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1. Introduction

Pell and Pell–Lucas polynomials are defined (Horadam and Mahon [1] and Mahon and Horadam
[2]) by the recurrence relations

Pn(x) = 2xPn−1(x) + Pn−2(x),
Qn(x) = 2xQn−1(x) + Qn−2(x);

with different initial conditions

P0(x) = 0 and P1(x) = 1,
Q0(x) = 2 and Q1(x) = 2x.

The Binet forms for these polynomials read as

Pn(x) =
αn − βn

α − β
and Qn(x) = αn + βn

where
α := α(x) = x +

√
x2 + 1 and β := β(x) = x −

√
x2 + 1.

They are polynomial extensions of Fibonacci and Lucas numbers

Pn(1
2 ) = Fn and Qn( 1

2 ) = Ln
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as well as Pell and Pell–Lucas numbers

Pn(1) = Pn and Qn(1) = Qn.

Like the well–known Fibonacci and Lucas numbers, the Pell and Pell–Lucas polynomials have
many amazing properties and important applications in combinatorics and number theory as well as
physical sciences (cf. Koshy [3,4]). There exist numerous identities about Fibonacci and Lucas num-
bers (cf. [5–8]). Some of them are extended by Mahon and Horadam [2] and Melham and Shanno [9]
to the summation formulae containing a single arctangent function with its argument being Pell and
Pell–Lucas polynomials. In view of their importance, it is natural to examine the product sums of
two arctangent functions with their arguments involving Pell and Pell–Lucas polynomials. That is the
primary motivation for the present work.

Recall the Cassini formula for Fibonacci numbers

Fn+1Fn−1 = (−1)n + F2
n .

There are two analogous ones for Pell and Pell–Lucas polynomials. They will be employed in this
paper to evaluate, in closed forms, four classes of sums about products of two arctangent functions.
The main techniques to realize this purpose consist of the telescopic approach (cf. [10]) and the
following two trigonometric relations

arctan x + arctan y = arctan
x + y

1 − xy
, (xy < 1); (1)

arctan x − arctan y = arctan
x − y

1 + xy
, (xy > −1). (2)

Throughout the paper, we assume that x is real with x > 0, since otherwise, x < 0 will result
essentially in exchanging α(x) and β(x). Consequently the following zero limits

0 = lim
n→∞
α−n(x) = lim

n→∞
arctanα−n(x)

= lim
n→∞
βn(x) = lim

n→∞
arctan βn(x)

will be utilized frequently to deduce limiting relations without specific explanations.

2. The First Class of Summation Formulae

By making use of the following formulae (cf. Koshy [4]§14.7) for Pell polynomials

Pk−1(x) + Pk+1(x) = Qk(x),
Pk−1(x)Pk+1(x) = P2

k(x) + (−1)k;

it is not difficult to deduce from (1) and (2)

arctan
Qk(x)

P2
k(x) + (−1)k − 1

= arctan
1

Pk−1(x)
+ arctan

1
Pk+1(x)

, (3)

arctan
2xPk(x)

P2
k(x) + (−1)k + 1

= arctan
1

Pk−1(x)
− arctan

1
Pk+1(x)

. (4)

They were directly utilized by Mahon and Horadam [2] and Melham and Shannon [9] to establish

n∑
k=1

(−1)k−1 arctan
Q2k(x)
P2

2k(x)
=
π

4
− (−1)n arctan

1
P2n+1(x)
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and

n∑
k=1

arctan
2x

P2k−1(x)
=
π

2
−

1
P2n(x)

.

Instead, we shall utilize both (3) and (4) to derive further summation formulae concerning products
of two arctangent functions.

2.1.

Replacing k by 2k, we can rewrite (3) and (4) as

arctan
1

P2k−1(x)
+ arctan

1
P2k+1(x)

= arctan
Q2k(x)
P2

2k(x)
,

arctan
1

P2k−1(x)
− arctan

1
P2k+1(x)

= arctan
2xP2k(x)

P2
2k(x) + 2

.

