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Abstract

We consider the problem of packing fixed-length patterns into a permutation, and develop a connection
between the number of large patterns and the number of bonds in a permutation. Improving upon a
result of Kaplansky and Wolfowitz, we obtain exact values for the expectation and variance for the
number of large patterns in a random permutation. Finally, we are able to generalize the idea of bonds
to obtain results on fixed-length patterns of any size, and present a construction that maximizes the
number of patterns of a fixed size.

1 Background

Two sequences of distinct integers a1a2 . . . an and b1b2 . . . bn are order isomorphic if, for all
1 ≤ i, j ≤n, we have that ai < aj if and only if bi < bj. Let q = q1q2 . . . qk be a permutation
in the symmetric group Sk written in one-line notation. We say that a permutation p =
p1p2 . . . pn ∈ Sn contains q as a pattern if there is a subsequence pi1pi2 . . . pik which is in the
same relative order as the entries of q. If p does not contain q as a pattern, we say that p
avoids q.

For example, the permutation p = 4732615 contains the pattern q = 213 because the 1st,
4th, and 7th entries of p are order isomorphic to the permutation 213. This permutation
avoids the pattern 123, however, because p contains no increasing subsequence of length 3.
For another example, a permutation p avoids the pattern q = 21 if and only if it is strictly
increasing, since otherwise p would contain an inversion, and an inversion is precisely a 21
pattern.

As a relation, pattern containment is transitive, reflexive, and anti-symmetric. Therefore
the set of all permutations equipped with this ordering forms a graded partially ordered set
(poset), which is referred to in the literature as the pattern poset. Given a permutation p,
the set of all patterns contained in p forms a downset (also referred to as an ideal) of this
poset.

The area of permutation patterns has received considerable attention in recent years.
The majority of work has been focused on enumerating infinite downsets in the pattern
poset (known as permutation classes), particularly those which arise as sets of permutations
avoiding specified patterns. An early result in the area, due to Knuth [5], is that the 231
avoiding permutations are counted by the Catalan numbers 1

n

�
2n
n

�
, and these are exactly

the stack sortable permutations. A more comprehensive introduction to the subject can be
found in [2].
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Figure 1: Downsets of 1234, 1243, and 2413

Interesting questions are raised, however, even if we restrict ourselves to finite downsets
of the pattern poset. We focus our attention here on examining the downset of a single
permutation. In 2003, Herb Wilf raised the question of finding the maximum number of
distinct patterns which can be contained in a permutation of length n, and classifying those
permutations which achieve this maximum. Translated to the language of posets, Wilf’s
question asks to find which permutations maximize the size of their downset in the pattern
poset. In [1], the authors showed that the maximum number of patterns that can be con-
tained in a permutation of length n is asymptotic to 2n. However, the exact value of the
maximum is unknown.

Here we examine the maximum number of patterns of a specified length that can occur
within a permutation. This paper can be divided into two parts: in the first, we examine
the number of (n−1)-patterns in a random n-permutation, and obtain exact values for both
the expectation and variance of this statistic by extending a 1945 result of Kaplansky and
Wolfowitz. In the second part, we examine the number of patterns of a fixed size in a given
permutation, and provide a partial answer Herb Wilf’s question.

2 Preliminaries

In counting the total number of patterns contained in a permutation, it is most useful to use
a top-down approach, enumerating all of the largest patterns and working down the downset
level by level. We introduce an alternate (but equivalent) definition of permutation patterns
which better suits this approach.

Definition 1. Let p = p1p2 . . . pn ∈ Sn, n ≥ 2. Let 0 ≤ k ≤ n − 1. We say that a
permutation q ∈ Sn−k is an (n − k)-pattern of p if q can be obtained by deleting k entries
of p and then relabelling the remaining entries 1 through n − k with respect to order. Let
Dk(p) denote the set of (n − k)-patterns of a permutation p, and D(p) =

�
k Dk(p) denote

the set of all patterns contained in p.

First, we investigate the number of coatoms. That is, we will fix an n ≥ 2 and focus our
attention on patterns of size (n − 1) contained in a given n-permutation p. We limit our
attention to (n−1)-patterns not only because they are easier to work with, but because these
results can in some cases be extended to results for (n− k)-patterns, simply by working our
way down the downset level by level. To start, we formalize our notion of (n − 1)-patterns
with a function. To simplify the notation, we use [n] to denote the set {1, 2, 3, . . . n}.

