gradient vector r

log

Hj(p) = (p
1

@
1

Hj(p), . . . , pd@dHj(p)). Notice that if the convenient
multiple point p has all nonzero coordinates, then every subset S ✓ {r

log

H
1

(p), . . . ,r
log

Hn(p)}
spans a subspace of Cd of dimension |S|. Logarithmic gradients arise, essentially, from the expo-
nential change of variables used to get a Fourier-Laplace integral in Lemma 4.3.

If ↵ is critical for p, then

↵ =

✓
↵ds⇤

1

pd@dH1

(p)
, . . . ,

↵ds⇤n
pd@dHn(p)

◆
J
log

(p)

for some nonnegative tuple s⇤ with
Pn

j=1

s⇤j = 1. Moreover, if p has all nonzero coordinates, then

the tuple s⇤ is unique since J
log

(p) has rank n  d. Let ✓⇤ = (0, . . . , 0, s⇤
1

, . . . , s⇤n�1

) 2 Rd�1 ⇥� ⇢
Rd+n�2.

If the Hessian det e�00(✓⇤) is nonzero, then p is called nondegenerate for ↵. Critical points and
nondegeneracy come into play in Lemmas 4.4 and 4.5.

Remark 3.2. In the smooth point case n = 1 we can simplify the definitions above. In that case
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H = Ha1
1

with a
1

= 1 (in this section) and we set

h(w) = h
1

(w)

A
0

(w) = y�1Ǧ(w, y�1)
���
y=h(w)

eA
0

(t) = A
0

(e(t))

eh(t) = h(e(t))

e�(t) = � log(pdeh(t)) + i
d�1X

m=1

↵m

↵d
tm

✓⇤ = t⇤ = 0.

With the setup above we can now get to our main theorem. It is an elaboration of the following
formula that appeared in [PW04].

Theorem 3.3. Let ↵ 2 Rd
+

and p 2 V be a strictly minimal convenient multiple point with all
nonzero coordinates that is critical and nondegenerate for ↵. Then there exist constants bq(↵) such
that

Fr↵ ⇠ c�r↵

"
(2⇡)(n�d)/2(det e�00(✓⇤))�1/2

X

q�0

bq(↵)(r↵d)
(n�d)/2�q

#

as r ! 1 with r↵ 2 Nd. Here e�00(✓⇤) is the (d+n� 2)⇥ (d+n� 2) Hessian matrix of e� evaluated
at ✓⇤.

Proof. Proved in [PW04, Theorem 3.9].

We give an explicit formula for all the coe�cients bq(↵). Previously, only b
0

(↵) was known.

Theorem 3.4. Let ↵ 2 Rd
+

and p 2 V be a strictly minimal convenient multiple point with all
nonzero coordinates that is critical and nondegenerate for ↵. Then

Fr↵ =c�r↵

"
(2⇡)(n�d)/2(det e�00(✓⇤))�1/2

N�1X

q=0

(r↵d)
(n�d)/2�q (?)

⇥
X

0jmin{n�1,q}
max{0,q�n}kq

j+kq

Lk( eAj , e�)
✓
n� 1

j

◆
n� j

n+ k � q

�
(�1)q�j�k

+O
⇣
(r↵d)

(n�d)/2�N
⌘#

,

as r ! 1 and r↵ 2 Nd.
Here

Lk( eAj , e�) =
2kX

l=0

Hk+l( eAj
e�l
)(✓⇤)

(�1)k2k+ll!(k + l)!
,

e�(✓) = e�(✓)� e�(✓⇤)� 1

2
(✓ � ✓⇤)e�00(✓⇤)(✓ � ✓⇤)T ,
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the di↵erential operator H is given by

H = �
X

1a,bd+n�2

(e�00(✓⇤)�1)a,b@a@b,

and
⇥
a
b

⇤
denotes the Stirling numbers of the first kind. In every term of Lk( eAj , e�) the total number

of derivatives of eAj and of e�00 is at most 2k + j.
Moreover, for each positive integer N the big-oh constant of (?) stays bounded as ↵ varies

within a compact subset of Rd
+

of the critical cone of p.

Proof. In the next section.

Remark 3.5. In the smooth point case n = 1, (?) agrees with the formula in [RW08, Theorem
3.2]. Moreover, in that case we can allow coordinates of p to be zero as long as pk@kH(p) 6= 0 for
some k. Also, when n = 1 and d = 2 we can drop the nondegeneracy hypothesis ([RW08, Theorem
3.3]).

Proposition 3.6. Under the hypotheses of Theorem 3.4 we have

e�00(✓⇤) =

✓
A �iCT

�iC 0

◆
,

where A is a (d� 1)⇥ (d� 1) matrix, C is an (r � 1)⇥ (d� 1) real matrix, and

Akl = @k@le�(✓⇤)

Ckl =
pl@lHk(p)

pd@dHk(p)
� pl@lHn(p)

pd@dHn(p)
.

Notice that we only take derivatives with respect to t in A.

