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ABSTRACT. In this paper, we generalize an earlier statistic on square-and-domino tilings

by considering only those squares covering a multiple of k, where k is a fixed positive in-

teger. We consider the distribution of this statistic jointly with the one that records the

number of dominos in a tiling. We derive both finite and infinite sum expressions for the

corresponding joint distribution polynomials, the first of which reduces when k = 1 to a

prior result. The cases q = 0 and q = −1 are noted for general k. Finally, the case k = 2

is considered specifically, where further results may be given, including a combinatorial

proof when q =−1.

1. INTRODUCTION

Let Fn be the Fibonacci number defined by the recurrence Fn = Fn−1 + Fn−2 if n ≥ 2,

with initial conditions F0 = 0 and F1 = 1. See, for example, sequence A000045 in [12]. Let

Gn =Gn(t ) be the Fibonacci polynomial defined by Gn =Gn−1 + tGn−2 if n ≥ 2, with G0 = 0

and G1 = 1; note that Gn(1) = Fn for all n. See, for example, [10]. Finally, the q-binomial

coefficient
(x

k

)

q
is defined by

(

x

k

)

q

=
{

∏k
i=1

1−qx−i+1

1−q i , if k ≥ 0;

0, if k < 0.

Polynomial generalizations of Fn have arisen in connection with statistics on binary

words [3], Morse code sequences [4], lattice paths [5], and linear domino arrangements

[10, 11]. Let us recall now a statistic related to domino arrangements. If n ≥ 1, then let Fn

denote the set of coverings of the numbers 1,2, . . . ,n, arranged in a row by indistinguish-

able dominos and indistinguishable squares, where pieces do not overlap, a domino is a

rectangular piece covering two numbers, and a square is a piece covering a single number.

The members of Fn are also called (linear) tilings or domino arrangements. (If n = 0, then

F0 consists of the empty tiling having length zero.)

Note that members of Fn correspond uniquely to words in the alphabet {d , s} compris-

ing i d ’s and n −2i s’s for some i , 0 ≤ i ≤ ⌊n
2
⌋. In what follows, we will frequently identify

tilings c by such words c1c2 · · · . For example, if n = 4, then F4 = {dd ,d ss, sd s, ssd , ssss}.

Note that |Fn | = Fn+1 for all n. Given π ∈ Fn , let ρ(π) denote the sum of the numbers

covered by squares in π. For example, if n = 15 and π = sd s2d 2sd 2s ∈ F15 (see Figure 1

below), then ρ(π) = 1+4+5+10+15= 35.

1 2 3 4 5 6 7 8 9 101112131415

FIGURE 1. The tiling π= sd s2d 2sd 2s ∈F15 has ρ(π) = 35.
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The statistic ρ was introduced in [11], where its distribution was studied on r -mino

arrangements. Let ν(π) denote the number of dominos in the tiling π. Then the joint

distribution for the ρ and ν statistics on Fn is given by

(1)
∑

π∈Fn

qρ(π)tν(π) =
n
∑

j=0

q(n−2 j+1
2 )

(

n − j

j

)

q2

t j , n ≥ 0,

where q and t are indeterminates. Equation (1) is the r = 2 case (corresponding to square-

and-domino tilings) of [11, Theorem 2.1], which is a result on more general r -mino ar-

rangements. Here, we will provide a different generalization of (1). Note that (1) reduces

to the well-known formula Fn+1 =
∑n

j=0

(n− j
j

)

when q = t = 1.

Recently, generalizations of the Fibonacci sequence have been studied which specify

the recurrence for each value of the index mod k, where k is a fixed positive integer. For

example, the recurrence

(2) Qm = a j Qm−1 +b j Qm−2, m ≡ j (mod k),

with Q0 = 0 and Q1 = 1, was considered in [8], where a Binet-like formula is derived. See

also [6] for the case when b j = 1 for all j and [13] for the case k = 2. These generalizations

so far have been studied primarily from an algebraic standpoint such as through the use

of generating functions [6] or orthogonal polynomials [8]. In [7], a special case of (2) and

a closely related sequence are studied from a more combinatorial viewpoint in terms of

statistics on linear tilings and new generalizations of Fn are obtained which extend prior

ones.

In this paper, we continue this study by considering a generalization of the ρ statistic

defined above, where one looks only at squares that cover multiples of k. More precisely,

let ρk record the sum divided by k of all the multiples of k which are covered by squares

within a member of Fn . Note that ρk reduces to ρ when k = 1.

In the next section, we obtain an explicit formula for all k (see Theorem 2.2 below) for

the joint distribution

a(k)
n (q, t ) :=

∑

π∈Fn

qρk (π)tν(π).

