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Abstract: Generally, all the models discussed so far are continuous time models. The continuous
time models are quite apt at explaining the phenomena they are trying to predict and have known
methods to get information from these type of models. But these models are not accurate for the
physical systems which are observed over discreet time periods or which have non-continuous phe-
nomena embedded in them, like production of new generation. Some species like salmon have non-
overlapping generation characteristics since they have an annual spawning season and are born each
year at a certain time. The discrete models are much more apt in describing the nature’s complex
dynamics than the continuous models. A discrete-time modified Leslie-Gower system with double
Allee effect is studied in this paper. The stability analysis of interior fixed points is performed. Using
center manifold theorem it is shown that the system under consideration exhibits period-doubling and
Neimark-Sacker bifurcations. The numerical simulations are provided to illustrate the consistency of
the theoretical results.
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1. Introduction

The relationships between different species on Earth can be modeled as predator-prey interactions,
which are fundamental to the survival of many organisms [1, 2]. Mathematical models can be used
to approximate these dynamics. However, predator-prey models are not only useful for understand-
ing the dynamics of predators and their prey but also for managing renewable resources [3]. While
Lotka [4] and Volterra [5] were the first to model predator-prey populations, the Lotka-Volterra model
was not realistic enough as it neglected many important aspects of predator-prey interactions. Thus,
various modifications have been proposed by researchers to address these limitations [6].

Leslie [7] proposed an alternative to the Lotka-Volterra model that considered the carrying capacity
of the predator’s environment and the number of prey as proportional. This model also accounted for
the fact that predator and prey populations must have bounded increasing capacity. This model has a
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unique positive fixed point that has been shown to be globally asymptotically stable for any allowed
parameters [8–10]. In [11,12], the authors studied the uniqueness of limit cycles and the existence of
Hopf bifurcation for this model.

However, this model still has limitations as it does not account for the fact that predators can
switch between different prey depending on the conditions and needs of the environment [13]. To
address this limitation, a modified Leslie-Gower predator-prey model was proposed [14]. This model
has been used to model the dynamics of various systems such as prickly-pear cactus [15] and mite
outbreaks in fruit trees [16,17]. For further details on where this model has been applied and studied,
refer to [18, 19] and the references therein.

Warder Clyde Allee is credited with introducing the concept of Allee effects, which are believed
to be widespread in nature despite being difficult to detect [20]. Allee effects are characterized by
a positive correlation between population fitness and size over a finite interval, and can lead to a
critical population size below which the population cannot persist [21]. Strong Allee effects exhibit
a threshold below which the population is driven to extinction, while weak Allee effects do not [22].
Allee effects have been observed in diverse natural phenomena [23], and various mathematical models
have been proposed to describe them, some of which are topologically complex [24]. Researchers
have explored the bifurcations of predator-prey systems subject to Allee effect [25, 26], and have
found that many Allee effects act simultaneously on a single population, particularly in renewable
resources [27].

Double Allee effects occur when two mechanisms act together on a single population, and have
been observed in plants, vertebrates, and invertebrates [27]. The double Allee effect has also been
observed in marine ecosystems [28]. Gonzlez-Olivares et al. investigated the growth of prey subject
to double Allee effect using the Lotka-Volterra predator-prey model, and found that regardless of the
state of Allee effect, two limit cycles exist [29]. The modified Rosenzweig-MacArthur model was
used in [30] to study the two Allee effects, and the authors demonstrated that the positive fixed point
is locally asymptotically stable for prey, and Hopf bifurcation may occur, generating a stable limit
cycle. Researchers have also explored the effects of double Allee effect on prey population using
some ratio-dependent predator-prey model, discussing the stability of equilibrium points and their
bifurcations [31–33].

Continuous time models are commonly used to explain Allee effects, but they may not be accurate
for physical systems observed over discrete time periods, or systems with non-continuous phenomena,
such as the production of new generations. For instance, species like salmon have non-overlapping
generation characteristics since they have an annual spawning season and are born each year at a
certain time. Discrete models are therefore better suited to describing the complex dynamics of nature
than continuous models [34, 35]. Discrete systems also lend themselves more readily to analytical
solutions compared to continuous models [36, 37]. For further details, interested readers may refer
to [38], [39] and the references therein.

In this paper, we will use modified Leslie-Gower predator-prey model with double Allee effect on
prey, proposed by Singh et al. in [40]. The model is given in [40] as;

dx
dt
=

x (1 − x) (x − β)
θ + x

− ξ
xy
γ + x

,

dy
dt
= ρy

(
1 −

y
γ + x

)
.

(1)

The initial conditions are assumed to be positive, that is, x(0) > 0 and y(0) > 0. Details of the other
parameters are provided in [40]. For our purpose, all parameters are positive except for β. A positive
value of β corresponds to a strong Allee effect, while a negative value of β corresponds to a weak
Allee effect. Singh et. al demonstrated that the system (1) is both bounded and positive. They studied
the stability dynamics of the equilibrium points and proved the existence of bifurcations, including
fold, Hopf, and Bogdanov-Takens bifurcations. However, the model possesses much richer dynamics
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than previously established. This can be accomplished by examining the discrete version of system
(1). Discretization is useful for ecosystems in which consecutive generations do not overlap. We
utilize the forward Euler method to discretize system (1). The discrete version of system (1) with a
step-size of h is defined as follows:

xn+1 = xn + hxn

(
(1 − xn) (xn − β)

θ + xn
− ξ

yn

γ + xn

)
,

yn+1 = yn + hρyn

(
1 −

yn

γ + xn

)
.