Their multiplication gives rise to

n∑
k=1

arctan
Q2k(x)
P2

2k(x)
arctan

2xP2k(x)
P2

2k(x) + 2
=

n∑
k=1

(
arctan2 1

P2k−1(x)
− arctan2 1

P2k+1(x)

)
.

Then summing this equation for k from 1 to n by telescoping, we find the following formula.

Theorem 1 (x > 0).

n∑
k=1

arctan
Q2k(x)
P2

2k(x)
arctan

2xP2k(x)
P2

2k(x) + 2
=
π2

16
− arctan2 1

P2n+1(x)
.

Its limiting case as n→ ∞ yields a remarkable series whose sum is independent of x.

Corollary 1 (Independent of x).

∞∑
k=1

arctan
Q2k(x)
P2

2k(x)
arctan

2xP2k(x)
P2

2k(x) + 2
=
π2

16
.

By specifying particular values of x, we can derive, from the above corollary, a number of infinite
series identities. Eight of them are highlighted as follows.

• x =
1
2
=

L1

2
:

∞∑
k=1

arctan
L2k

F2
2k

arctan
F2k

F2
2k + 2

=
π2

16
. (5)

• x =

√
5

2
=

√
5

2
F2 :

∞∑
k=1

arctan
9L4k

5F2
4k

arctan
15F4k

5F2
4k + 18

=
π2

16
. (6)

• x = 2 =
L3

2
:

∞∑
k=1

arctan
4L6k

F2
6k

arctan
8F6k

F2
6k + 8

=
π2

16
. (7)

Utilitas Mathematica Volume 118, 3–13



Dongwei Guo and Wenchang Chu 6

• x =
3
√

5
2
=

√
5

2
F4 :

∞∑
k=1

arctan
49L8k

5F2
8k

arctan
105F8k

5F2
8k + 98

=
π2

16
. (8)

• x = 1 =
Q1

2
:

∞∑
k=1

arctan
Q2k

P2
2k

arctan
2P2k

P2
2k + 2

=
π2

16
. (9)

• x = 2
√

2 =
√

2P2 :
∞∑

k=1

arctan
9Q4k

2P2
4k

arctan
24P4k

2P2
4k + 18

=
π2

16
. (10)

• x = 7 =
Q3

2
:

∞∑
k=1

arctan
25Q6k

P2
6k

arctan
70P6k

P2
6k + 50

=
π2

16
. (11)

• x = 12
√

2 =
√

2P4 :
∞∑

k=1

arctan
289Q8k

2P2
8k

arctan
408P8k

P2
8k + 289

=
π2

16
. (12)

2.2.

Alternatively, (3) and (4) can be restated under the replacement k by 2k − 1 as

arctan
1

P2k−2(x)
+ arctan

1
P2k(x)

= arctan
Q2k−1(x)

P2
2k−1(x) − 2

,

arctan
1

P2k−2(x)
− arctan

1
P2k(x)

= arctan
2x

P2k−1(x)
.

First summing their product for k from 2 to n by telescoping and then adding the initial term
− arctan2 2x corresponding to k = −1 to the resultant equation, we get the theorem below.

Theorem 2 (x >
√
√

2−1
4 ≈ 0.321797).

n∑
k=1

arctan
Q2k−1(x)

P2
2k−1(x) − 2

arctan
2x

P2k−1(x)
=
π2

4
− π arctan 2x − arctan2 1

P2n(x)
.

Now letting n→ ∞ in this theorem, we deduce the infinite series identity.

Corollary 2.
∞∑

k=1

arctan
Q2k−1(x)

P2
2k−1(x) − 2

arctan
2x

P2k−1(x)
=
π2

4
− π arctan 2x.

We record eight interesting formulae by choosing particular values of x in this identity.