This yields an infinite family of q-generalizations for the numbers Gn(t ) defined above,

and setting q = 1 yields seemingly new expressions for Gn(t ). When k = 1 in our formula,

we obtain the explicit expression (1) above, but with a different proof than that given in

[11]. We also note some special cases of q and provide an infinite expansion for a(k)
n (q, t )

(see Theorem 2.7 below). In the third section, we consider specifically the case k = 2,

where further combinatorial results may be given. In particular, we provide a combinato-

rial proof explaining the values of a(2)
n (−1,1) as well as an explicit expression for the sum

of the ρ2 values taken over all the members of Fn . Note that ρ2 records half the sum of the

even numbers covered by squares within a tiling.

2. GENERAL FORMULAS

Suppose k is a fixed positive integer. Given π ∈ Fn , let ν(π) denote the number of

dominos of π and let ρk (π) denote the sum divided by k of all the multiples of k covered

by squares of π. For example, if π = s2d 3sd sd sd 2s2d 2 ∈ F25 (see Figure 2 below), then

ν(π) = 9 and

ρ3(π) =
9+12+15+21

3
= 19.
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If q and t are indeterminates, then define the distribution polynomial a(k)
n (q, t ) by

a(k)
n (q, t ) :=

∑

π∈Fn

qρk (π)tν(π), n ≥ 1,

with a(0)
n (q, t ) := 1. For example, if n = 6 and k = 3, then

a(3)
6 (q, t ) = 2t 2 + t 3 +q(1+ t )(t +2qt +q2 +q2t ).

Note that a(k)
n (1, t ) =Gn+1 for all k and n.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

FIGURE 2. The tiling π= s2d 3sd sd sd 2s2d 2 ∈F25 has ρ3(π) = 19.

In what follows, we will often suppress arguments and write an for a(k)
n (q, t ). Consid-

ering whether the last piece within a member of Fn is a square or a domino yields the

recurrence

(3) an = q
n
k an−1 + t an−2, n ≥ 2,

if n is divisible by k, and the recurrence

(4) an = an−1 + t an−2, n ≥ 2,

if n is not, with the initial conditions a0 = 1 and

a1 =
{

q, if k = 1;

1, if k > 1.

To solve recurrences (3) and (4), we first ascertain an explicit formula for the generating

function of the numbers an .

Theorem 2.1. We have

(5)

∑

n≥0

an xn =
(

k−1
∑

r=0

xr Gr+1 − t xk
k−1
∑

r=0

(−t x)r Gk−1−r

)

∑

j≥0

G
j

k
q( j+1

2 )x j k

∏ j

i=0
(1−2t q i xkGk−1 + (−t )k q2i x2k )

.

Proof. It is more convenient to first consider the generating function for the numbers a′
n :=

a(k)
n−1(q, t ). Then the sequence a′

n has initial values a′
0 = 0 and a′

1 = 1 and satisfies the

recurrences

(6) a′
mk+r = a′

mk+r−1 + t a′
mk+r−2, 2≤ r ≤ k and m ≥ 0,

with

(7) a′
mk+1 = qm a′

mk + t a′
mk−1, m ≥ 1.

Let

ar (x) =
∑

m≥0

a′
mk+r xm ,

where r ∈ [k]. Then multiplying the recurrences (6) and (7) by xm , and summing the first

over m ≥ 0 and the second over m ≥ 1, gives

ar (x) = ar−1(x)+ t ar−2(x), 3 ≤ r ≤ k,

a2(x) = a1(x)+ t xak (x),

a1(x) = 1+qxak (qx)+ t xak−1(x).
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By induction on r , we obtain

ar (x) =Gr−1a2(x)+ tGr−2a1(x), 2≤ r ≤ k.

Therefore,

ar (x) =Gr−1(a1(x)+ t xak (x))+ tGr−2a1(x),

which implies

(8) ar (x) =Gr a1(x)+ t xGr−1ak (x), 2≤ r ≤ k.

Taking r = k in (8) gives

a1(x) =
1− t xGk−1

Gk

ak (x).

By induction on r , we obtain

ar (x) =
Gr + (−t )r xGk−r

Gk

ak (x), 1 ≤ r ≤ k.

Since a1(x) = 1+qxak (qx)+ t xak−1(x), the last relation may be rewritten as

(9) ak (x) =
Gk

1−2t xGk−1 + (−t )k x2
+

qxGk

1−2t xGk−1 + (−t )k x2
ak (qx).

Iterating (9) yields

ak (x) =
∑

j≥0

G
j+1

k
q( j+1

2 )x j

∏ j

i=0
(1−2t q i xGk−1 + (−t )k q2i x2)

.

Thus, we have

ar (x) = (Gr + (−t )r xGk−r )
∑

j≥0

G
j

k
q(j+1

2 )x j

∏ j

i=0
(1−2t q i xGk−1 + (−t )k q2i x2)

, 1 ≤ r ≤ k,

which implies

∑

n≥0

a′
n xn =

k
∑

r=1

∑

m≥0

a′
mk+r xmk+r =

k
∑

r=1

xr ar (xk )

=
(

k
∑

r=1

xr Gr +xk
k
∑

r=1

(−t x)r Gk−r

)

∑

j≥0

G
j

k
q( j+1

2 )x j k

∏ j

i=0
(1−2t q i xkGk−1 + (−t )k q2i x2k )

.