(2)

The paper focuses on studying a discrete-time modified Leslie-Gower system with double Allee
effect, which is more suitable for describing complex dynamics in nature compared to continuous
time models. The authors highlight that continuous time models are not accurate for physical systems
observed over discreet time periods or those with non-continuous phenomena embedded in them,
such as the annual spawning season of salmon. To address this issue, the paper performs stability
analysis of interior fixed points and shows that the system exhibits period-doubling and Neimark-
Sacker bifurcations using the center manifold theorem. Numerical simulations are also provided
to demonstrate the consistency of the theoretical results. By studying this discrete-time model, the
authors aim to better understand and predict the dynamics of natural systems.

In this paper, we investigate the dynamics of system (2) and aim to demonstrate the richness of its
local dynamics, as well as the conditions under which the positive interior stationary points become
non-hyperbolic. The non-hyperbolic point leads to period-doubling bifurcation as well as Neimark-
Sacker bifurcation, at a fixed step-size. Additionally, we provide numerical examples to illustrate our
findings. This article is structured as follows: in Section 2, we examine the stability of the stationary
points. In Section 3, we discuss the existence and conditions for period-doubling and Neimark-Sacker
bifurcations. In Section 4, we present numerical examples for both strong and weak Allee effects,
accompanied by diagrams. Finally, we conclude our findings in Section 5.

2. The Fixed Points & Their Stability

The following system of simultaneous equations is solved to find the fixed points.
x
(
(1 − x) (x − β)
θ + x

− ξ
y
γ + x

)
= 0,

ρy
(
1 −

y
γ + x

)
= 0.

(3)

If we define A = 1+β−ξ
2 and B = β + θξ, then for any scenario, the system has four stationary points

on the boundary {E1, E2, E3, E4} = {(0, 0) , (0, γ) , (1, 0) , (β, 0)}. Let E5∗ = (A, A + γ), E5 = (x̄1, x̄1 + γ)
and E6 = (x̄2, x̄2 + γ), where, x̄1 = A +

√
A2 − B and x̄2 = A −

√
A2 − B. For positive fixed points,

following scenarios are present.

(i) The system has no interior fixed point, if,

β ∈
(
1 + ξ − 2

√
ξ(1 + θ), 1 + ξ + 2

√
ξ(1 + θ)

)
.

(ii) If β = 1 + ξ ± 2
√
ξ(1 + θ), then the system has unique interior equilibrium point, E5∗ . It will

always exist for strong Allee effect and it will exist for weak Allee effect if (1 − ξ)2 < 4ξθ.
(iii) If β < 1+ξ−2

√
ξ(1 + θ) or β > 1+ξ+2

√
ξ(1 + θ), i-e, A2−B > 0, then A <

√
A2 − B if θξ < −β,

which can only be true in the weak Allee effect. In this case, the only positive stationary point
will be E5.
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On the other hand, A >
√

A2 − B > 0 only if 1 + β > ξ and β + θξ > 0. In strong Allee effect it
is always true. In the weak Allee effect, this is true if 1 > ξ − β > 0 and θξ > −β. In either case the
system incorporates two positive fixed points E5 and E6. All the scenarios can be observed in Figures
1a and 1b, where change in parametric values contributes to the number of positive fixed points the
system may possess.

(a) Nullclines for System (2) With Strong Allee Effect,
Showing the Existence of Two, One and No Interior Equi-
librium Points for Different Parametric Values

(b) Nullclines for System (2) With Weak Allee Effect,
Showing the Existence of Two, One and No Interior Equi-
librium Points for Different Parametric Values

Figure 1

At fixed points, the respective jacobian matrices are given by

J1 =

 1 − h
β

θ
0

0 1 + hρ

 , J2 =

 1 − h
(
ξ −
β

θ

)
0

hρ 1 − hρ

 ,
J3 =

 1 + h
β − 1
1 + θ

−h
ξ

1 + γ
0 1 + hρ

 , J4 =

 1 − h
β(β − 1)
β + θ

−h
βξ

β + γ
0 1 + hρ

 ,
J5 =

[
1 + hx̄1 (D −C) −hx̄1D

hρ 1 − hρ

]
, J6 =

[
1 + hx̄2 (D −C) −hx̄2D

hρ 1 − hρ

]
,

where C = −2(A−x̄i)
x̄i+θ

and D = ξ

x̄i+γ
, i = 1, 2. Note that, for E5, C > 0 and D > 0 whereas for E6, −C > 0

and D > 0, as long as A2 − B > 0. In order to find the stability of these fixed points, we will use the
following two lemmas.

Lemma 1. Let ti = Tr (Ji), deti = |Ji| and pi(z) = z2 − tiz + deti, i = 1, ..., 6. Suppose z1, z2 are the
roots of p(z). Then:

i)
∣∣∣z1,2

∣∣∣ < 1 if and only if p(−1) > 0 and det < 1.
ii)

∣∣∣z1,2

∣∣∣ > 1 if and only if p(−1) > 0 and det > 1.
iii) |z1| < 1 and |z2| > 1 or |z1| > 1 and |z2| < 1 if and only if p(−1) < 0.
iv) z1 = −1 with |z2| , 1 iff p(−1) = 0 and t , −2, 0.
v) z1,2 are complex and

∣∣∣z1,2

∣∣∣ = 1 if and only if 4det − t2 > 0 and det = 1.