2



Definition 2. Let del : Sn× [n] → Sn−1 be the function where del(p, i) is defined by deleting
the ith entry of p, and relabelling the remaining entries 1 through n−1 with respect to order.

Since any (n − 1)-pattern q of a permutation p uses all but one entry of p, we see that
q = del(p, k) for some k ∈ [n]. Also, it is clear that if q = del(p, k) for some k ∈ [n], then q

is contained in p as a pattern. This implies that D1(p) = {del(p, k) : k ∈ [n]}.
Inversely, we can build up an (n− 1)-permutation into an n-permutation by inserting an

extra entry. We define another function to formalize this idea.

Definition 3. Let ins : Sn−1× [n]× [n] → Sn be the function where ins(q, j, k) is defined by
inserting the entry k− 1/2 immediately to the left of the jth entry of q, and then relabelling
1 through n with respect to order. Let I1(q) =

�
i

�
j ins(q, i, j) denote the set of all n-

permutations which can be obtained by inserting one entry to q.

The function ins can best be understood graphically:

Figure 2: ins(15324, 2, 4) = 146325.

Now, from the definitions of these two functions, we see that they satisfy the following
inverse relationship:

del(ins(q, j, k), j) = q and ins(del(p, i), i, pi) = p.

This relationship, along with the fact that D1(p) is the set of all (n−1)-patterns contained
in p, implies that I1(q) is exactly the set of all n-permutations which contain q as a pattern.

3 The size of D1(p)

It follows directly from the definition that given any permutation p ∈ Sn, |D1(p)| ≤ n, and
that |D1(p)| = n if and only if del(p, i) = del(p, j) implies that i = j. Before investigating
further, we introduce another definition.

Definition 4. Let p = p1p2 . . . pn be a permutation, and let i ∈ [n − 1]. Say that the
pair (pi, pi+1) is a bond, of entries of p if pi − pi+1 = ±1. We say that the sequence
(pi, pi+1, . . . pi+k−1) is a run of length k if, for 1 ≤ j ≤ k − 2, the pair (pi+j, pi+j+1) is a
bond. Denote by C(p) the number of bonds contained in a permutation p.

Note that runs are necessarily either increasing or decreasing, and that a run of length k

contains k − 1 bonds. We can now establish a fundamental relationship between bonds and
(n− 1)-patterns.
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Lemma 5. Let p = p1p2 . . . pn, and 1 ≤ j < k ≤ n. Then del(p, j) = del(p, k) if and only if
pj and pk are part of the same run.

Proof. The forward direction is clear, since removing any element of a run and relabelling
simply results in a shorter run.

The other direction takes a bit more work. Suppose that there are j, k with 1 ≤ j < k ≤ n

with del(p, j) = del(p, k). We proceed by induction on k − j.
Suppose that k = j + 1. Assume first that pj < pj+1, and consider the jth entry of

del(p, j) = del(p, j + 1). By the definition of del, the jth entry of del(p, j) is pj+1 − 1, and
the same entry in del(p, j +1) is pj. Therefore, we see that pj+1 − 1 = pj, which means that
(pj, pj+1) is a bond. Again, the case where pj+1 < pj follows similarly.

Now assume by way of induction that the statement holds when k = j + m − 1, and
suppose there exists 1 ≤ j < k ≤ n such that k − j = m and del(p, j) = del(p, k). Assume
first that pj < pk. del(p, j) = del(p, k) implies, in particular, that the (k − 1)st entries on
both sides of the equality are equal. By definition, the k − 1 entry of del(p, j) is pk − 1,
while the k− 1 entry of del(p, k) is either pk−1 or pk−1− 1. The latter case would imply that
pk−1 = pk, a contradiction, and so it follows that pk−1 = pk.

By what has already been proved, del(p, k−1) = del(p, k) since these entries form a bond.
But then del(p, j) = del(p, k) = del(p, k− 1), and so by the induction hypothesis the entries
(pjpj+1 . . . pk−1) form a run. Finally, pk−1 = pk−1 implies that (pjpj+1 . . . pk−1pk) is a length
m run. Once more, the case where pj > pk follows similarly, and the lemma is proved.