• x =
1
2
=

L1

2
:

∞∑
k=1

arctan
L2k−1

F2
2k−1 − 2

arctan
1

F2k−1
= 0. (13)
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• x =

√
5

2
=

√
5

2
F2 :

∞∑
k=1

arctan
9
√

5F4k−2

L2
4k−2 − 18

arctan
3
√

5
L4k−2

=
π2

4
− π arctan

√
5. (14)

• x = 2 =
L3

2
:

∞∑
k=1

arctan
4L6k−3

F2
6k−3 − 8

arctan
8

F6k−3
=
π2

4
− π arctan 4. (15)

• x =
3
√

5
2
=

√
5

2
F4 :

∞∑
k=1

arctan
49
√

5F8k−4

L2
8k−4 − 98

arctan
21
√

5
L8k−4

=
π2

4
− π arctan 3

√
5. (16)

• x = 1 =
Q1

2
:

∞∑
k=1

arctan
Q2k−1

P2
2k−1 − 2

arctan
2

P2k−1
=
π2

4
− π arctan 2. (17)

• x = 2
√

2 =
√

2P2 :
∞∑

k=1

arctan
72
√

2P4k−2

Q2
4k−2 − 72

arctan
24
√

2
Q4k−2

=
π2

4
− π arctan 4

√
2. (18)

• x = 7 =
Q3

2
:

∞∑
k=1

arctan
25Q6k−3

P2
6k−3 − 50

arctan
70

P6k−3
=
π2

4
− π arctan 14. (19)

• x = 12
√

2 =
√

2P4 :
∞∑

k=1

arctan
2312

√
2P8k−4

Q2
8k−4 − 2312

arctan
816
√

2
Q8k−4

=
π2

4
− π arctan 24

√
2. (20)

3. The Second Class of Summation Formulae

Analogously, there are also two formulae (cf. Koshy [4]§14.7) for Pell–Lucas polynomials

Qk−1(x) + Qk+1(x) = 4(x2 + 1)Pk(x),
Qk−1(x)Qk+1(x) = Q2

k(x) + 4(−1)k−1(x2 + 1).

In view of (1) and (2), we have the addition and difference formulae

arctan
1

Qk−1(x)
+ arctan

1
Qk+1(x)

= arctan
4(x2 + 1)Pk(x)

Q2
k(x) − 4(−1)k(x2 + 1) − 1

, (21)

arctan
1

Qk−1(x)
− arctan

1
Qk+1(x)

= arctan
2xQk(x)

Q2
k(x) − 4(−1)k(x2 + 1) + 1

. (22)

The last relation can directly be employed, by telescoping, to evaluate simple sums of a single arc-
tangent function that we shall not reproduce. Instead, we shall concentrate on the sums containing
products of two arctangent functions.
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3.1.

Replacing k by 2k, we can rewrite (21) and (22) as

arctan
4(x2 + 1)P2k(x)

Q2
2k(x) − 4x2 − 5

= arctan
1

Q2k−1(x)
+ arctan

1
Q2k+1(x)

,

arctan
2xQ2k(x)

Q2
2k(x) − 4x2 − 3

= arctan
1

Q2k−1(x)
− arctan

1
Q2k+1(x)

.

Then summing their product for k from 1 to n leads us to the following theorem.

Theorem 3 (x >
√
√

13−3
8 ≈ 0.275125).

n∑
k=1

arctan
4(x2 + 1)P2k(x)

Q2
2k(x) − 4x2 − 5

arctan
2xQ2k(x)

Q2
2k(x) − 4x2 − 3

= arctan2 1
2x
− arctan2 1

Q2n+1(x)
.

When n→ ∞, the above theorem gives rise to the infinite series evaluation below.

Corollary 3.
∞∑

k=1

arctan
4(x2 + 1)P2k(x)

Q2
2k(x) − 4x2 − 5

arctan
2xQ2k(x)

Q2
2k(x) − 4x2 − 3

= arctan2 1
2x
.

As applications, we collect six infinite series identities.