Lemma 2. Let z1 and z2 to be the eigenvalues of 2 × 2 Jacobian matrix and E be the positive fixed
point. Then E is called

i) sink if |z1| < 1 and |z2| < 1, so sink is locally asymptotically stable.
ii) source if |z1| > 1 and |z2| > 1, so source is locally unstable.

iii) saddle if |z1| < 1 and |z2| > 1 (or |z1| > 1 and |z2| < 1).
iv) non-hyperbolic if either |z1| = 1 or |z2| = 1.
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With the help of Lemmas 1 and 2, it is obvious that for strong Allee effect, E1 is always saddle and
the prey free equilibrium E2 is always stable. For the equilibrium points E3 and E4 which represents
the extinction of predator, E3 is unstable if β > 1, saddle if β < 1 and non-hyperbolic with one
eigenvalue 1 and the other not on the unit circle, if β = 1, i-e, it may undergo transcritical or fold
bifurcation. Whereas, E4 is unstable if β < 1, saddle if β > 1 and non-hyperbolic with one eigenvalue
1 and the other not on the unit circle, if β = 1, i-e, it may undergo transcritical or fold bifurcation.

For weak Allee effect, predator extinct equilibrium points E1, E3 and E4 are always unstable.
The prey free equilibrium point E2 is stable if B > 0, saddle if B < 0 and there is a possibility of
transcritical or fold bifurcation, since it is non-hyperbolic with one eigenvalue 1 and the other not on
the unit circle, if B = 1.

For all of the above boundary equilibrium points, period-doubling or Neimark-Sacker bifurcations
are not possible. The stability analysis of positive interior stationary points is richer and valid for our
model.

Theorem 1. If β =
(
1 + ξ ± 2

√
(1 + θ)ξ

)
, then E5∗ may undergo transcritical or fold bifurcation with

eigenvalues, z1 = 1 and |z2| , 1 if and only if h , 2
ρ−AD and ρ , AD.

Proof. Suppose, β =
(
1 + ξ ± 2

√
(1 + θ)ξ

)
. Then, for strong Allee effect, E5∗ will always exist, while

for weak Allee effect, it will exist if additionally (1 − ξ)2 < 4ξθ. The jacobian of the system 1, at E5∗

is

J∗ =
(

1 + hAD −hAD
hρ 1 − hρ

)
and the eigenvalues are z1 = 1 and z2 = 1 + h(ad − ρ). Thus, |z2| , 1 if and only if h , 2

ρ−AD and
ρ , AD.

□

Theorem 2. For the positive interior fixed points E5 and E6, suppose 1 + β > ξ, β + θξ > 0 and
β < 1 + ξ − 2

√
ξ(1 + θ) and let,

h1 =
(C − D)x̄1 + ρ

ρCx̄1
−

√
((C − D)x̄1 + ρ)2

− 4ρCx̄1

ρCx̄1
,

h2 =
(C − D)x̄1 + ρ

ρCx̄1
+

√
((C − D)x̄1 + ρ)2

− 4ρCx̄1

ρCx̄1
.

Then, for both strong and weak Allee effects, the following holds true.

1. If h ∈ (0, h1), then the fixed point is a sink.
2. If h ∈ (h2,∞), then the fixed point is a source.
3. The fixed is saddle if h ∈ (h1, h2).
4. The fixed point is non-hyperbolic with eigenvalues z1 = −1 and |z2| , 1 if h = h1 or h = h2 and

h , 2
ρ−x̄1(D−C) and h , 4

ρ−x̄1(D−C) .
5. If,

ρ ∈
(
(D −C) x̄1,∞

)
∩

((√
C −
√

D
)2

x̄1,
(√

C +
√

D
)2

x̄1

)
then, the fixed point is non-hyperbolic with complex conjugate eigenvalues, |z1| = 1 = |z2| if and
only if h = ρ−x̄1(D−C)

Cρx̄1
< 4
ρ−x̄1(D−C) .

Utilitas Mathematica Volume 119, 117–133



Khan, M. S., Abbas, M., Haq, A. U. and Nazeer, W. 122

Proof. The characteristic polynomial of the system at the stationary points is,

p(z) = z2 − tz + det,

where, t = 2 + h (x̄1(D −C) − ρ) and det = 1 + h (x̄1(D −C) − ρ + hρx̄1C). Then, we can use lemma
1, since for any h > 0,

p(−1) = ρCx̄1h2 − 2((C − D)x̄1 + ρ)h + 4,

which shows that if we define h1,2 as given, then
p(−1) > 0, h ∈ (0, h1) ∩ (h2,∞) ;
p(−1) < 0, h ∈ (h1, h2) ;
p(−1) = 0, h = h1 or h = h2.

Also, 
det > 1, h ∈

(
ρ+x̄1(C−D)
ρCx̄1

,∞
)

;

det < 1, h ∈
(
0, ρ+x̄1(C−D)

ρCx̄1

)
;

det = 1, h = ρ+x̄1(C−D)
ρCx̄1

.