The simplest examples of permutations with runs are the ascending and descending per-
mutations. Removing any element from the ascending (descending) permutation of length
n and renumbering results in the ascending (descending) permutation of length n − 1. In
other words, the set of (n − 1)-patterns of either of these permutations has size 1, and the
lemma shows that these are the only permutations with this property.

We can now establish our connection between the number of bonds and the number of
(n− 1)-patterns. Lemma 5 directly implies the following theorem.

Theorem 6. Let p ∈ Sn. Then |D1(p)| = n− C(p).

This leads to a number of useful corollaries. The first is clear, and provides motivation
for generalization.

Corollary 7. A permutation has the maximum number of (n− 1)-patterns if and only if it
contains no bonds.

Theorem 6 also provides a simple proof of the following local property of the permutation
pattern poset.

Corollary 8. If q ∈ Sn−1, then |I1(q)| = n
2 − 2n + 2. In other words, every (n − 1)-

permutation is contained in exactly (n− 1)2 + 1 n-permutations.

Proof. By definition, the set I1(q) = {ins(q, j, k) : 1 ≤ j, k ≤ n}, so we see that |I1(q)| ≤ n
2.

Now, a permutation p ∈ Sn is contained in I1(q) more than once exactly when q can
be obtained in more than one way by deleting a entry of p. It follows that q is contained
in a permutation p ∈ Sn more than once exactly when ins(q, j, k) = ins(q, j�, k�) where
(j, k) �= (j�, k�). By the lemma, this happens exactly when the jth entry of ins(q, j, k) is a

4



part of the same run as the j� entry of (ins(q, j�, k�)). We can prevent this from occuring by
never inserting an element just to the right and directly above or below an existing element
of q, as this ensures that any new bonds can be created in exactly one way.

This eliminates exactly 2(n − 1) choices for inserting an entry into q, and so therefore
|I1(q)| = n

2 − 2(n− 1) = (n− 1)2 + 1, and the proof is complete.

4 Expectation and Variance of |D1(p)|

We now examine the distribution of the number of (n − 1)-patterns in a randomly chosen
n-permutation p by first examining the distribution of bonds. Kaplansky and Wolfowitz
presented in [4] and [8] the asymptotic distribution of the number of bonds in a random
permutation. Using more modern techniques of generating function analysis we are able to
improve upon their results and obtain exact formulas for the expectation and the variance
for the number of bonds in a random permutation. Theorem 6 allows us to translate these
into results on fixed-length patterns.

Throughout this section, we will let ρ : Sn → Z≥0 be the variable indicating the total
number of (n−1)-patterns of an n-permutation, and β : Sn → Z≥0 be the variable indicating
the number of bonds. Our main tool will be multivariate generating functions, but first we
note that the E(ρ) can be obtained directly using our connection to pattern containment.

Proposition 9. The expectation E(ρ) = n− 2(n−1)
n , which approaches n− 2 as n increases.

Proof. This follows immediately from Corollary 8 and the identity

(n− 1)!(n2 − 2n+ 2) = n!

�
n− 2(n− 1)

n

�
.

Generating functions, however, allow us to go several steps further. It follows from The-
orem 6 and the linearity of expectation that E(ρ) = n − E(β), which allows us to easily
translate results about bonds into results about (n − 1)-patterns. We can now begin the
construction of our multivariate generating function, using a technique similar to the cluster
method of Goulden and Jackson.

Theorem 10. Let an,k be the number of permutations of length n which contain exactly k

bonds, and set a0,0 = 1. Then we have that

F (z, u) :=
�

n≥0

�

k≥0

an,kx
n
u
k =

�

m≥0

m!

�
z +

2z2(u− 1)

1− z(u− 1)

�m

.

Proof. First, we construct a generating function G(z, u) =
�

n≥0

�
k≥0 bn,kx

n
u
k, where bn,k is

the number of permutations of length n with k distinguished bonds. For example, bn,0 = n!,
as every permutation can be written with no bonds distinguished, and no permutation is
counted more than once.

The function G(z, u) is easier to construct, as we can build an n-permutation with k

distinguished bonds by first specifying our distinguished ascending and descending runs,
then permuting these runs with the remaining entries. Now, a run of length j contains j− 1
bonds, and we have the option of making each run either increasing or decreasing. This
leads to

5



G(z, u) =
�

m≥0

m!