The result now follows since
∑

n≥0

an xn =
∑

n≥0

a′
n+1xn =

1

x

∑

n≥0

a′
n xn .

�

We now derive an explicit formula for the polynomials a(k)
n (q, t ).

Theorem 2.2. If n = km + r , where m ≥ 0 and 0≤ r ≤ k −1, then

(10) an =Gr+1S(m)+ (−t )r+1Gk−1−r S(m −1),

where

S(m)=
m
∑

j=0

(−1)k j G
j

k
q( j+1

2 )t m−(k−1) j
m
∑

a= j

d a
+d m+ j−a

−

(

a

j

)

q

(

m + j −a

j

)

q

, m ≥ 0,

with S(−1) = 0 and

d± =Gk−1 ±
√

GkGk−2.
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Proof. Note first that

d± =Gk−1 ±
√

G2
k−1

− (−t )k−2,

by the identity G2
m −Gm+1Gm−1 = (−t )m−1, which can be shown by induction (see, e.g., [2,

Identity 8] for the t = 1 case). Then

1−2t q i xGk−1 + (−t )k q2i x2 = (1−d+t q i x)(1−d−t q i x).

Let n = mk + r , where m ≥ 0 and 0≤ r ≤ k −1. By Theorem 2.1, we have

an =Gr+1[xm ](a(x))+ (−t )r+1Gk−1−r [xm−1](a(x)),

where

a(x) =
∑

j≥0

G
j

k
q( j+1

2 )x j

∏ j

i=0
(1−2t q i xGk−1 + (−t )k q2i x2)

.

Using the expansion [1]

y j

∏ j

i=0
(1−q i y)

=
∑

a≥ j

(

a

j

)

q

y a

and the fact d+d− = (−t )k−2, we have

[xm ](a(x)) =
∑

j≥0

[xm ]





G
j

k
q( j+1

2 )x j

∏ j

i=0
(1−d+t q i x)(1−d−t q i x)





=
∑

j≥0

G
j

k
q( j+1

2 )

d
j
+d

j
−t 2 j

[xm+ j ]

(

(d+t x) j

∏ j

i=0
(1−d+t q i x)

·
(d−t x) j

∏j

i=0
(1−d−t q i x)

)

=
m
∑

j=0

G
j

k
q( j+1

2 )

(−1)k j t k j

m
∑

a= j

(

a

j

)

q

(d+t )a ·
(

m + j −a

j

)

q

(d−t )m+ j−a

=
m
∑

j=0

(−1)k j G
j

k
q( j+1

2 )t m−(k−1) j
m
∑

a= j

d a
+d m+ j−a

−

(

a

j

)

q

(

m + j −a

j

)

q

,

which completes the proof. �

Letting k = 1 in Theorem 2.2 gives the following expression for a(1)
n (q, t ).

Corollary 2.3. If n ≥ 0, then

(11) a(1)
n (q, t ) =

n
∑

j=0

q(n−2 j+1
2 )

(

n − j

j

)

q2

t j .
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Proof. When k = 1, we have d± =± 1p
t

since G0 = 0 and G−1 = 1
t

. Taking k = 1 in (10) then

gives

a(1)
n (q, t ) = S(n)=

n
∑

j=0

(−1) j q( j+1
2 )t n

n
∑

a= j

(

1
p

t

)a
(

a

j

)

q

· (−1)n+ j−a

(

1
p

t

)n+ j−a
(

n + j −a

j

)

q

=
n
∑

j=0

q( j+1
2 )t

n− j
2

n
∑

a= j

(−1)n−a

(

a

j

)

q

(

n + j −a

j

)

q

=
n
∑

j=0

q(n− j+1
2 )t

j
2

n
∑

a=n− j

(−1)n−a

(

a

n − j

)

q

(

2n − j −a

n − j

)

q

=
n
∑

j=0

(−1) j q(n− j+1
2 )t

j
2

j
∑

a=0

(−1)a

(

a+n − j

n − j

)

q

(

n −a

n − j

)

q

=
n
∑

j=0
j even

(−1) j q(n− j+1
2 )

(

n − j /2

n − j

)

q2

t
j
2 =

n
∑

j=0

q(n−2 j+1
2 )

(

n − j

j

)

q2

t j ,

where we have used the identity

(12)
n−m
∑

a=0

(−1)a

(

a+m

m

)

q

(

n −a

m

)

q

=
{

( n+m
2

m

)

q2 , if n ≡ m (mod 2);

0, otherwise,
(0 ≤ m ≤ n).

Note that (12) may be obtained by writing

∑

a≥0

(−1)a

(

a+m

m

)

q

xa ·
∑

a≥0

(

a

m

)

q

xa =
1

∏m
i=0(1+q i x)

·
xm

∏m
i=0(1−q i x)

=
xm

∏m
i=0(1−q2i x2)

=
∑

a≥0

(

a+m

m

)

q2

x2a+m ,

and extracting the coefficient of xn from both sides. �

Remark: Formula (11) corresponds to the r = 2 case of [11, Theorem 2.1], which is a result

on more general r -mino arrangements where no restriction is placed on the positions of

r -minos or squares. The proof there was combinatorial, though it does not seem that it

can be extended to prove Theorem 2.2 above.