Then, using Lemmas 1 and 2, we arrive at the desired results. □

3. Bifurcations

Note that the mathematical method and results for proving the period-doubling and Neimark-
Sacker bifurcations, for E5 and E6, are exactly similar. So from now onward, we will only show
the mathematical results for the equilibrium point E5. The mathematical result for E6 are identical.
Define,

ΩPD =

{
(β, θ, ξ, ρ, γ, h0) ∈ R6

+ : h0 = h1 or h2, 1 + β > ξ, h ,
2

ρ − x1(D −C)
, h ,

4
ρ − x1(D −C)

}
,

ΩNS =

{
(β, θ, ξ, ρ, γ, h0) ∈ R6

+ : 1 + β > ξ, h0 =
ρ − x̄1(D −C)

Cρx̄1
<

4
ρ − x̄1(D −C)

}
.

Let H be the parameter for the mapping (2), such that |H| ≪ 1, to obtain bifurcations. We can
write the perturbed mapping as

[
x
y

]
→

 x + (h + H) x
(
(1 − x) (x − β)

x + θ
− ξ

y
x + γ

)
y + (h + H) ρy

(
1 − y

x+γ

)
 .

Define X = x − x̄1 and Y = y − ȳ1. Using the series expansion method, we can write[
X
Y

]
→

[
a11 a12

a21 a22

] [
X
Y

]
+

[
f (X,Y,H)
g (X,Y,H)

]
, (4)

where a11 = 1 + hb3, a12 = hb4, a21 = hρ, a22 = 1 − hρ, f (X,Y,H) = hb1X2 + hb2XY + b3XH +
b4YH + b5X3 + b6X2Y + b1X2H + b2XYH + O

(
|X + Y + H|4

)
, g (X,Y,H) = −hb7X2 + 2hb7XY +

ρXH − hb7Y2 + ha4X3 − 2ha4X2Y − a4X2HρYH + 2b7XYH + ha4XY2 − b7Y2H + O
(
|X + Y + H|4

)
and b1 = θ(x̄1 + θ)a1 + ȳ1a3 − 1, b2 = −ȳ1a3, b3 = a2 + x̄1((x̄1 + θ)2a1 − 1) − ȳ2

1a3, b4 = −x̄1ȳ2
1a3,

b5 = −h(θa1 + a3), b6 = ha3, b7 =
ρ

ȳ1
, a1 =

(1+θ)(β+θ)
(x̄1+θ)4 , a2 = ξ

x̄1
ȳ1
, a3 =

γξ

ȳ3
1
, a4 =

ρ

ȳ2
1
.
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3.1. Period-Doubling Bifurcation

Assume that the parameters (β, θ, ξ, ρ, γ, h0) ∈ ΩPD. Then variation of h in some small neigh-
borhood of h0 gives rise to period-doubling bifurcation. For conversion into the normal form of
period-doubling bifurcation, let [

X
Y

]
= TPD

[
u
v

]
,

where TPD is an invertible matrix defined as,

TPD =

[
a12 a12

−1 − a11 z2 − a22

]
.

Using TPD, we can transform our system to the one given below.[
u
v

]
→

[
−1 0
0 z2

] [
u
v

]
+

[
fPD (H, u, v)
gPD (H, u, v)

]
, (5)

where,

fPD (H, u, v) =d1u2 + d2uv + d3Hu + d4Hv + d5v2 + d6u3 + d7u2v + d8Hu2

+ d9Huv + d10uv2 + d11Hv2 + d12v3 + O
(
|H + u + v|4

)
,

gPD (H, u, v) =d13u2 + d14uv + d15Hu + d16Hv + d17v2 + d18u3 + d19u2v + d20Hu2

+ d21Huv + d22uv2 + d23Hv2 + d24v3 + O
(
|H + u + v|4

)
,

and

d1 = − c1h
(
a2

12 (b1c2 − a4) − (a11 + 1) 2b7 − a12 (a11 + 1) (b2c2 + 2b7)
)
,

d2 = − c1h
(
2a2

12 (a4 − b1c2) + a12 (a11 + a22 − z2 + 1) (b2c2 + 2b7) + 2 (a11 + 1) b7 (a22 − z2)
)
,

d3 =c1 (a12 (b3c2 + ρ) − (1 + a11) (b4c2 − ρ)) ,
d4 =c1 (a12 (b3c2 + ρ) + (z2 − a22) (b4c2 − ρ)) ,

d5 = − c1h
(
a12 (a22 − z2) (b2c2 + 2b7) + a2

12 (b7 − b1c2) + b7 (a22 − z2) 2
)
,

d6 =a12c1

(
−a12 (a11 + 1) (b6c2 − 2a4h) + a2

12 (a4h + b5c2) + (a11 + 1) 2a4h
)
,

d7 =a12c1

(
+3a2

12 (a4h + b5c2) + a4 (a11 + 1) h (a11 + 2a22 − 2z2 + 1)

−a12 (2a11 + a22 − z2 + 2) (b6c2 − 2a4h)) ,

d8 =c1

(
a2

12 (b1c2 − a4) − (a11 + 1) 2b7 − a12 (a11 + 1) (b2c2 + 2b7)
)
,

d9 = − c1

(
2 (a11 + 1) b7 (a22 − z2) + 2a2

12 (a4 − b1c2) + a12 (a11 + a22 − z2 + 1) (b2c2 + 2b7)
)
,

d10 =a12c1

(
3a2

12 (a4h + b5c2) − a12 (a11 + 2a22 − 2z2 + 1) (b6c2 − 2a4h)