�
z +

2z2u

1− zu

�m

.

Now we can use the function G to obtain a formula for F . Since G counts only the
distinguished bonds and F counts every bond, we see that F and G are related by the
transformation F (z, u + 1) = G(z, u). Therefore F (z, u) = G(z, u − 1), and the theorem is
proved.

A simple transformation can be used to obtain a multivariate generating function which
indicates the total number of (n− 1)-patterns of a permutation. However, the function F is
more useful to work with, as we will soon see.

Corollary 11. Let dn,k be the number of permutations of length n with exactly k (n − 1)-
patterns. Then

H(z, u) = 1 +
�

n≥k≥1

dn,kx
n
u
k =

�

m≥0

m!

�
zu+

2zu2(u−1 − 1)

1− zu(u−1 − 1)

�m

.

Proof. Since |M(p)| = n− C(p), it follows immediately that H(z, u) = F (zu, u−1).

We can now coax several results out of the function F (z, u). To start, plugging in u = 0
gives the generating function for permutations with no bonds. Expanding, we see that

F (z, 0) = 1 + z + 2z4 + 14z5 + 90z6 + 646z7 + 5242z8 . . . .

The sequence, 1, 1, 0, 0, 2, 14, 90, 646, 5242, . . . is A002464 in the OEIS, and is easily seen
to be equal to the number of ways to place n non-attacking kings on an n×n chessboard with
one king in each row and each column. It was shown in [7] that this sequence is asymptotic
to n!/e2, and so Corollary 7 implies the following.

Proposition 12. The probability that a randomly selected n-permutation has the maximum
number of (n− 1)-patterns tends to 1/e2 as n → ∞.

We can take this a step further, and use the function F (z, u) to determine the expected
number of bonds in a random n-permutation. Using techniques described in [3], we have
that

E(β) = [zn]∂uF (z, u)|u=1

n!
=

1

n!
[zn]∂u

�
�

m≥0

m!

�
z +

2z2(u− 1)

1− z(u− 1)

�m
�
.

Taking the partial derivative with respect to u, we find that

∂uF (z, u) = ∂u

�
�

m≥0

m!

�
z +

2z2(u− 1)

1− z(u− 1)

�m
�

=

�

m≥0

m ·m!

�
z +

2z2(u− 1)

1− z(u− 1)

�m �
2z2

1− z(u− 1)
+

2z3(u− 1)

(1− z(u− 1))2

�

z +
2z2(u− 1)

1− z(u− 1)

.
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Plugging in u = 1 simplifies this expression greatly, leaving

∂uF (z, u)|u=1 =
�

m≥0

2m! ·mz
m+1 =

�

m≥1

2(m− 1)! · (m− 1)zm.

From this it follows that

E(β) = [zn]∂uF (z, u)|u=1

n!
= 2

(n− 1)! · (n− 1)

n!
= 2

(n− 1)

n
.

Finally, by using linearity of expectation and the fact that ρ = n − β, we find that
E(ρ) = n− E(β) = n− 2n−1

n , in agreement with Proposition 9.
Once again, we can use this to go several steps farther than counting arguments will allow.

The variance is given by V(β) = E(β2)− E(β)2, and so we find that

V(β) = E(β(β − 1)) + E(β)− (β)2.

The factorial moment can be computed directly from the bivariate generating function F as
follows:

E(β(β − 1)) =
[zn]∂2

uF (z, u)|u=1

n!
.

This leads to

V(β) = [zn]∂2
uF (z, u)|u=1

n!
+

[zn]∂uF (z, u)|u=1

n!
−
�
[zn]∂uF (z, u)|u=1

n!

�2

=
[zn]∂2

uF (z, u)|u=1

n!
+ 2

n− 1

n
−

�
2
n− 1

n

�2

.