• x =
1
2
=

L1

2
:

∞∑
k=1

arctan
5F2k

L2
2k − 6

arctan
L2k

L2
2k − 4

=
π2

16
. (23)

• x =

√
5

2
=

√
5

2
F2 :

∞∑
k=1

arctan
3
√

5F4k

L2
4k − 10

arctan

√
5L4k

L2
4k − 8

= arctan2

√
5

5
. (24)

• x = 2 =
L3

2
:

∞∑
k=1

arctan
10L6k

L2
6k − 21

arctan
4L6k

L2
6k − 19

= arctan2 1
4
. (25)

• x = 1 =
Q1

2
:

∞∑
k=1

arctan
8P2k

Q2
2k − 9

arctan
2Q2k

Q2
2k − 7

= arctan2 1
2
. (26)

• x = 2
√

2 =
√

2P2 :
∞∑

k=1

arctan
12
√

2P4k

Q2
4k − 37

arctan
4
√

2Q4k

Q2
4k − 35

= arctan2

√
2

8
. (27)

• x = 7 =
Q3

2
:

∞∑
k=1

arctan
40P6k

Q2
6k − 201

arctan
14Q6k

Q2
6k − 199

= arctan2 1
14
. (28)
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3.2.

Under the replacement k by 2k − 1, the two equalities in (21) and (22) become

arctan
1

Q2k−2(x)
+ arctan

1
Q2k(x)

= arctan
4(x2 + 1)P2k−1(x)

Q2
2k−1(x) + 4x2 + 3

,

arctan
1

Q2k−2(x)
− arctan

1
Q2k(x)

= arctan
2xQ2k−1(x)

Q2
2k−1(x) + 4x2 + 5

.

Multiplying them and summing for k from 1 to n by telescoping, we obtain the formula below.

Theorem 4.
n∑

k=1

arctan
4(x2 + 1)P2k−1(x)

Q2
2k−1(x) + 4x2 + 3

arctan
2xQ2k−1(x)

Q2
2k−1(x) + 4x2 + 5

= arctan2 1
2
− arctan2 1

Q2n(x)
.

Its limiting case as n→ ∞ yields the infinite series evaluation.

Corollary 4 (Independent of x).
∞∑

k=1

arctan
4(x2 + 1)P2k−1(x)

Q2
2k−1(x) + 4x2 + 3

arctan
2xQ2k−1(x)

Q2
2k−1(x) + 4x2 + 5

= arctan2 1
2
.

In particular, two infinite series identities are given as follows:

• x = 1/2 :
∞∑

k=1

arctan
5F2k−1

L2
2k−1 + 4

arctan
L2k−1

L2
2k−1 + 6

= arctan2 1
2
. (29)

• x = 1 :
∞∑

k=1

arctan
8P2k−1

Q2
2k−1 + 7

arctan
2Q2k−1

Q2
2k−1 + 9

= arctan2 1
2
. (30)

4. The Third Class of Summation Formulae

By combining the Cassini–like formula (cf. Koshy [4]§14.10)

P2
k(x) − Pk+λ(x)Pk−λ(x) = (−1)k+λP2

λ(x) (31)

with (1) and (2), we get the following two identities

arctan
Pk(x)

Pk+λ(x)
+ arctan

Pk−λ(x)
Pk(x)

=


arctan

2P2
k(x) − (−1)kP2

λ(x)
Pλ(x)P2k(x)

, λ even;

arctan
2P2

k(x) + (−1)kP2
λ(x)

Qλ(x)P2
k(x)

, λ odd;

(32)

arctan
Pk(x)

Pk+λ(x)
− arctan

Pk−λ(x)
Pk(x)

=


arctan

(−1)kP2
λ(x)

Qλ(x)P2
k(x)
, λ even;

arctan
(−1)k+1Pλ(x)

P2k(x)
, λ odd.