Taking q = 1 and r = k −1 in (10), and noting a(k)
n (1, t ) =Gn+1, yields the following iden-

tity.



GENERALIZATION OF A STATISTIC ON LINEAR DOMINO ARRANGEMENTS 7

Corollary 2.4. If m ≥ 0 and k ≥ 1, then

(13) G(m+1)k =Gk

k
∑

j=0

(−1)k j G
j

k
t m−(k−1) j

m
∑

a= j

d a
+d m+ j−a

−

(

a

j

)(

m + j −a

j

)

,

where d± =Gk−1 ±
p

GkGk−2.

We have the following explicit formula for the number of members of Fn (weighted

according to the value of ν) in which no square covers a multiple of k.

Corollary 2.5. If n = km + r , where m ≥ 0 and 0 ≤ r ≤ k −1, then

(14) a(k)
n (0, t )= t mGr+1T (m)+ (−1)r+1t m+r Gk−1−r T (m −1),

where

T (m)=
m
∑

i=0

(

m +1

2i +1

)

Gm−2i
k−1 (GkGk−2)i .

Proof. Setting q = 0 in (10) implies

a(k)
mk+r

(0, t ) = t mGr+1

m
∑

a=0

d a
+d m−a

− + (−1)r+1t m+r Gk−1−r

m−1
∑

a=0

d a
+d m−1−a

− ,

with

m
∑

a=0

d a
+d m−a

− =
d m+1
+ −d m+1

−
d+−d−

=
1

2
p

GkGk−2

m
∑

i=0

2

(

m +1

2i +1

)

Gm−2i
k−1 (

√

GkGk−2)2i+1.

�

For example, when k = 1 in (14), we see that a(1)
n (0, t ) equals t

n
2 for n even and zero for n

odd. Taking k = 2 in (14) gives a(2)
2m(0, t ) = t m and a(2)

2m+1(0, t ) = (m +1)t m for m ≥ 0. These

formulas are readily seen directly.

We next consider the case q =−1. Recall that for any generating function in q , the eval-

uation at q =−1 gives the difference in cardinalities between those members of a structure

having an even value for the statistic counted by q with those having an odd value. Letting

q =−1 and t = 1 in (5) gives the following formulas, where fi :=
∑

n≥0 a(i )
n (−1,1)xn :

f1 =
(1−x −x3 −x4)(1−x6)

1−x12
,

f2 =
(1+x +x3 +x4 +2x5 −x6 +x7 +x9 −x10)(1−x12)

1−x24
,

f3 =
1+x +2x2 −x3 +x4

1−x6
,

f4 =
(1+x +2x2 +3x3 −2x4 +x5 −x6)(1+x4 +x8)

1−5x8 +x16
.

The first three generating functions show that the sequences a(i )
n (−1,1), i = 1,2,3, are

periodic with periods 12, 24, and 6, respectively. The sequences a(1)
n (−1,1) and a(2)

n (−1,1)

are seen to satisfy the stronger conditions pn+6 =−pn and pn+12 =−pn for all n ≥ 0. From

the appearance of the generating function f4, it seems that the sequence a(4)
n (−1,1) would

not be periodic, which is indeed the case. It turns out that there are no other values of k

for which the sequence a(k)
n (−1,1) is periodic.
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Proposition 2.6. The sequence a(k)
n (−1,1) is never periodic (or eventually periodic) when

k ≥ 4.

Proof. Substituting q =−1 and t = 1 into the infinite part of (5) gives

∑

j≥0

F
j

k
(−1)( j+1

2 )x j k

∏j

i=0
(1−2Fk−1(−1)i xk + (−1)k x2k )

=
∑

m≥0

F 2m
k

(−1)m x2mk

(1−2Fk−1xk + (−1)k x2k )((1+ (−1)k x2k )2 −4F 2
k−1

x2k )m

+
∑

m≥0

F 2m+1
k

(−1)m+1x(2m+1)k

((1+ (−1)k x2k )2 −4F 2
k−1

x2k )m+1

=
1+Fk−3xk + (−1)k x2k

1+ (F 2
k
−4F 2

k−1
+2(−1)k)x2k +x4k

,

and thus

∑

n≥0

a(k)
n (−1,1)xn =

(
∑k−1

r=0 Fr+1xr −xk ∑k−1
r=0 (−1)r Fk−1−r xr )(1+Fk−3xk + (−1)k x2k )

1+ (F 2
k
−4F 2

k−1
+2(−1)k)x2k +x4k

.