We begin by taking the second derivative of F (z, u) with respect to u, which gives:

∂uF (z, u) =
�

m≥0

m! ·m




m

�
z + 2z2(u−1)

1−z(u−1)

�m �
2z2

1−z(u−1) +
2z3(u−1)

(1−z(u−1))2

�2

�
z + 2z2(u−1)

1−z(u−1)

�2

+

�
z + 2z2(u−1)

1−z(u−1)

�m �
4z3

(1−z(u−1))2 +
4z4(u−1)

(1−z(u−1))3

�

z + 2z2(u−1)
1−z(u−1)

−

�
z + 2z2(u−1)

1−z(u−1)

�m �
2z2

1−z(u−1) +
2z3(u−1)

(1−z(u−1))2

�2

�
z + 2z2(u−1)

1−z(u−1)

�2



 .

Once again, setting u = 1 simplifies this expression immensely:

∂
2
uF (z, u)|u=1 =

�

m≥0

4m! ·m2
z
m+2 =

�

m≥2

4(m− 2)!(m− 2)2zm.

Which produces:
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V(β) = [zn]∂2
uF (z, u)|u=1

n!
+ 2

n− 1

n
−
�
2
n− 1

n

�2

=
4(n− 2)!(n− 2)2

n!
+ 2

n− 1

n
−

�
2
n− 1

n

�2

= 4
(n− 2)2

n(n− 1)
+ 2

n− 1

n
− 4

(n− 1)2

n2
.

Which converges to 2 for large n. From the fact that ρ = n−β, it follows that V(ρ) = V(β).
We summarize this in the following theorem.

Theorem 13. Let ρ : Sn → Z+ be the variable indicating the number of distinct (n − 1)-
patterns of a permutation p ∈ Sn. Then we have:

E(ρ) = n− 2
n− 1

n
and V(ρ) = 4

(n− 2)2

n(n− 1)
+ 2

n− 1

n
− 4

(n− 1)2

n2
.

An immediate consequence, we see that for large n these approach E(ρ) = n − 2 and
V(ρ) = 2 respectively, implying as a special case the results of [4] and [8]. These same
techniques can be applied to recursively calculate higher moments.

5 Patterns of other sizes

We turn our attention now to determining the total number |Dk(p)| of (n − k)-patterns of
a permutation, for k > 1. In particular, we seek to determine which permutations (if any)
have the property that |Dk(p)| =

�
n
k

�
, the maximum number of possible (n − k)-patterns.

To start, we generalize our notion of bonds with the following definition.

Definition 14. Let p = p1p2 . . . pn ∈ Sn be any permutation. Define a metric on the entries
of p by dp(i, j) = |i − j| + |pi − pj|. Define the minimum gap of a permutation p to be
mg(p) = min{dp(i, j) : 1 ≤ i < j ≤ n}.

If the permutation is plotted on a lattice, then the metric d is just the taxicab metric on
Z2. It is easy to see that (pi, pj) is a bond if and only if d(i, j) = 2. Therefore, we see that
p has the maximum number of (n− 1)-patterns if and only if mg(p) ≥ 3. This motivates a
generalization of Corollary 7, after we establish some suitable notation.

Definition 15. Let S = {a1, a2, . . . ak} ⊆ [n], with 1 ≤ a1 < a2 < . . . < ak ≤ n. We
denote del(. . . del(del(del(p, ak), ak−1), ak−2), . . . , a1) by del(p;S). In other words, to obtain
del(p;S) we remove pa1 , pa2 , . . . pak from p and renumber the remaining entries with respect
to order.

Definition 16. Let p = p1p2 . . . pn be a permutation, and 1 ≤ i < j ≤ n then the span
of the entries pi and pj is denoted spanp(i, j) and is defined to be the set of indices for the
entries that lie between pi and pj either vertically or horizontally.

Formally, if pi < pj, then spanp(i, j) = {k : i < k < j or pi < pk < pj}, with a similar
definition when pi > pj.

Lemma 17. If p = p1p2 . . . pn is a permutation with mg(p) = k, and if 1 ≤ i < j ≤ n are
such that dp(i, j) = k, then |spanp(i, j)| = k − 2.
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Proof. It is clear that |spanp(i, j)| ≤ k − 2. The only way in which |spanp(i, j)| < k − 2
would hold is if there existed an entry pm which was in between pi and pj both vertically
and horizontally. However, this pm would contradict the minimality of k, so |spanp(i, j)| =
k − 2.

Corollary 18 now follows immediately from the lemma.