Proof. Since e� is C1, its Hessian matrix is symmetric. The formula for A follows by definition.
To compute the remainder of the Hessian, let sn =

P
j<n sj for notational convenience. For l < d

we have

@e�
@tl

(0, s) =
�ipl exp(itl)

P
jn sj@lhj(e(t))

eh(t, s)
+ i

↵l

↵d

���
(0,s)

= �ipdpl
X

jn

sj@lhj(bp) + i
↵l

↵d

@e�
@sl

(0, s) =
�hl(e(t)) + hn(e(t))

eh(t, s)

���
(0,s)

= 0.

By the implicit function theorem we have @lhj(w) = hj(w)2@lHj(w, 1/hj(w))/@dHj(w, 1/hj(w)) for
l < d, j  n, and w 2 W . So for k, l < d we have

@2e�
@sk@tl

(0, s) = �ipdpl(@lhk(bp)� @lhn(bp)) (since @sn/@sj = �1)

= �i

✓
pl@lHk(p)

pd@dHk(p)
� pl@lHn(p)

pd@dHn(p)

◆

@e�
@sl

(0, s) = 0,
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as desired.
Finally each Ckl 2 R, because by [PW08, Proposition 3.12] each pl@lHk(p)

pd@dHk(p)
2 R.

Theorem 3.7. Under the hypotheses of Theorem 3.4, when n = d there exists ✏ 2 (0, 1) such
that

Fr↵ = p�r↵

"
±G(p)

detH 0(p)
Q

jd pj
+O(✏r)

#

as r ! 1. Here H 0(p) is the n⇥ d Jacobian matrix of H evaluated at p.
Moreover, the big-oh constant stays bounded as ↵ varies within a compact subset of Rd

+

of the
critical cone of p.

Proof. By [PW08, Corollary 3.24] all terms beyond the leading term in the asymptotic expansion of
pr↵Fr↵ are zero and the error term is exponentially decreasing. (This follows from a Leray residue
argument on the Cauchy integral of Fr↵.)

According to (?) the leading term is L0( eA0,e�)p
det(

e
�

00
(✓⇤))

. First,

L
0

( eA
0

, e�) = H0( eA
0

)(✓⇤) = A
0

(bp, 1

pd
)

= (�1)n�1prdǦ(p) = (�1)n�1prd
G(p)

U(p)

Y

jn

�1

p2d

=
�G(p)

U(p)prd
=

�G(p)Q
jn pd@dHj(p)

.

Second, by Proposition 3.6,
q
det(e�00(✓⇤)) =

p
(detC)2 = | detC| since C is a real matrix. Now

consider the n ⇥ d matrix � whose jth row is the scaled logarithmic gradient vector �j(p) =⇣
p1@1Hj(p)
pd@dHj(p)

, . . . , pd@dHj(p)
pd@dHj(p)

⌘
. Then

detC =det

0

BB@

�
1

(p)� �n(p)
· · ·

�n�1

(p)� �n(p)
�n(p)

1

CCA

(by expanding the latter n⇥ d matrix by minors along its last column)

=det�

(by similarity via elementary row operations)

=

Q
jn pjQ

jn pd@dHj(p)
detH 0(p).

This proves the result.

4 Proving Theorem 3.4

To prove Theorem 3.4 we follow an approach similar to that of [PW02, PW04, RW08]. However, in
contrast to those articles, here we first assume that H has the relatively simple local factorization
H = H

1

· · ·Hn with n  d and then show in Section 5 how to reduce to this case. We take the
following steps.
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Step 1 Use Cauchy’s integral formula to express pr↵Fr↵ as a d-variate integral over a contour C
in ⌦.

Step 2 Expand the contour C across pd and use Cauchy’s residue theorem to express the innermost
integral as a residue.

Step 3 Rewrite the residue as an n-variate integral over the simplex �.

Step 4 Rewrite the resulting integral as a Fourier-Laplace integral.

Step 5 Approximate the integral asymptotically.

Starting at step 1, we use Cauchy’s integral formula to write

pr↵Fr↵ = pr↵
@r↵F (0)

(r↵!)
= pr↵

1

(2⇡i)d

Z

C

G(w)dw

wr↵+1H(w)
,

where C is a contour in ⌦. We then follow steps 2–5 by applying the following lemmas, the proofs
of which have been swept away to Section 7 to clarify the logical flow of the main argument.

Lemma 4.1 (for step 2). Let ↵ 2 Rd
+

and p 2 V be a strictly minimal convenient multiple point
with nonzero coordinates. There exists ✏ 2 (0, 1) and a polydisc neighborhood D of bp such that

pr↵Fr↵ = pr↵(2⇡i)1�d

Z

X

�Rr(w)

wr↵̂+1

dw +O (✏r)

as r ! 1 with r↵ 2 Nd, where X = D \ C(bp) and Rr(w) is the sum over j of the residues of
y 7! y�r↵d�1F (w, y) at hj(w).

Proof. Proved in [PW02, proof of Lemma 4.1].

Lemma 4.2 (for step 3). In the previous lemma for n � 2 we have

Rr(w) =

Z

�

✓
@

@y

◆n�1

(�1)n�1fr(w, y)
���
y=h(w,s)

ds,

where fr(w, y) = �yr↵d�1Ǧ(w, y�1) and ds is the standard volume form ds
1

^ · · · ^ dsn�1

. For the
smooth case n = 1 we have Rr(w) = fr(w, h(w)).