+a4h (a22 − z2) (2a11 + a22 − z2 + 2)) ,

d11 = − c1

(
a12 (a22 − z2) (b2c2 + 2b7) + a2

12 (b7 − b1c2) + b7 (a22 − z2) 2
)
,

d12 =a12c1

(
−a12 (a22 − z2) (b6c2 − 2a4h) + a2

12 (a4h + b5c2) + a4h (a22 − z2) 2
)
,

d13 = − hc1

(
(1 + a11 + a12)2b7 + a12(−a12b1 + b2 + a11b2)c3

)
,

d14 = − hc1

(
2a2

12(b7 − b1c3) + 2(1 + a11)b7(a22 − z2) + a12(2b7 + b2c3)(1 + a11 + a22 − z2)
)
,

d15 =c1(a12(b3c3 + ρ) + (1 + a11)(−b4c3 + ρ)),
d16 =c1((−a22 + z2)(b4c3 − ρ) + a12(b3c3 + ρ)),

d17 = − c1h
(
a2

12(b7 − b1c3) + b7(a22 − z2)2 + a12(2b7 + b2c3)(a22 − z2)
)
,
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d18 =a12c1

(
a12(a12b5 − (1 + a11)b6)c3 + (1 + a11 + a12)2a4h

)
,

d19 =a12c1

(
(1 + a11)a4h(1 + a11 + 2a22 − 2z2) + 3a2

12(b5c3 + a4h)

−a12(b6c3 − 2a4h)(2 + 2a11 + a22 − z2)) ,

d20 = − c1

(
(1 + a11)2b7 + a2

12(a4 − b1c3) + (1 + a11)a12(2b7 + b2c3)
)
,

d21 = − c1

(
2(1 + a11)b7(a22 − z2) + 2a2

12(a4 − b1c3) + a12(b6c3 − 2a4h)(2 + 2a11 + a22 − z2)
)
,

d22 =a12c1

(
3a2

12(b5c3 + a4h) − a12(b6c3 − 2a4h)(1 + a11 + 2a22 − 2z2)

+a4h(a22 − z2)(2 + 2a11 + a22 − z2)) ,

d23 = − c1

(
a12(2b7 + b2c3)(a22 − z2) + b7(a22 − z2)2 + a2

12(a4 − b1c3)
)
,

d24 =a12c1

(
−a12(b6c3 − 2a4h)(a22 − z2) + a4h(a22 − z2)2 + a2

12(b5c3 + a4h)
)
,

X =a12 (u + v) ,
Y = − (1 + a11)u + (z2 − a22)v.

In order to determine the center manifold of map (5) at fixed point (0, 0), define,

MPD =
{
(H, u, v) : v = GPD (H, u) , |u| < δ1, |H| < δ2, δ1, δ2 ∈ R

+,GPD(0, 0) = 0,DGPD(0, 0) = 0
}
,

where GPD (H, u) = − d15
1+z2

Hu+O
(
|H + u|3

)
. Then the following map illustrates the dynamics restricted

to MPD.

F : u 7→ −u + d1u2 + d3Hu −
d4d15

1 + z2
H2u +

(
d8 −

d2d15

1 + z2

)
Hu2 + d6u3 + O

(
|H + u|4

)
. (6)

In order to undergo a period-doubling bifurcation for map (6), the following two quantities, l1 and
l2, must be non-zero, i-e,

l1 =

(
∂2F
∂H∂u

+
1
2
∂F
∂H
∂2F
∂u2

)∣∣∣∣∣∣
(0,0)

= d3 , 0,

l2 =

1
6
∂3F
∂u3 +

(
1
2
∂2F
∂u2

)2
∣∣∣∣∣∣∣
(0,0)

= d2
1 + d6 , 0.

Thus, from the above analysis and the theorem given in [41], we obtain the following result.

Theorem 3. Suppose that l1 , 0 and l2 , 0, then system exhibits period-doubling bifurcation at the
interior equilibrium point, if h varies around h1 or h2. Moreover, if l2 > 0, then stable otherwise
unstable period-two orbits bifurcate from the fixed point.

3.2. Neimark-Sacker Bifurcation

Let (β, θ, ξ, ρ, γ, h0) ∈ ΩNS . Then, variation of h around h0, gives emergence to Neimark-Sacker
bifurcation. Instead of (4), we can write the perturbed system as[

X
Y

]
→

[
c11 c12

c21 c22

] [
X
Y

]
+

[
f̄ (X,Y)
ḡ (X,Y)

]
, (7)

where c11 = 1 + (h + H) b3, c12 = (h + H) b4, c21 = (h + H) ρ, c22 = 1 − (h + H) ρ,

f̄ (X,Y) = (h + H) b1X2 + (h + H) b2XY + b5X3 + b6X2Y + O
(
|X + Y + H|4

)
,

ḡ (X,Y) = − (h + H) b7X2 + 2 (h + H) b7XY − (h + H) b7Y2 + ha4X3 − 2ha4X2Y

Utilitas Mathematica Volume 119, 117–133



A Discrete-Time Modified Leslie-Gower Model with Double Allee Effect 125

+ ha4XY2 + O
(
|X + Y + H|4

)
,

and the above mentioned coefficients are defined at the start of this section. Let pNS (z) be the charac-
teristic polynomial of matrix in (9), given by

pNS (z) = z2 − P(H)z + Q(H), (8)

where
P(H) = c11 + c22 and Q(H) = c11c22 − c21c12.