Let a(x) and b(x) denote the numerator and the denominator in the (unsimplified) ex-

pression above for
∑

n≥0 a(k)
n (−1,1)xn . Suppose now that

a(x)

b(x)
= c(x)+

d(x)

1−xℓ
,

where ℓ is a positive integer, c(x) is any polynomial (possibly zero), and d(x) is of the form

d(x) = xm+1e(x), with m denoting the degree of c(x) (we take m to be −1 if c(x) is the

zero polynomial) and e(x) being a polynomial of degree at most ℓ−1. Then (1−xℓ)(a(x)−
b(x)c(x)) = b(x)d(x) implies that the equation b(x) = 0 must have at least one root of unity

among its roots since e(x) = d(x)
xm+1 is of degree at most ℓ−1, with e(x) not identically zero.

Then the equation b(u) = 0, where u = x
1

2k , must also have at least one root of unity among

its roots, since r a root of unity implies r 2k is as well.

The equation b(u) = 0 is given by

(15) 1+ (F 2
k −4F 2

k−1 +2(−1)k)u +u2 = 0.

If k ≥ 4, then

F 2
k −4F 2

k−1 +2(−1)k ≤−5,

since

F 2
k −4F 2

k−1 = (Fk −2Fk−1)(Fk +2Fk−1) =−Fk−3(Fk +2Fk−1) ≤−7.

Note that an equation of the form

1−au +u2 = 0, a ≥ 5,

has (real) roots a
2
±

p
a2−4

2
. So the only possible roots of unity that are also roots to such an

equation are ±1. However, the equations a
2
+

p
a2−4

2
=±1 and a

2
−

p
a2−4

2
=±1 have solutions

a = ±2 in each case, but a ≥ 5. Thus no roots of unity satisfy equation (15) when k ≥ 4,

which implies the result. �
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Remark: When k = 1,2,3, the equation (15) is satisfied by roots of unity and it works out

that the sequences a(k)
n (−1,1) are periodic in these cases.

Let (x : q)s =
∏s−1

i=0(1−q i x). We conclude this section with the following infinite expan-

sion for the numbers a(k)
n (q, t ) for all k ≥ 1.

Theorem 2.7. If n = km + r , where m ≥ 1 and 0≤ r ≤ k −1, then

an = t mGr+1

∑

s≥0

q sm
(

d m
+ bs +d m

− cs

)

(16)

+ (−1)r+1t m+r Gk−1−r

∑

s≥0

q s(m−1)
(

d m−1
+ bs +d m−1

− cs

)

,

where

bs =
∑

j≥s

(−1)sG
j

k
q( j+1

2 )+(s+1
2 )+s d+

t j (q : q)s (q : q) j−s
∏ j

i=0
(q sd+−q i d−)

,

cs =
∑

j≥s

(−1)sG
j

k
q( j+1

2 )+(s+1
2 )+s d−

t j (q : q)s (q : q) j−s
∏ j

i=0
(q s d−−q i d+)

,

and

d± =Gk−1 ±
√

GkGk−2.

Proof. Note first that d± = Gk−1 ±
√

G2
k−1

− (−t )k−2, as in the proof of Theorem 2.2, and

thus

1−2t q s xGk−1 + (−t )k q2s x2 = (1−ρs x)(1−θs x),

where ρs = d+t q s and θs = d−t q s .

Let n = mk + r , where m ≥ 1 and 0≤ r ≤ k −1. By partial fractions, let us write

∑

j≥0

G
j

k
q( j+1

2 )x j

∏j

i=0
(1−2t q i xGk−1 + (−t )k q2i x2)

=
∑

s≥0

bs

1−ρs x
+

∑

s≥0

cs

1−θs x
,

where bs and cs are constants to be determined. By Theorem 2.1,

an =Gr+1[xm]





∑

j≥0

G
j

k
q( j+1

2 )x j

∏ j

i=0
(1−2t q i xGk−1 + (−t )k q2i x2)





+ (−t )r+1Gk−1−r [xm−1]





∑

j≥0

G
j

k
q( j+1

2 )x j

∏ j

i=0
(1−2t q i xGk−1 + (−t )k q2i x2)





=Gr+1[xm]

(

∑

s≥0

bs

1−ρs x
+

∑

s≥0

cs

1−θs x

)

+ (−t )r+1Gk−1−r [xm−1]

(

∑

s≥0

bs

1−ρs x
+

∑

s≥0

cs

1−θs x

)

=Gr+1

∑

s≥0

(bsρ
m
s +csθ

m
s )+ (−t )r+1Gk−1−r

∑

s≥0

(bsρ
m−1
s +csθ

m−1
s ).
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We also have

bs =
∑

j≥s

G
j

k
q( j+1

2 )

ρ
j
s

∏s−1
i=0

(1−ρi /ρs )
∏j

i=s+1
(1−ρi /ρs )

∏j

i=0
(1−θi /ρs )

=
∑

j≥s

(−1)sG
j

k
q( j+1

2 )ρ
j+1
s

d
j
+t j

∏s−1
i=0

(q i −q s )
∏ j

i=s+1
(q s −q i )

∏j

i=0
(d+t q s −d−t q i )