(33)

By means of (33), Melham–Shannon [9] obtained directly
n∑

k=1

arctan
(−1)k−1

P2k(x)
= arctan

Pn(x)
Pn+1(x)

.

Now we are going to examine sums for the products of two arctangent functions.

Utilitas Mathematica Volume 118, 3–13
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4.1.

When λ = 1, rewriting (32) and (33) as

arctan
Pk(x)

Pk+1(x)
− arctan

Pk−1(x)
Pk(x)

= arctan
(−1)k+1

P2k(x)
,

arctan
Pk(x)

Pk+1(x)
+ arctan

Pk−1(x)
Pk(x)

= arctan
2P2

k(x) + (−1)k

2xP2
k(x)

;

and then summing their product for k from 1 to n by telescoping, we get the summation formula.

Theorem 5.
n∑

k=1

arctan
2P2

k(x) + (−1)k

2xP2
k(x)

arctan
(−1)k+1

P2k(x)
= arctan2 Pn(x)

Pn+1(x)
.

Its limiting case as n→ ∞ results in the infinite series identity.

Corollary 5.
∞∑

k=1

arctan
2P2

k(x) + (−1)k

2xP2
k(x)

arctan
(−1)k+1

P2k(x)
= arctan2(

√
x2 + 1 − x).

Two formulae about Fibonacci numbers and Pell numbers are contained as special cases.

• x = 1/2 :
∞∑

k=1

arctan
2F2

k + (−1)k

F2
k

arctan
(−1)k+1

F2k
=

1
4

arctan2 2. (34)

• x = 1 :
∞∑

k=1

arctan
2P2

k + (−1)k

2P2
k

arctan
(−1)k+1

P2k
=
π2

64
. (35)

4.2.

Analogously for λ = 2, both (32) and (33) become

arctan
Pk(x)

Pk+2(x)
− arctan

Pk−2(x)
Pk(x)

= arctan
2(−1)kx2

(2x2 + 1)P2
k(x)
,

arctan
Pk(x)

Pk+2(x)
+ arctan

Pk−2(x)
Pk(x)

= arctan
P2

k(x) − 2(−1)kx2

xP2k(x)
.

Keeping in mind that P−1(x) = 1 and then summing their product for k from 1 to n, we find by
telescoping another formula as in the following theorem.

Theorem 6.
n∑

k=1

arctan
P2

k(x) − 2(−1)kx2

xP2k(x)
arctan

2(−1)kx2

(2x2 + 1)P2
k(x)

= arctan2 Pn−1(x)
Pn+1(x)

+ arctan2 Pn(x)
Pn+2(x)

−
π2

16
.

The limiting case as n→ ∞ is given by the following corollary.

Corollary 6.
∞∑

k=1

arctan
P2

k(x) − 2(−1)kx2

xP2k(x)
arctan

2(−1)kx2

(2x2 + 1)P2
k(x)
= 2 arctan2 β2 −

π2

16
.
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In particular, we record two identities about Fibonacci and Pell numbers.

• x = 1/2 :
∞∑

k=1

arctan
2F2

k − (−1)k

F2k
arctan

(−1)k

3F2
k

=
1
2

arctan2 2
√

5
−
π2

16
. (36)

• x = 1 :
∞∑

k=1

arctan
P2

k − 2(−1)k

P2k
arctan

2(−1)k

3P2
k

=
1
2

arctan

√
2

4
−
π2

16
. (37)

5. The Fourth Class of Summation Formulae

In this section, the counterpart formulae for Q(x) will be worked out by employing another
Cassini–like formula (cf. Koshy [4]§14.10)

Qk+λ(x)Qk−λ(x) − Q2
k(x) = 4(−1)k+λ(1 + x2)P2

λ(x) (38)

as well as two reformulated ones by (1) and (2):

arctan
Qk(x)

Qk+λ(x)
+ arctan

Qk−λ(x)
Qk(x)

=


arctan

2Q2
k(x) + (−1)k(Q2

λ(x) − 4)
4(x2 + 1)Pλ(x)P2k(x)