Since, (β, θ, ξ, ρ, γ, h) ∈ ΩNS , the roots of (8) are complex conjugate z1, z2 and |z1| = |z2| = 1 It

follows that z1,2 =
P(H)

2 ±
ι
2

√
4Q(H) − P(H)2 and 1 = |z1| = |z2| =

√
Q(H). Also,

(
d|z1,2|

dH

)
H=0
, 0 if and

only if (θ+1)(β+θ)
(x̄1+θ)2 , 1.

We also need to check that zm
1,2 , 1, for m = 1, 2, 3, 4 at H = 0, since we do not want the

characteristic polynomial to lie in the intersection of unit circle of coordinate axis. This is the same
as checking when P(0) , −2, 0, 1, 2. Since, (β, θ, ξ, ρ, γ, h) ∈ ΩNS , P(H)2−4Q(H) < 0, which implies
that P(H)2 < 4Q(H) or P(H) ∈ (−2, 2). Thus, P(0) , −2, 0, 2. Finally,

P(0) = h
[
x̄
(
(θ + 1)(β + θ)

(x̄ + θ)2 +
ξ

ȳ
− 1

)
− ρ

]
+ 2,

which implies that P(0) , 1 if and only if h , 1

ρ−x̄
(

(θ+1)(β+θ)
(x̄+θ)2

+
ξ
ȳ−1

) .
Now, to convert the system (4) to the normal form of Neimark-Sacker bifurcation, let R = P(0)

2 and
S = 1

2

√
4Q(0) − P(0)2 and let

TNS =

(
0 1
S R

)
.

Here, TNS is an invertible matrix. Consider the transformation(
X
Y

)
= TNS

(
u
v

)
.

Using the above given transformation, we can write system (4) as,[
u
v

]
→

[
R −S
S R

] [
u
v

]
+

[
fNS (u, v)
gNS (u, v)

]
. (9)

fNS (u, v) =e1u2 + e2uv + e3v2 + e4u2v + e5uv2 + e6v3 + O
(
|u + v|4

)
,

gNS (u, v) =e7uv + e8v2 + e9uv2 + e10v3 + O
(
|u + v|4

)
,

where,

e1 = − (h + H) b7S ,

e2 = −(h + H)(b2R + 2b7(R − 1)),

e3 = −
(h + H)

(
R(b1 + b2R) + b7(R − 1)2

)
S

,

e4 = ha4S ,

e5 = 2a4h(R − 1) − b6R,

e6 =
a4h(R − 1)2 − R(b5 + b6R)

S
,
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e7 = (h + H)b2S ,

e8 = (h + H)(b1 + b2R),
e9 = b6S ,

e10 = b5 + b6R,

X = v, Y = S u + Rv.

We need the following quantity to be non-zero for the map (9) to undergo Neimark-Sacker bifurcation:

ζNS =

{[
−Re

(
ϖ20ϖ11

(1 − 2z1) z2
2

1 − z1

)
−

1
2
|ϖ11|

2
− |ϖ02|

2 + Re(ϖ21z2)
]}

H=0
, (10)

where,

ϖ20 =
1
8

[
∂2 fNS

∂u2 −
∂2 fNS

∂v2 + 2
∂2gNS

∂u∂v
+ ι

(
∂2gNS

∂u2 −
∂2gNS

∂v2 − 2
∂2 fNS

∂u∂v

)]
,

ϖ11 =
1
4

[
∂2 fNS

∂u2 +
∂2 fNS

∂v2 + ι

(
∂2gNS

∂u2 +
∂2gNS

∂v2

)]
,

ϖ02 =
1
8

[
∂2 fNS

∂u2 −
∂2 fNS

∂v2 − 2
∂2gNS

∂u∂v
+ ι

(
∂2gNS

∂u2 −
∂2gNS

∂v2 + 2
∂2 fNS

∂u∂v

)]
,

ϖ21 =
1
16

[
∂3 fNS

∂u3 +
∂3 fNS

∂u∂v2 +
∂3gNS

∂u2∂v
+
∂3gNS

∂v3 + ι

(
∂3gNS

∂u3 +
∂3gNS

∂u∂v2 −
∂3 fNS

∂u2∂v
−
∂3 fNS

∂v3

)]
.

Based on the prior analysis, we have the following result [41].

Theorem 4. If (θ+1)(β+θ)
(x̄1+θ)2 , 1 and ζNS defined in (10) is non-zero and parameter h changes in the small

neighborhood of h0 then the model (3) exhibits Neimark-Sacker bifurcation at the fixed point (x̄1, ȳ1).
Moreover, an attracting (resp., repelling) invariant closed curve bifurcate from the positive fixed point
if ζNS < 0 (resp., ζNS > 0).

4. Numerical Simulations

In this section, we will use specific numerical values of parameters (β, θ, ξ, ρ, γ) to present some
examples which will show the emergence of period-doubling and Neimark-Sacker bifurcations for
the system (2). We will use h as the bifurcation parameter. The illustration will be done using
phase portraits and bifurcation diagrams. We will also ratify Theorems 3 and 4, by showing that the
numerical examples are according to these theorems.