=
∑

j≥s

(−1)sG
j

k
q( j+1

2 )+(s+1
2 )ρs

t j+1(q : q)s (q : q) j−s
∏ j

i=0
(d+q s −d−q i )

=
∑

j≥s

(−1)sG
j

k
q( j+1

2 )+(s+1
2 )+s d+

t j (q : q)s (q : q) j−s
∏ j

i=0
(q s d+−q i d−)

and, similarly,

cs =
∑

j≥0

(−1)sG
j

k
q( j+1

2 )+(s+1
2 )+s d−

t j (q : q)s (q : q) j−s
∏ j

i=0
(q s d−−q i d+)

,

which gives (16). �

3. THE CASE k = 2

In this section, we consider further results concerning the polynomial sequence a(2)
n =

a(2)
n (q, t ). Taking k = 2 in (10), and noting d+ = d− = 1 in this case, gives the explicit formu-

las

a(2)
2m =

m
∑

j=0

q( j+1
2 )t m− j

m
∑

a= j

(

a

j

)

q

(

m + j −a

j

)

q

− t
m−1
∑

j=0

q( j+1
2 )t m−1− j

m−1
∑

a= j

(

a

j

)

q

(

m + j −1−a

j

)

q

, m ≥ 0,(17)

and

a(2)
2m+1 =

m
∑

j=0

q( j+1
2 )t m− j

m
∑

a= j

(

a

j

)

q

(

m + j −a

j

)

q

, m ≥ 0.(18)

Though we are unable to give simpler expressions for the polynomials (17) and (18), they

are seen to be solutions to the following relatively simple recurrences.

Proposition 3.1. If m ≥ 2, then

(19) a(2)
2m = (qm +qt + t )a(2)

2m−2 −qt 2a(2)
2m−4,

with a(2)
0 = 1 and a(2)

2 = q + t , and

(20) a(2)
2m+1 = (qm +2t )a(2)

2m−1 − t 2a(2)
2m−3,

with a(2)
1 = 1 and a(2)

3 = q +2t .

Proof. We provide a combinatorial argument, the initial values being clear. To show (19),

first note that if m ≥ 2, then the total weight of all the members of F2m ending in ss is

qm a(2)
2m−2, while the weight of those ending in d is t a(2)

2m−2. To determine the weight of

the members of F2m ending in d s, first insert a domino before the final square within

any member of F2m−2 ending in s. By subtraction, the total weight of all the members of
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F2m−2 ending in s is a(2)
2m−2 − t a(2)

2m−4, and the inserted domino increases both the ν and

ρ2 values by 1 (note that the final square moves from position 2m − 2 to 2m). Thus, the

total weight of all members of F2m ending in d s is qt (a(2)
2m−2 − t a(2)

2m−4), which gives (19).

By similar reasoning, the total weight of all members of F2m+1 ending in ss, d and d s is

qm a(2)
2m−1, t a(2)

2m−1 and t (a(2)
2m−1 − t a(2)

2m−3), respectively, which gives (20). �

We were unable to find, in general, two-term recurrences comparable to (19) and (20)

for the sequences a(k)
mk+r

(q, t ), where k and r are fixed and m ≥ 0. Let

f (x; q, t ) =
∑

n≥0

a(2)
n (q, t )xn ,

which we’ll also denote by f (x).

Proposition 3.2. We have

(21) f (x; q, t ) = (1+x − t x2)
∑

j≥0

q( j+1
2 )x2 j

∏j

i=0
(1− t q i x2)2

.

Proof. This follows from setting k = 2 in (5) above, but we give an alternative derivation

using Proposition 3.1 as follows. Let b(x) =
∑

m≥0 a(2)
2m xm . Multiplying (19) by xm , and

summing over m ≥ 2, implies

b(x)−1− (t +q)x = qx(b(qx)−1)+ t x(1+q)(b(x)−1)−qt 2 x2b(x),

or

b(x) =
1

1− t x
+

qx

(1− t x)(1−qt x)
b(qx).

Iterating the last equation gives

b(x) =
∑

j≥0

q( j+1
2 )x j

(1− t x)
∏ j

i=1
(1− t q i x)2

= (1− t x)
∑

j≥0

q( j+1
2 )x j

∏j

i=0
(1− t q i x)2

.

Similarly, if c(x) =
∑

m≥0 a(2)
2m+1xm , then we have

c(x) =
∑

j≥0

q( j+1
2 )x j

∏j

i=0
(1− t q i x)2

,

and thus

f (x) = b(x2)+xc(x2)

= (1− t x2)
∑

j≥0

q( j+1
2 )x2 j

∏j

i=0
(1− t q i x2)2

+x
∑

j≥0

q( j+1
2 )x2 j

∏j

i=0
(1− t q i x2)2

,

as desired. �

Substituting q =−1 in (21) yields the following result.

Corollary 3.3. We have

(22)
∑

n≥0

a(2)
n (−1, t )xn =

(1+x + t x2)(1+x − t x2)(1−x + t x2)

1− (2t 2 −1)x4 + t 4x8
.
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Corollary 3.4. The sequence a(2)
n (−1,1) is determined by the condition

f (n +12) =− f (n), n ≥ 0,

with the values of a(2)
n (−1,1) for 0 ≤ n ≤ 11 given by 1,1,0,1,1,2,−1,1,0,1,−1,0.