Proof. See Section 7.

For j = 0, . . . , n � 1 define Pj : N ! N by Pj(r) =
�
n�1

j

�
(r↵d � 1)n�1�j . The falling factorial

powers in Pj are defined by ak = a(a � 1) · · · (a � k + 1) and a0 = 1 for a 2 R and k 2 N. So the
degree of Pj in r is n� 1� j.

Lemma 4.3 (for step 4). For n � 2,

pr↵Fr↵ = (2⇡)1�d
n�1X

j=0

Pj(r)

Z

eX

Z

�

eAj(t, s) exp(�r↵d
e�(t, s))ds dt+O(✏r),

as r ! 1 with r↵ 2 Nd, where eX = e�1(X). For n = 1,

pr↵Fr↵ = (2⇡)1�d

Z

eX
eAj(t) exp(�r↵d

e�(t)) dt+O(✏r),

as r ! 1 with r↵ 2 Nd.
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Proof. See Section 7.

The next lemma on Fourier-Laplace integrals provides our key approximation. The function
spaces mentioned are complex valued. A stationary and nondegenerate point of a function g is a
point ✓⇤ such that rg(✓⇤) = 0 and det g00(✓⇤) 6= 0, respectively.

Lemma 4.4 (for step 5). Let E ⇢ Rm be open, N a positive integer, and q = N + dm/2e. If
A 2 C2q(E) with compact support in E , � 2 C3q+1(E), <� � 0, <�(✓⇤) = 0, � has a unique
stationary point ✓⇤ 2 suppA, and ✓⇤ is nondegenerate, then

Z

E
A(✓) exp(�!�(✓))d✓ = exp(�!�(✓⇤))(det

✓
!�00(✓⇤)

2⇡

◆
)�1/2

N�1X

k=0

!�kLk(A,�) +O
⇣
!�m/2�N

⌘
,

as ! ! 1.
Here Lk is the function defined in Theorem 3.4 with m = d + n � 2. Moreover, the big-oh

constant is bounded when the partial derivatives of � up to order 3q+1 and the partial derivatives
of A up to order 2q all stay bounded in supremum norm over E .

Proof. Proved in [Hör83, Theorem 7.7.5].

The final lemma ensures that the hypotheses of Lemma 4.4 are satisfied in our setting.

Lemma 4.5 (for step 5). Let ↵ 2 Rd
+

and p be a strictly minimal convenient multiple point that

is critical and nondegenerate for ↵. Then on eX ⇥�, we have <e� � 0 with equality only at points
of the form (0, s) (and only at zero for n = 1), and e� has a unique stationary point at ✓⇤.

Proof. See Section 7.

We can now prove Theorem 3.4.

Proof of Theorem 3.4. By Lemmas 4.1 and 4.3 there exists ✏ 2 (0, 1) and an open bounded neigh-
bourhood eX of 0 such that

pr↵Fr↵ = (2⇡)1�d
n�1X

j=0

Pj(r)Ij,r +O (✏r)

as r ! 1 with r↵ 2 Nd, where Ij,rn =
R
E
eAj(✓) exp(�r↵d

e�(✓))d✓ and E = eX ⇥��, where �� is
the interior of �.

Choose  2 C1(E) with compact support in E (a bump function) such that  = 1 on a
neighbourhood Y of ✓⇤. Then

Ij,r =

Z

E
(✓) eAj(✓) exp(�r↵d

e�(✓))d✓ +
Z

E
(1� (✓)) eAj(✓) exp(�r↵d

e�(✓))d✓.

The second integral decreases exponentially as r ! 1 since <e� is strictly positive on the compact
set E \ Y by Lemma 4.5. By Lemma 4.5 again and the nondegeneracy hypothesis, we we may apply
Lemma 4.4 to the first integral. Noting that Lk( eAj , e�) = Lk( eAj , e�) because the derivatives are

10



evaluated at ✓⇤ and  = 1 in a neighborhood of ✓⇤, we get

Ij,r = exp(�nd
e�(✓⇤))(det

 
r↵d

e�00(✓⇤)

2⇡

!
)�1/2

N�1X

k=0

(r↵d)
�kLk( eAj , e�) +O((r↵d)

�(d�1+n�1)/2�N )

= (2⇡)(d+n�2)/2(det e�00(✓⇤))�1/2
N�1X

k=0

Lk( eAj , e�)(r↵d)
�(d+n�2)/2�k +O

⇣
(r↵d)

�(d+n�2)/2�N
⌘

as r ! 1 with r↵ 2 Nd.
Notice that for j = 0, . . . , n � 1 each Ij,r has error O((r↵d)�(d+n�2)/2�N ) and each Pj(r) has

degree r� j�1 in n. Thus the error in the asymptotic expansion for pr↵Fr↵ will be a sum of terms
of the form O((r↵d)(n�d)/2�N�j) which is O((r↵d)(n�d)/2�N ). So

pr↵Fr↵ = (2⇡)(n�d)/2(det e�00(✓⇤))�1/2
N�1X

q=0

bq(↵)(r↵d)
(n�d)/2�q +O

⇣
(r↵d)

(n�d)/2�N
⌘

= (2⇡)(n�d)/2(det e�00(✓⇤))�1/2
n�1X

j=0

N�1X

k=0

Pj(r)Lk( eAj , e�)(r↵d)
�(d+n�2)/2�k +O

⇣
(r↵d)

�(n�d)/2�N
⌘
.