Corollary 18. If p = p1p2 . . . pn is an n-permutation with mg(p) = k, then mg(del(p, i)) ≥
k − 1 for all i ∈ [n].

We are now able to prove our generalization of Corollary 7.

Theorem 19. Let p ∈ Sn. Then p has the maximum number of (n− k)-patterns if and only
if mg(p) ≥ k + 2.

Proof. We start with the forward direction. Let p = p1p2 . . . pn be a permutation with the
maximum number of (n− k)-patterns. Assume, by way of contradiction that mg(p) = m <

k + 2. Let i < j be such that dp(i, j) = m. By Lemma 17, we have that spanp(i, j) =
{a1, a2, . . . am−2}. Now set q = del(p; {a1, a2, . . . am−2}) ∈ Sn−m+2. It follows mg(q) = 2, and
so q has a consecutive pair, which implies that q does not have the maximum number of
(n− 1)-patterns. Since m− 2 < k, p cannot have the maximum number of (n− k)-patterns,
a contradiction.

For the reverse implication, let p = p1p2 . . . pn be a permutation with mg(p) ≥ k+ 2. We
use induction on k. We have already seen that the statement is true for k = 1, so assume the
statement holds for all positive integer less than k. Let p = p1p2 . . . pn be a permutation with
mg(p) = k + 2. By induction, we know that this permutation has the maximum number of
(n−m)-patterns for all 1 ≤ m < k.

Suppose, by way of contradiction, that q ∈ Sn−k is contained in p in two different ways.
That is, suppose that del(p; {a1, a2, . . . ak}) = q = del(p; {b1, b2, . . . bk}), with ai < aj and
bi < bj when i < j, and A = {a1, a2, . . . ak} �= {b1, b2, . . . bk} = B.

Now we claim that A ∩ B = ∅. To see this, we can suppose that ai = bj. But then
q is contained as a pattern in two different ways in del(p, ai). However this contradicts
mg(del(p, ai)) ≥ k+1, because by induction it has the maximum number of ((n− 1)− (k−
1)) = (n− k)-patterns.

Assume, without loss of generality, that a1 < b1. Let j ∈ [n] be the smallest value such that
j > a1 but j /∈ A. Since del(p; {a1, a2, . . . ak}) = del(p; {b1, b2, . . . bk}) = q = q1q2 . . . qn−k, it
follows that pa1 and pj will both move to fulfill the role of qa1 once the entries from A or B
are removed and the permutation is renumbered. However, since |A| = k, this implies that
d(a1, j) < k + 2, our final contradiction.

Corollary 20. Let p ∈ Sn. If |Dk(p)| =
�
n
k

�
, then Dj(p) =

�
n
j

�
for all j ∈ [k].

To see that permutations with arbitrarily large gap sizes exist, we first note that the
slanted cube construction presented in [1] creates a permutation of length n

2 minimum gap
equal to n+ 1. We will construct a sequence of permutations {π(n)}∞n=2 which does slightly
better, creating the same minimum gap size with shorter length.

To build the permutation π
(n) with gap size n, we begin with a tiling of the plane with

squares with side length n. Then we simply rotate the tiling by 45 degrees and use the
centers of the squares as our permutation entries. We define this formally as follows.
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Definition 21. Let ai be defined as

ai = min{d ∈ [k − 1] : i ≤ d(k − 1)} and bi = (i− 1 mod (k − 1)) · (k − 1).

Define pi = ai + bi. Now take the permutation p
� = p1p2 . . . π

(k−1)2 , and define π
(n) =

del(p�, 1, (k − 1)2), the permutation obtained by deleting the first and last entries of p�.

The permutation π
(k) for k = 4, 5 is shown below, and it is clear that these permutations

have minimum gap size equal to 4 and 5 respectively. It is clear that π
(k) is an involution

for all k, and that the complement of π(k) is equal to it’s own reverse. Therefore, the orbit
of π(k) under the automorphism group of the pattern poset has order 2.

Figure 3: π(4) = 3 6 1 4 7 2 5, and π
(5) = 4 8 12 1 5 9 13 2 6 10 14 3 7 11

A permutation can be embedded in the plane and the metric dp can be extended to the
taxicab metric d1 on R2. It follows that any permutation p with minimum gap size equal
to k defines a tiling of the plane by tilted squares with side lengths equal to k and centers
on points of Z2. It is clear that a minimal sized permutation with gap size equal to k will
produce a maximum tiling of the plane with tilted squares centered on different horizontal
and vertical lines. There are exactly two such tilings of the plane, corresponding to the
permutations π(k) and its reverse. We summarize this in the following theorem.