4.1. Strong Allee Effect

4.1.1. Period-Doubling Bifurcation

Example 1. Select (β, θ, ξ, ρ, γ) = (0.1, 0.01, 0.05, 0.05, 0.3), h ∈ [2.4, 3.345] and the initial value
(x0, y0) = (1.2, 2). The jacobian matrix is,(

1 − 0.790244h −0.0379371h
0.05h 1 − 0.05h

)
,

and z1 = 1 − 0.787672h and z2 = 1 − 0.0525714h are respective eigenvalues which are both less then
1, for any h > 0. For h = h0 = 2.53913, we have z1 = −1 and z2 ∈ (−1, 1). Thus the fixed point
is always stable with given parametric conditions and for any h , h0, or, h = 38.0435. If h = h0,
the fixed point exhibits period-doubling bifurcation when h moves around h0. We can also see in
the phase portrait given in Figure 2(b) that the fixed point (0.943479, 1.24348) is stable for h < h0
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and the period-doubling bifurcation rises at h0. At around h = 3.1 another stable period-two orbit
bifurcates which can be seen in Figure 2(c). With these parametric conditions, we calculate and get
l1 = −0.0421168 , 0 and l2 = 0.000652147 , 0. These values also verify the results obtained in
Theorem 3. Finally since l2 > 0, the period-two orbits that bifurcate from the fixed point is stable.

(a) h = 2.53 (b) h = 2.54

(c) h = 3.1 (d) h = 3.22

(e) h = 3.25 (f) h = 3.45

Figure 2. Phase Portraits with Initial Conditions (X0,Y0) = (1.2, 2), at Parametric Values
(β,Θ,Ξ, ρ,Γ) = (0.1, 0.01, 0.05, 0.05, 0.3), Around the Bifurcation Parameter H0 = 2.53913

(a) (b)

Figure 3. Emergence of Period-Doubling Bifurcation for Positive Fixed Point for the Model
(2), in the Interval H ∈ [2.4, 3.345], with Initial Conditions (X0,Y0) = (1.2, 2) and the
Parametric Values (β, θ, ξ, ρ, γ) = (0.1, 0.01, 0.05, 0.05, 0.3)

4.1.2. Neimark-Sacker Bifurcation

Example 2. Let us assume that for h ∈ [2.1, 2.34] and the initial value (x0, y0) = (0.98, 0.6), we have
the following parameter values, (β, θ, ξ, ρ, γ) = (0.15, 0.06, 0.05, 1.1, 0.1). The jacobian matrix is,(

1 − 0.681574h −0.0451768h
1.1h 1 − 1.1h

)
,

Utilitas Mathematica Volume 119, 117–133



Khan, M. S., Abbas, M., Haq, A. U. and Nazeer, W. 128

and z1 = −0.985179 − 0.171532ι and z2 = −0.985179 + 0.171532ι are the corresponding eigenval-
ues, for h = h0 = 2.2285674489338163. Both eigenvalues have modulus equal to 1. Also, h0 ∈(
0, 4
ρ−x1(D−C)

)
= (0, 2.24521),

(
d|z1 |

dH

)
H=0
=

(
d|z2 |

dH

)
H=0
= 1.78157 , 0 and ζNS = −7834.72 , 0. Thus, the

fixed point exhibits Neimark-Sacker bifurcation, at the equilibrium point (0.936652, 1.03665), as can
be seen in Figure 5. Moreover, for h > h0 we have ζNS < 0, which shows that the invariant closed
curve that bifurcates from the equilibrium point is attracting.

We can see a stable spiral in the phase portrait in Figure 4(a) which increases in size as the h
increases (Figure 4(b)). With further increase in h, the spiral changes into a closed curve which is
invariant and attracting. Due to Neimark-Sacker bifurcation, the attractor has rough edges. These
rough edges and spiral are plotted in Figure 4(c) at h = 2.245. At h = 2.3, it can be observed that the
edges begin to disappear and the invariant closed curves continue around the positive fixed point, as
can be seen in 4(d) and 4(e).

(a) h = 2.22 (b) h = 2.231

(c) h = 2.245 (d) h = 2.3

(e) h = 2.34

Figure 4. Phase Space Portraits with Initial Conditions (X0,Y0) = (0.98, 0.6), at Parametric
Values (β,Θ,Ξ, ρ,Γ) = (0.15, 0.06, 0.05, 1.1, 0.1), around h0
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(a) (b)

Figure 5. Emergence of Neimark-Sacker Bifurcation for Positive Fixed Points in the In-
terval H ∈ [2.1, 2.34], of Model (2) with Initial Conditions (X0,Y0) = (0.98, 0.6) and the
Parametric Values (β, θ, ξ, ρ, γ) = (0.15, 0.06, 0.05, 1.1, 0.1)