Let us expand Pj(r) and collect like powers to find the coe�cients bq(↵).
The falling factorial powers satisfy (a� 1)m = (a� 1) . . . (a� 1� k) = 1

aa
m+1 and are related

to regular powers and Stirling numbers of the first kind via

am =
mX

l=0


m

l

�
(�1)m�lal;

see [GKP94, (6.13)] for instance. Thus

Pj(r) =

✓
n� 1

j

◆
1

r↵d

n�jX

l=0


n� j

l

�
(�1)n�j�l(r↵d)

l,

and so

N�1X

q=0

bq(↵)(r↵d)
(n�d)/2�q =

n�1X

j=0

N�1X

k=0

n�jX

l=0

Lk( eAj , e�)
✓
n� 1

j

◆
n� j

l

�
(�1)n�j�l(r↵d)

�(d+n)/2�k+l.

The coe�cient bq(↵) is found by imposing the constraint (n� d)/2� q = �(d+ n)/2� k+ l. Thus
l = n+ k � q, and we can eliminate the l-sum to arrive at formula (?).

Lastly, regarding uniformity, we may assume that the eAj and e� are defined and hence C1 on
a neighborhood of the closure of E , so that their derivatives up to any given order all stay bounded
in supremum norm over E . Now suppose ↵ varies within a compact subset K ⇢ Rd

+

of the critical
cone of p. Since J

log

(H, p) has rank n  d it is a bijective linear transformation from Rn to its
image in Rd and therefore a bicontinuous function. Thus its inverse maps K to a compact set K 0

of ✓⇤s in E . Choose the neighborhood Y in the argument above to contain K 0 so that one bump
function  works for all ✓⇤. Since the derivatives of the  eAj and e� up to any given order all stay

bounded in supremum norm over E and since only e� and e�0 depend on ↵ but continuously, we
conclude by Lemma 4.4 that for any given N , the big-oh constant in (?) remains bounded as ↵
varies within K.
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5 The full asymptotic expansion: general case

Again let p 2 V be a strictly minimal convenient multiple point of order n with all coordinates
nonzero and let H = Ha1

1

· · ·Han
n be a local factorization of H. We deal now with the case of

arbitrary aj and n.
In step 2 of the previous section the Cauchy integral can be manipulated to reduce to the special

case a
1

= . . . = an = 1 and n  d. More specifically, we amend our plan by inserting these three
steps after step 2:

(2a) If n > d, then decompose F as a sum of fractions whose denominators are of type
Q

j2J H
bj
j

where J is a size d subset of {1, . . . , n} and each bj is an integer with bj  aj . So each
denominator in the sum has only d irreducible factors of H.

(2b) If some irreducible factor of H is repeated, then treat each resulting integral as the integral of
a holomorphic form, and rewrite each integral as the sum of integrals whose denominators are
of type wr↵+1

Q
j2J Hj where J is a size at most d subset of {1, . . . , n}. So each holomorphic

form has a denominator with at most d unrepeated irreducible factors of H.

(6) Add up all the asymptotic expansions.

The following two lemmas prove that these additional steps are possible.

Lemma 5.1 (for step 2a). Let p be a multiple point of H := Ha1
1

· · ·Han
n , where n > d, each

Hj is holomorphic in a neighborhood U of p, and the germ of each Hj is prime. Then for any
function G holomorphic on U , there exists a neighborhood of p in which we have the partial
fraction decomposition

G

H
=
X

J

GJ
Q

j2J H
bj
j

,

where each GJ is holomorphic (and possibly zero), J ranges over all subsets of {1, . . . , n} of size d,
and for each J we have

P
j2J bj =

Pn
i=1

ai.

Proof. Since p is a multiple point ofH, the gradients at p of any d of theHj are linearly independent.
Thus the germs of any d of the Hj generate the maximal ideal in Op by [Rui93, Corollary 5.4]. In
particular, the germ of H

1

is in the ideal of the germs of H
2

, . . . , Hn, and so in a neighborhood of
p we have

H
1

=
nX

j=2

gjHj

for some holomorphic functions gj . Therefore, in that neighborhood we have

G

H
=

G
Pn

j=2

gjHj

Ha1+1

1

Ha2
2

· · ·Han
n

=
G

2

Ha1+1

1

Ha2�1

2

Ha3
3

· · ·Han
n

+
G

3

Ha1+1

1

Ha2
2

Ha3�1

3

Ha4
4

· · ·Han
n

+ . . .+

Gn

Ha1+1

1

Ha2
2

· · ·Han
n�1

Han�1

n

,

where Gj = Ggj . Notice that in the denominator of each resulting summand, the sum of the
degrees of all the Hj remains

Pn
i=1

ai.
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Recursively repeating this procedure on each summand (always singling out H
1

, say) yields the
desired result in finitely many steps.