Theorem 22. The permutation π
(k) and its reverse are the shortest permutations with min-

imum gap size equal to k.

Corollary 23. Given any k ∈ Z+, the permutation π
(k) ∈ S(k−1)2−2 has the property that

Mj(p) =
�
n
j

�
for all 0 ≤ j ≤ k−2. Furthermore, no permutation of length less than (k−1)2−2

has this property.

Proof. Immediate from the construction above, Theorem 19, and Corollary 20.

We end this section with one last theorem, a generalization of Theorem 6.

Theorem 24. Let p be an n-permutation with mg(p) = k + 1, and let wk be the number of
pairs (i, j) ∈ [n] × [n] such that |spanp(i, j)| = k − 1. Then the number of (n − k)-patterns
in p is

�
n
k

�
− wk.

Proof. Let p ∈ Sn with mg(p) = k + 1, and let i, j ∈ [n] be such that dp(i, j) = k + 1 (that
is, |spanp(i, j)| = k − 1). Then if we let S = spanp(i, j) ∪ i and S

� = spanp(i, j) ∪ j, we see
that del(p;S) = del(p;S �), and so |Dk(p)| ≤

�
n
k

�
− wk.
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For equality, we use a modification of the argument used in Theorem 19. Suppose that
del(p;A) = del(p;B) for some A = {a1, a2, . . . ak} �= B = {b1, b2, . . . bk}, with ai < aj and
bi < bj for i < j. Suppose that a1 �= b1, and let s ∈ [n] be the smallest integer so that
s /∈ A. Then as in the proof of Theorem 19, we must have that dp(a1, s) = k + 1 and
A− a1 = B − b1 = spanp(a1, s).

In the case where a1 = b1, let p� = del(p, a1), and A
� = A− a1, B� = B− b1. By Corollary

18, mg(p�) = k, since if mg(p�) = k + 1, del(p�, A�) = del(p�, B�) would contradict Theorem
19. We now repeat the argument, and find that either a2 = b2 or A

� − a2 = B
� − b2. We

repeat as necessary (no more than k times) to conclude that |A ∩B| = k − 1.
Finally, let i, j be such that ai /∈ B and bj /∈ A. It follows that A−ai = B−bj = spanp(i, j),

and so dp(i, j) = k + 1. Thus, for each pair of entries with distance k + 1, there are exactly
two sets A,B for which del(p;A) = del(p;B), and so |Dk(p)| =

�
n
k

�
− wk.

6 Further Questions

Considering Wilf’s pattern packing problem, we would hope that maximizing the large pat-
terns would also maximize the total patterns. For example, having the maximum number
of patterns of large sizes seems to maximize the total number of patterns, but there is some
subtlety involved. For example, the two permutations in Figure 5 have been verified to
have the maximum number of patterns for their size, but not every permutation with the
maximum number of patterns has the maximum minimum gap.

For a concrete example, we see that |D(3614725)| = |D(5274136)| = 55, the maximum
number of patterns for permutations of size 7. However, we see that mg(3614725) = 4 while
mg(5274136) = 3. Relaxing the requirement that permutations have the maximum number
of patterns for their size allows us to take this a step further. Setting p = 31462758 and
q = 36147825, we find that |D(p)| = 75 while |D(q)| = 89, though mg(p) = 3 and mg(q) = 2.

The data suggests that while maximizing the number of fixed size patterns requires a large
minimum gap size, the total number of patterns is more dependent on the average value of
the gaps between pairs of entries. The slanted square construction of [1] yields a permuta-
tion with maximum average gap size between entries, while the construction presented here
maximizes the minimum gap size.

Another question which arises is whether or not we can construct a well-behaved multi-
variate generating function which grants us insight into the distribution for the total number
of (n − k)-patterns of random permutations as we did with the k = 1 case. However, even
if we had the distribution of the minimum gap size of random permutations, there is no
guarantee that this would translate to exact formulas for the distribution of the number of
patterns of each length.
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