4.2. Weak Allee Effect

4.2.1. Period-Doubling Bifurcation

Example 3. Select (β, θ, ξ, ρ, γ) =
(
−0.02,−β

ξ
, 0.09, 0.01, 1.5

)
, h ∈ [2.9, 3.92] and the initial value

(x0, y0) = (0.6, 2). The jacobian matrix is,(
1 − 0.678663h −0.0335146h

0.01h 1 − 0.01h

)
,

and z1 = 1 − 0.678162h and z2 = 1 − 0.0105016h are respective eigenvalues which are both less then
1, for any h > 0. For h = h0 = 2.94915, we have z1 = −1 and z2 ∈ (−1, 1). Thus the fixed point
is always stable with given parametric conditions and for any h , h0, or, h = 190.447. If h = h0,
the fixed point exhibits period-doubling bifurcation when h moves around h0. We can also see in
the phase portrait given in Figure 6(b) that the fixed point (0.943479, 1.24348) is stable for h < h0

and the period-doubling bifurcation rises at h0. At around h = 3.1 another stable period-two orbit
bifurcates which can be seen in Figure 6(c). With these parametric conditions, we calculate and get
l1 = −0.0151578 , 0 and l2 = 0.00090295 , 0. These values also verify the results obtained in
Theorem 3. Finally since l2 > 0, the period-two orbits that bifurcate from the fixed point is stable.

(a) h = 2.9 (b) h = 2.95

(c) h = 3.592 (d) h = 3.734

Figure 6. Phase Portraits with Initial Conditions (X0,Y0) = (0.6, 2), at Parametric Val-
ues (β,Θ,Ξ, ρ,Γ) =

(
−0.02,−β

ξ
, 0.09, 0.01, 1.5

)
, Around the Bifurcation Parameter H0 =

2.94915
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(a) (b)

Figure 7. Emergence of Period-Doubling Bifurcation for Positive Fixed Point, for the
Model (2), in the Interval H ∈ [2.9, 3.92], with Initial Conditions (X0,Y0) = (0.6, 2) and
the Parametric Values (β, θ, ξ, ρ, γ) =

(
−0.02,−β

ξ
, 0.09, 0.01, 1.5

)
4.2.2. Neimark-Sacker Bifurcation

Example 4. Let us assume that for h ∈ [3.23, 3.2] and the initial value (x0, y0) = (0.6, 0.4), we have
the following parameter values, (β, θ, ξ, ρ, γ) = (−0.08, 0.06, 0.1, 0.9, 0.01). The jacobian matrix is,(

1 − 0.316267h −0.0987952h
0.9h 1 − 0.9h

)
,

and z1 = −0.355266−0.136097ι and z2 = −0.355266+0.136097ι are the corresponding eigenvalues,
for h = h0 = 3.25592. Both eigenvalues have modulus equal to 1. Also, h0 ∈

(
0, 4
ρ−x1(D−C)

)
=

(0, 3.28875),
(

d|z1 |

dH

)
H=0
=

(
d|z2 |

dH

)
H=0
= 0.832494 , 0 and ζNS = −2237.02 , 0. Thus, the fixed point

exhibits Neimark-Sacker bifurcation, at the equilibrium point (0.82, 0.83), as can be seen in Figure 9.
Moreover, for h > h0 we have ζNS < 0, which shows that the invariant closed curve that bifurcates
from the fixed point is attracting.

We can see a stable spiral in the phase portrait in Figure 8(a) which increases in size as the h
increases (Figure 8(b)). With further increase in h, the spiral changes into a closed curve which is
invariant and attracting. Due to Neimark-Sacker bifurcation, the attractor has rough edges. These
rough edges and spiral are plotted in Figure 8(c) at h = 3.27. At h = 3.288, it can be observed that
the edges begin to disappear and the invariant closed curves continue around the positive fixed point,
as can be seen in Figure 8(d).

(a) h = 3.25 (b) h = 3.257

(c) h = 3.27 (d) h = 3.288

Figure 8. Phase Space Portraits with Initial Conditions (X0,Y0) = (0.6, 0.4), at Parametric
Values (β,Θ,Ξ, ρ,Γ) = (−0.08, 0.06, 0.1, 0.9, 0.01), Around H0
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(a) (b)

Figure 9. Emergence of Neimark-Sacker Bifurcation for Positive Fixed Point in the Interval
H ∈ [3.23, 3.28], of Model (2) with Initial Conditions (X0,Y0) = (0.6, 0.4) and Parametric
Values (β, θ, ξ, ρ, γ) = (−0.08, 0.06, 0.1, 0.9, 0.01)

5. Conclusion

In this paper, we have extended the analysis of the modified Leslie-Gower model with double
Allee effect by studying its discrete version and exploring its rich dynamics. We investigated the
existence and stability of interior equilibrium points for both strong and weak Allee effects, and
showed that the system undergoes period-doubling and Neimark-Sacker bifurcations under certain
parametric conditions. To this end, we employed the center manifold theorem and our main results
are presented in Theorems 1, 2, 3, and 4, which were complemented by numerical simulations in
Section 4.

Our findings revealed that the step size h can serve as a bifurcation parameter, allowing for the
emergence of a plethora of dynamical behaviors. Specifically, our numerical simulations in Figures 5
and 9 demonstrated that the system displays orbits of period-1, 2, 4, and 8, while period-doubling and
Neimark-Sacker bifurcations were shown to occur for both strong and weak Allee effects, as depicted
in Figures 3, 7, 5, and 9. Furthermore, we confirmed the validity of Theorems 3 and 4 through our
numerical simulations.

In summary, our study provides a comprehensive understanding of the dynamical behavior of the
modified Leslie-Gower model with double Allee effect in its discrete form. Our findings contribute to
the growing body of literature on Allee effect models and can inform future research in the field.
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