Remark 5.2. When the Hj are polynomials from a computable polynomial ring, such as Q[x],
the procedure in the proof above is computable. Alternatively a partial fraction expansion can be
computed according to the algorithm in [Lĕı78], which is not applicable to the analytic case.

Lemma 5.3 (for step 2b). Let p be a multiple point of H := Hb1
1

· · ·Hbn
n , where n  d, each Hj

is holomorphic in a neighborhood U of p, and the germ of each Hj is prime, and let Vj := {x 2 U :
Hj(x) = 0}. Then for any function G holomorphic on U , there exists a neighborhood U 0 of p such
that the holomorphic form

G(x)

H(x)
dx

is de Rham cohomologous in U 0 \ (V
1

[ · · · [ Vn) to a holomorphic form

X

J

GJ(x)dxQ
j2J Hj(x)

,

where each GJ is holomorphic (and possibly zero) on U 0 and J ranges over all subsets of {1, . . . , n}.
In particular, the integrals of the two forms above over a polycircle in U 0 \ (V

1

[ · · ·[Vn) are equal.

Proof. Proved in [AY83, Theorem 17.6].

Remark 5.4. When the Hj are polynomials from a computable polynomial ring, such as Q[x],
the procedure in the proof above is computable.

When applying Lemma 5.3 in step 2b to our local integrals of residues, G(x) will be of the form
G(x)/xr↵+1 where G(x) does not contain r and for each J we will have

P
j2J bj =

Pn
i=1

ai. Thus
upon inspection of the constructive proof of Lemma 5.3, the cohomologous form will have r-degree
at most

Pn
i=1

(ai � 1), where the powers of n arise from the derivatives of G(x)/xr↵+1.
In particular, if n � d and the other assumptions of Theorem 3.7 hold, then we can combine

Lemmas 5.1 and 5.3 and Theorem 3.7 to conclude that the leading term of the asymptotic expansion
of pr↵Fr↵ is a polynomial of degree at most

Pn
i=1

ai � n, as is also shown in [PW04, Theorem 3.6].

Remark 5.5 (for step 6). When computing the asymptotics for G/H in a direction ↵ by summing
up the asymptotic contributions from the terms of the form GJ/

Q
j2J Hj where J has size at most

d, the only terms that will contribute to the expansion (modulo an exponentially decreasing error
term) are the ones whose critical cone (the conical hull of {�j(p) : j 2 J}) contains ↵ and whose
numerator does not vanish at p [Pem00, Section 5]. In the case where all such contributing terms
have numerators that vanish at p, a finer analysis is required to determine the correct asymptotics
of G/H which we do not provide here (but will be included in Pemantle and Wilson’s forthcoming
book on analytic combinatorics in several variables).

Remark 5.6. In case p is finitely minimal, for each point x of V \ C(p) we simply find an open
set around x and apply the general procedure above. After that we sum the resulting asymptotic
expansions over the finitely many x.
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6 Examples

Let us apply the formulas and procedures of Sections 3 and 5 to a few combinatorial examples,
that is, to functions with all nonnegative Maclaurin coe�cients. We will use our Sage package
amgf.sage.

We focus on combinatorial examples F (x), because for any ↵ 2 Rd
+

there is a minimal point in
V \ Rd

+

that determines the asymptotics for Fr↵ ([PW08, Theorem 3.16]).
Since there is no known computable procedure to factor an arbitrary polynomial H in the

analytic local ring of germs of holomorphic functions about p, we choose examples where H is a
polynomial whose local factorization in the algebraic local ring about p equals its factorization in
the analytic local ring about p, that is, H is a polynomial whose irreducible factors in C[x] are all
smooth at p.

Example 6.1 (n < d, no repeated factors). Consider the trivariate rational function

F (x, y, z) =
1

(1� x(1 + y))(1� zx2(1 + 2y))

in a neighborhood ⌦ of the origin; cf [PW08, Example 4.10]. Its coe�cients F⌫ are all nonnegative,
and its denominator H(x, y, z) factors over C[x, y, z] into irreducible terms H

1

(x, y, z) = 1�x(1+y)
and H

2

(x, y, z) = 1� zx2(1 + 2y), both of which are globally smooth.
The set of non-smooth/singular points of V = {(x, y, z) 2 ⌦ : H(x, y, z) = 0} is V 0 = {(x, y, z) 2

⌦ : H(x, y, z) = rH(x, y, z) = 0} = {(1/(a+1), a, (a+1)2/(2a+1)) : a 2 C\{�1}}, which consists
entirely of convenient multiple points of order n = 2. They are not convenient in coordinate d = 3,
but are in coordinate d� 1 = 2, which we use here for our calculations. A simple check shows that
the points (1/(a+ 1), a, (a+ 1)2/(2a+ 1)) for a > 0 are strictly minimal.