Proof. Letting t = 1 in (22), we have

∑

n≥0

a(2)
n (−1,1)xn =

(1+x +x2)(1+x −x2)(1−x +x2)

1−x4 +x8

=
(1+x +x3 +x5 −x6)(1+x4)(1−x12)

(1−x4 +x8)(1+x4)(1−x12)

=
(1+x +x3 +x4 +2x5 −x6 +x7 +x9 −x10)(1−x12)

1−x24
,

which implies the result. �

Combinatorial proof of Corollary 3.4.

Let F
e
n and F

o
n denote the subsets of Fn having even and odd ρ2 values, respectively.

We first define an involution of Fn off of a set F
′
n which pairs members of F

e
n and F

o
n . Let

F
′
n ⊆Fn consist of those tilings of the form

(23) π= d i (sd 2i1 s)(sd 2i2 s) · · ·(sd 2iℓs),

if n is even, and of the form

(24) π= d i (sd 2i1 s)(sd 2i2 s) · · ·(sd 2iℓs)sd j ,

if n is odd, for some ℓ where i , j , i1, i2, . . . , iℓ ≥ 0. We define an involution of Fn −F
′
n as

follows. Given λ ∈Fn −F
′
n , let jo denote the smallest index j ≥ 1 such that either

(i) an odd number of dominos occurs between the (2 j −1)-st and (2 j )-th squares, or

(ii) an even number of dominos occurs between the (2 j − 1)-st and (2 j )-th squares

with at least one domino between the (2 j )-th and (2 j +1)-st squares (or between

the (2 j )-th square and the end of the tiling, if the (2 j )-th square is right-most).

Now exchange positions of the (2 jo)-th square and the domino that precedes it if (i) oc-

curs, or exchange the positions of the (2 jo)-th square and the domino that directly follows

it if (ii) occurs. Let λ′ denote the resulting member of F
′
n . Then λ and λ′ have opposite

ρ2-parity (since their ρ2 values differ by one), and the mapping λ 7→ λ′ is an involution

of Fn −F
′
n . For example, if n = 28 and λ = d 2sd 2s4d 3sd sd 2s ∈ F28, then jo = 3 and

λ′ = d 2sd 2s4d 2sd 2sd 2s. See Figure 3 below, where the (2 jo − 1)-st and (2 jo)-th squares

are shaded in each tiling.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
λ

λ′

FIGURE 3. The tiling λ has ρ2(λ) = 35, while ρ2(λ′) = 34.

We now consider the signed sum of members of F
′
n , i.e.,

∑

π∈F ′
n

(−1)ρ2(π). First observe

that if i is even in (23) and (24) above, then one may verify that

ρ2(π) ≡
(

ℓ+1

2

)

(mod 2),
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whereas if i is odd, then

ρ2(π) ≡
(

ℓ

2

)

(mod 2).

For the remainder of the proof, we will assume that n is even, the proof in the odd case

being similar. Assume further that n = 2m, where m is odd, as the argument for the case

of even m is basically the same.

First suppose that π ∈ F
′
n is of the form in (23) above, with i even. Note that m odd

implies ℓ is odd. Let π̄ be the tiling of length m given by

π̄= d
i
2 sd i1 sd i2 · · · sd iℓ ;

note that all members of Fm arise uniquely as π ranges over all members of F
′
n for which

i is even. Let s(σ) denote the number of squares in a tiling σ. Then we have

ρ2(π) ≡
(

ℓ+1

2

)

≡
ℓ+1

2
=

s(π̄)+1

2
(mod 2).

If π ∈F
′
n is of the form in (23) with i odd, then m odd implies ℓ is even. Let π∗ be the tiling

of length m −1 given by

π∗ = d
i−1

2 sd i1 sd i2 · · · sd iℓ ;

note that all members of Fm−1 arise uniquely in this manner. Observe that in this case

ρ2(π) ≡
(

ℓ

2

)

≡
ℓ

2
=

s(π∗)

2
(mod 2).

Therefore, we have

∑

π∈F
′
n

(−1)ρ2(π) =
∑

π∈F
′
n

i even

(−1)ρ2(π) +
∑

π∈F
′
n

i odd

(−1)ρ2(π)

=
∑

σ∈Fm

(−1)(s(σ)+1)/2 +
∑

σ∈Fm−1

(−1)s(σ)/2.(25)

To evaluate the last two sums, we consider the statistic ⌈s(σ)/2⌉ on Fr where r ≥ 1 and

pair members of Fr of opposite parity with respect to this statistic. Given σ = σ1σ2 · · · ∈
Fr , let ao denote the smallest index a ≥ 1 such that either

(i) σ2a−1 = d , or

(ii) σ2a−1σ2a = ss.

Define an involution of Fr by replacing σ2ao−1 = d with ss if (i) occurs or by replacing

σ2ao−1σ2ao = ss with d if (ii) occurs. Note that this mapping changes the value of ⌈s(σ)/2⌉
by one, whence it changes its parity. If r ≡ 0 (mod 3), then there is a single unpaired tiling

in Fr , namely, (sd)r /3, which has sign (−1)⌈r /6⌉. If r ≡ 1 (mod 3), then the single unpaired

tiling (sd)(r−1)/3s has sign (−1)⌈(r+2)/6⌉. If r ≡ 2 (mod 3), then each member of Fr is paired

with another of opposite parity, whence the resulting sum is zero.
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Applying the preceding to (25) shows that if m ≡ 0 (mod 3), i.e., if m = 6p +3 for some p

(since m was assumed odd) and n = 12p +6, then

a(2)
n (−1,1)=

∑

π∈F
′
n

(−1)ρ2(π)

=
∑

σ∈F6p+3

(−1)⌈s(σ)/2⌉+
∑

σ∈F6p+2

(−1)⌈s(σ)/2⌉

= (−1)⌈(6p+3)/6⌉+0 = (−1)p+1.

Similarly, if n = 12p + 2, then a(2)
n (−1,1) = (−1)p+1 + (−1)p = 0, and if n = 12p + 10, then

a(2)
n (−1,1) = 0+ (−1)p+1 = (−1)p+1. This yields the values of a(2)

n (−1,1) given in Corollary

3.4 above in the case when n = 2m, where m is odd. The other cases are obtained similarly.

�

Remark: Comparable proofs may be given to explain the periodic nature of the

a(1)
n (−1,1) and a(3)

n (−1,1) values witnessed above.

Let Un(t ) denote the n-th Chebyshev polynomial of the second kind defined by Un+1(t ) =
2tUn(t )−Un−1(t ), with U0(t ) = 1 and U1(t ) = 2t (see, e.g., [9]).

Theorem 3.5. The coefficient of xn for n ≥ 0 in d
dq

f (x; q, t ) |q=1 is given by

(i
p

t )n+1

8(4t +1)

( (2n +1)(4t +1)(−1)n +2n(n +1)−4t −1

2i
p

t
Un(y)

+ ((4t +1)(−1)n +4t −1−2n(n +2))Un−1(y)
)

,

where y = 1

2i
p

t
and i =

p
−1.

Proof. Differentiating the generating function f (x; q, t ) in (21) with respect to q , and sub-

stituting q = 1, yields

g (x; t ) :=
d

d q
f (x, q) |q=1=

x2(1− t x2)(1+ t x2)

(1−x − t x2)3(1+x − t x2)2
.

By partial fractions, we may rewrite this as

g (x; t ) =−
3−2t x

16(1+x − t x2)
+

2+x

8(1+x − t x2)2
−

1+2t x

16(1−x − t x2)

+
1− t x

4t (1−x − t x2)2
−

1−2t x −x

4t (1−x − t x2)3
.

By the fact that
∑

n≥0 Un(t )xn = 1
1−2tx+x2 , we obtain

∑

n≥1

nUn(t )xn−1 =
2t −2x

(1−2t x +x2)2

and

∑

n≥2

n(n −1)Un(t )xn−2 =
8t 2 −2−12t x +6x2

(1−2t x +x2)3
.
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Let y = 1

2i
p

t
, where i =

p
−1. Extracting the coefficient of xn from each summand then

gives

[xn ]

(

−
3−2t x

16(1+x − t x2)

)

=−
(−i

p
t )n

16

(

3Un(y)−2i
p

tUn−1(y)
)

,

[xn ]

(

2+x

8(1+x − t x2)2

)

=
(2+n)(−i

p
t )n

8
Un(y),

[xn ]

(

−
1+2t x

16(1−x − t x2)

)

=−
(i
p

t )n

16

(

Un(y)−2i
p

tUn−1(y)
)

,

[xn ]

(

1− t x

4t (1−x − t x2)2

)

=
(1+4t + (t +1)n)(i

p
t )n

4t (1+4t )
Un(y)

−
(1+n)(2t −1)(i

p
t )n−1

4(1+4t )
Un−1(y),

[xn ]

(

−
1−2t x −x

4t (1−x − t x2)3

)

=
(tn2 − (t +2)n −2(1+4t ))(i

p
t )n

8t (1+4t )
Un(y)

+
(tn2 + (4t −1)n −1+3t )(i

p
t )n

4(1+4t )
Un−1(y).

Adding all of these expressions yields the desired result. �

Let tn(ρ2) denote the sum of the ρ2 values of all the members of Fn . Letting t = 1 in the

prior theorem, and noting i nUn(−i/2) = Fn+1, gives the following expression for tn(ρ2).

Corollary 3.6. If n ≥ 0, then

(26) tn(ρ2) = (−1)n (2n +1)Fn+1 −2Fn

16
+

(2n2 +2n −5)Fn+1 + (4n2 +8n −6)Fn

80
.
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