The critical cone for each such point is the conical hull of the vectors �
1

= (1, a/(a+ 1), 0) and
�
2

= (1, a/(2a+ 1), 1/2).
For instance, p = (1/2, 1, 4/3) controls asymptotics for all ↵ in the conical hull of the vectors

�
1

(p) = (2, 1, 0) and �
2

(p) = (3, 1, 3/2). For instance, ↵ = (8, 3, 3) is in this critical cone, and
applying Theorem 3.4 we get

Fr↵ = 108r


3p
21⇡

r�1/2 � 1231

8232
p
21⇡

r�3/2 +
329047

58084992
p
21⇡

r�5/2 +O(r�7/2)

�

as r ! 1.
Calling the one-term, two-term, and three-term truncations of this asymptotic formula S

1

(r),
S
2

(r), and S
3

(r), respectively and comparing them with the actual values of Fr↵ for small r, we
get the following table.

r 1 2 4 8
108�rFr↵ 0.3518518519 0.2548010974 0.1823964231 0.1297748629
108�rS1(r) 0.3693487820 0.2611690282 0.1846743909 0.1305845142
108�rS2(r) 0.3509381749 0.2546598957 0.1823730650 0.1297708726
108�rS3(r) 0.3516356189 0.2547831876 0.1823948602 0.1297747255
108�rS1(r) rel err -0.04972811712 -0.02499177148 -0.01248910347 -0.006238891584
108�rS2(r) rel err 0.002596766210 0.0005541644108 0.0001280622701 0.00003074786527
108�rS3(r) rel err 0.0006145569473 0.00007028933620 0.000008568698736 0.000001058756657

Table 1: Successive approximations to p�r↵Fr↵ with relative errors for ↵ = (8, 3, 3).

14



Example 6.2 (n < d, no repeated factors). Consider the trivariate rational function

F (x, y, z) =
16

(4� 2x� y � z)(4� x� 2y � z)

in a neighborhood ⌦ of the origin; cf [PW04, Example 3.10]. Its coe�cients F⌫ are all nonnegative,
and its denominatorH(x, y, z) factors over C[x, y, z] into irreducible termsH

1

(x, y, z) = 4�2x�y�z
and H

2

(x, y, z) = 4� x� 2y � z, both of which are globally smooth.
The set of non-smooth points of V = {(x, y, z) 2 ⌦ : H(x, y, z) = 0} is V 0 = {(x, y, z) 2 ⌦ :

H(x, y, z) = rH(x, y, z) = 0} = {(1 � a, 1 � a, 1 + 3a : a 2 C}, which contains a line segment
{(1�a, 1�a, 1+3a) : �1/3 < a < 1} of convenient multiple points of order n = 2. The convenient
multiple point p = (1, 1, 1) is strictly minimal and its critical cone is the conical hull of the vectors
�
1

(p) = (2, 1, 1) and �
2

(p) = (1, 2, 1).
For instance, ↵ = (3, 3, 2) is in the critical cone and applying Theorem 3.4 we get

Fr↵ =
1p
3⇡

✓
4r�1/2 � 25

72
r�3/2 +

1633

41472
r�5/2

◆
+O(r�7/2),

as r ! 1.
Calling the one-term, two-term, and three-term truncations of this asymptotic formula S

1

(r),
S
2

(r), and S
3

(r), respectively and comparing them with the actual values of Fr↵ for small r, we
get the following table.

r 1 2 4 8 16
Fr↵ 0.7849731445 0.7005249476 0.5847732654 0.4485547669 0.3237528587
S1(r) 1.302940032 0.9213177319 0.6514700159 0.4606588663 0.3257350080
S2(r) 1.189837598 0.8813299831 0.6373322117 0.4556603976 0.3239677825
S3(r) 1.202663729 0.8835973440 0.6377330283 0.4557312524 0.3239803079
S1(r) rel err -0.6598530037 -0.3151819005 -0.1140557451 -0.02698466340 -0.006122414820
S2(r) rel err -0.5157685415 -0.2580993527 -0.08987918808 -0.01584116640 -0.0006638514355
S3(r) rel err -0.5321081198 -0.2613360125 -0.09056461026 -0.01599912872 -0.0007025396085

Table 2: Successive approximations to p�r↵Fr↵ with relative errors for ↵ = (3, 3, 2).

Notice that in this case the three-term approximation to Fr↵ is not an improvement over the
two-term approximation for n  16. The question, which we do not discuss here, of how many
terms of a divergent asymptotic series expansion to use for a given argument to obtain the best
approximation/least error is called the question of ‘optimal truncation’ or ‘optimal approximation’.
See [PK01], for instance, for more details.

Example 6.3 (n < d, repeated factors). Consider the trivariate rational function

F (x, y, z) =
16

(4� 2x� y � z)2(4� x� 2y � z)

in a neighborhood ⌦ of the origin. Its coe�cients F⌫ are all nonnegative, and its denominator
H(x, y, z) = (4 � 2x � y � z)2(4 � x � 2y � z) is shown factored over C[x, y, z]. Since H contains
repeated factors, we first reduce

F (x, y, z) dx ^ dy ^ dz

x↵1n+1y↵2n+1z↵3n+1

,
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the di↵erential form of the Cauchy integral of F , to a de Rham cohomologous form with no repeated
factors, namely

[16(2↵
3

y � ↵
2

z)n+ 16(2y � z)]/(yz) dx ^ dy ^ dz

(4� 2x� y � z)(4� x� 2y � z)x↵1n+1y↵2n+1z↵3n+1

,

which determines the asymptotics of Fr↵. The constructive proofs of Lemma 5.1 (in the case of
polynomials) and Lemma 5.3 to find such a cohomologous form are implemented in amgf.sage.

The singular variety V of this new form is the same as in the previous example and so the
singularity analysis is the same. The convenient multiple point p = (1, 1, 1) is strictly minimal and
its critical cone is the conical hull of the vectors �

1

(p) = (2, 1, 1) and �
2

(p) = (1, 2, 1).
Taking ↵ = (3, 3, 2) again, for instance, and applying Theorem 3.4 we get

Fr↵ =
1p
3⇡

✓
4r1/2 +

47

72
r�1/2 � 1967

41472
r�3/2

◆
+O(r�5/2),

as r ! 1.
It is a coincidence that the leading coe�cient above is the same as the leading coe�cient in the

previous example without repeated factors. Using the denominator (4�2x�y�z)3(4�x�2y�z)
instead, for instance, gives a di↵erent leading coe�cient.

Calling the one-term, two-term, and three-term truncations of this asymptotic formula S
1

(r),
S
2

(r), and S
3

(r), respectively and comparing them with the actual values of Fr↵ for small r, we
get the following table.

r 1 2 4 8 16
Fr↵ 0.9812164307 1.576181132 2.485286378 3.700576827 5.260983954
S1(r) 1.302940032 1.842635464 2.605880063 3.685270927 5.211760127
S2(r) 1.515572607 1.992989400 2.712196350 3.760447895 5.264918270
S3(r) 1.500123128 1.987527184 2.710265167 3.759765118 5.264676873
S1(r) rel err -0.3278824031 -0.1690505784 -0.04852305395 0.004136084917 0.009356391776
S2(r) rel err -0.5445854345 -0.2644418586 -0.09130133815 -0.01617884746 -0.0007478289298
S3(r) rel err -0.5288402039 -0.2609763838 -0.09052429168 -0.01599434190 -0.0007019445473

Table 3: Successive approximations to p�r↵Fr↵ with relative errors for ↵ = (3, 3, 2).

Notice that in this case the two-term or three-term approximation to Fr↵ is not an improvement
over the one-term approximation until somewhere between r = 8 and r = 16.

Example 6.4 (n � d with no repeated factors). Consider the bivariate function

F (x, y) =
1

(1� 2x� y)(1� x� 2y)

in a neighborhood ⌦ of the origin; cf [PW08, Example 4.12].
Its coe�cients F⌫ are all nonnegative, and its denominator H(x, y) factors over C[x, y] into

irreducible terms H
1

(x, y) = 1 � 2x � y and H
2

(x, y) = 1 � x � 2y, both of which are globally
smooth.

The set of non-smooth points of V = {(x, y) 2 ⌦ : H(x, y) = 0} is V 0 = {(x, y) 2 ⌦ : H(x, y) =
rH(x, y) = 0}, which consists of the convenient multiple point p = (1/3, 1/3) of order r = 2. The
point p is strictly minimal and its critical cone is the conical hull of the vectors �

1

(p) = (2, 1) and
�
2

(p) = (1/2, 1).
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By Theorem 3.7, there exists ✏ 2 (0, 1) such that for any ↵ in this critical cone we get

Fr↵ = p�r↵

✓
G(p)

p
1

p
2

| detH 0(p)| +O(✏r)

◆
= 3(↵1+↵2)n(3 +O(✏r)),

as r ! 1.
Taking ↵ = (4, 3), say, letting S(r) be the asymptotic expansion above, and comparing it to

the actual values of Fr↵ for small r, we get the following table.

r 1 2 4 8 16
2187�rFr↵ 1.960219479 2.298399383 2.587511051 2.809909562 2.950100341
2187�rS(r) 3 3 3 3 3
2187�rS(r) rel err -0.5304408677 -0.3052561804 -0.1594153382 -0.06765002002 -0.01691456340

Table 4: Successive approximations to p�r↵Fr↵ with relative errors for ↵ = (4, 3).

Example 6.5 (n � d with repeated factors). Consider the bivariate function

F (x, y) =
1

(1� 2x� y)2(1� x� 2y)2
,

which is a variation of the function of the previous example.
Since the denominator of F contains repeated factors, we first reduce

F (x, y) dx ^ dy

x↵1r+1y↵2r+1

,

the di↵erential form of the Cauchy integral of F to a de Rham cohomologous form with no repeated
factors, which amgf.sage computes.

Reusing the analysis of the previous example and applying Theorem 3.7, there exists ✏ 2 (0, 1)
such that for any ↵ in conical hull of the vectors �

1

(p) = (2, 1) and �
2

(p) = (1/2, 1) we get

Fr↵ = 3(↵1+↵2)n(�3(2↵2

1

� 5↵
1

↵
2

+ 2↵2

2

)r2 � 3(↵
1

+ ↵
2

)n� 9 +O(✏r)),

as r ! 1 and for some ✏ 2 (0, 1).
Taking ↵ = (4, 3), say, letting S(r) be the asymptotic expansion above, and comparing it to

the actual values of Fr↵ for small r, we get the following table.

r 1 2 4 8 16
2187�rFr↵ 30.72702332 111.9315678 442.7813138 1799.879232 7367.545085
2187�rS(r) 0 69 387 1743 7335
2187�rS(r) rel err 1.000000000 0.3835519207 0.1259793763 0.03160169385 0.004417358124

Table 5: Successive approximations to p�r↵Fr↵ with relative errors for ↵ = (4, 3).
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7 Remaining Proofs

Proof of Lemma 4.2. Let fr(w, y) = �yr↵d�1Ǧ(w, y�1). Then for r � 2,

Rr(w) =
nX

j=1

lim
y!hj(w)

�1
y�r↵d�1(y � hj(w)

�1)F (w, y)

=
nX

j=1

lim
y!hj(w)

�1
�y�r↵dhj(w)

�1(y�1 � hj(w))
Ǧ(w, y)Qr

k=1

(y�1 � hk(w))

=
nX

j=1

fr(w, hj(w))Q
k 6=j(hj(w)� hk(w))

=

Z
1

0

d�
1

Z �1

0

d�
2

· · ·
Z �r�2

0

✓
@

@y

◆n�1

fr(w, (1� �
1

)h
1

+ (�
1

� �
2

)h
2

+ · · ·

(�r�2

� �n�1

)hn�1

+ �n�1

hn) d�n�1

(by [DL93, Chapter 4, Section 7, equations (7.7) and (7.12)])

=

Z

�

✓
@

@y

◆n�1

(�1)n�1fr(w, s1h1 + · · ·+ sn�1

hn�1

+ (1�
n�1X

j=1

sj)hn) ds

(by the change of variables (s
1

, . . . , sn�1

) = (1� �
1

,�
1

� �
2

, . . . ,�r�2

� �n�1

)),

as desired.
Notice that the (�1)n�1 cancels with the (�1)n�1 in the definition of fr.
For n = 1, we have Rr(w) = limy!h0(w)

�1 y�r↵d�1(y � h
0

(w)�1)F (w, y) = fr(w, h(w)).

Proof of Lemma 4.3. First, for n � 2,

✓
@

@y

◆n�1

(�1)n�1f(w, y)

=

✓
@

@y

◆n�1

(�1)nyr↵d�1Ǧ(w, y�1)

= �
n�1X

j=0

✓
n� 1

j

◆✓
@

@y

◆n�1�j

yr↵d�1(�1)n�1

✓
@

@y

◆j

Ǧ(w, y�1)

= �
n�1X

j=0

✓
n� 1

j

◆
(r↵d � 1)n�1�jyr↵d�n+j(�1)n�1

✓
@

@y

◆j

Ǧ(w, y�1)

= �
n�1X

j=0

Pj(r)y
�r↵dAj(w, y).
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Thus

pr↵(2⇡i)1�d

Z

X

�R(w)

wr↵̂+1

dw

=pr↵(2⇡i)1�d

Z

X

1

wrb↵+1

Z

�

✓
@

@y

◆n�1

(�1)n�1f(w, y)
���
y=h(w,s)

ds dw

(by Lemma 4.2)

=pr↵(2⇡i)1�d
n�1X

j=0

Pj(r)

Z

X

1

wrb↵+1

Z

�

h(w, s)r↵dAj(w, h(w, s))ds dw

=(2⇡i)1�d
n�1X

j=0

Pj(r)

Z

X

Z

�

bprb↵

wrb↵Aj(w, h(w, s))(pdh(w, s))
r↵dds

dw
Qd�1

m=1

wm

=(2⇡)1�d
n�1X

j=0

Pj(r)

Z

eX

Z

�

d�1Y

m=1

exp(�i↵mntm) eAj(t, s)(pdeh(t, s))r↵dds dt

(via the change of variables w = e(t))

=(2⇡)1�d
n�1X

j=0

Pj(r)

Z

eX

Z

�

eAj(t, s) exp(�r↵d
e�(t, s))ds dt,

which with Lemma 4.1 proves the stated formula for pr↵Fr↵.
The formula for the case n = 1 follows similarly.

Proof of Lemma 4.5. First e�(0, s) = 0 and

<e�(t, s) = � log |pdeh(t, s)| � � log
nX

j=1

sj |pdhj(e(t))| > 0

for t 6= 0, because the sum is convex and |hj(w)�1| > |pd| for w 6= bp since p is strictly minimal.
Now by the calculation in the proof of Proposition 3.6, for all l < d we have

@le�(✓⇤) = �i
rX

j=1

s⇤j
pl@lHj(p)

pd@dHj(p)
+ i

↵l

↵d
= 0,

where the last equality holds since p is critical for ↵. Also @le�(✓⇤) = 0 for d  l  n+ d� 2 since
e�(0, s) is constant. Thus re�(✓⇤) = 0. Now det e�00(✓⇤) 6= 0, since p is nondegenerate for ↵. So
there is a neighborhood of ✓⇤ in which ✓⇤ is the only zero of e�0. Thus, shrinking eX ⇥� if needed,
✓⇤ is the unique stationary point of e�.
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