, λ even;

arctan
2Q2

k(x) − (−1)k(Q2
λ(x) + 4)

Qλ(x)Q2
k(x)

, λ odd;

(39)

arctan
Qk(x)

Qk+λ(x)
− arctan

Qk−λ(x)
Qk(x)

=


arctan

(−1)k(4 − Q2
λ(x))

Qλ(x)Q2
k(x)

, λ even;

arctan
(−1)k(4 + Q2

λ(x))
4(x2 + 1)Pλ(x)P2k(x)

, λ odd;

(40)

5.1.

Letting λ = 1 in (39) and (40), we have

arctan
Qk(x)

Qk+1(x)
+ arctan

Qk−1(x)
Qk(x)

= arctan
Q2

k(x) − 2(−1)k(x2 + 1)

xQ2
k(x)

,

arctan
Qk(x)

Qk+1(x)
− arctan

Qk−1(x)
Qk(x)

= arctan
(−1)k

P2k(x)
.

Multiplying them and then summing the resultant expression for k from 1 to n, we find by telescoping
the formula below.

Theorem 7.
n∑

k=1

arctan
(−1)k

P2k(x)
arctan

Q2
k(x) − 2(−1)k(x2 + 1)

xQ2
k(x)

= arctan2 Qn(x)
Qn+1(x)

− arctan2 1
x
.

As n→ ∞, the limiting result evaluates the following infinite series.

Corollary 7.

∞∑
k=1

arctan
(−1)k

P2k(x)
arctan

Q2
k(x) − 2(−1)k(x2 + 1)

xQ2
k(x)

= arctan2(
√

x2 + 1 − x) − arctan2 1
x
.
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Two special cases are produced below as examples

• x = 1/2 :
∞∑

k=1

arctan
(−1)k

F2k
arctan

2L2
k − 5(−1)k

L2
k

= −
3
4

arctan2 2. (41)

• x = 1 :
∞∑

k=1

arctan
(−1)k

P2k
arctan

Q2
k − 4(−1)k

Q2
k

= −
3π2

64
. (42)

5.2.

Analogously for λ = 2, we have from (39) and (40)

arctan
Qk(x)

Qk+2(x)
+ arctan

Qk−2(x)
Qk(x)

= arctan
Q2

k(x) + 8(−1)k(x4 + x2)
4(x3 + x)P2k(x)

arctan
Qk(x)

Qk+2(x)
− arctan

Qk−2(x)
Qk(x)

= arctan
8(−1)k+1(x4 + x2)

(2x2 + 1)Q2
k(x)

.

Summing their product for k from 1 to n and taking into account Q−1(x) = −2x, we get, after some
simplifications, the following formula.

Theorem 8.

n∑
k=1

arctan
8(−1)k+1(x4 + x2)

(2x2 + 1)Q2
k(x)

arctan
Q2

k(x) + 8(−1)k(x4 + x2)
4(x3 + x)P2k(x)

= arctan2 Qn(x)
Qn+2(x)

+ arctan2 Qn−1(x)
Qn+1(x)

− arctan2 2
Q2(x)

−
π2

16
.

Letting n→ ∞ in this theorem, we get the infinite series evaluation.

Corollary 8.

∞∑
k=1

arctan
8(−1)k+1(x4 + x2)

(2x2 + 1)Q2
k(x)

arctan
Q2

k(x) + 8(−1)k(x4 + x2)
4(x3 + x)P2k(x)

= 2 arctan2 β2 − arctan2 1
2x2 + 1

−
π2

16
.

This formula further implies the two infinite series identities.

• x = 1/2 :

∞∑
k=1

arctan
5(−1)k+1

3L2
k

arctan
2L2

k + 5(−1)k

5F2k
=

1
2

arctan2 2
√

5
− arctan2 2

3
−
π2

16
. (43)

• x = 1 :

∞∑
k=1

arctan
16(−1)k+1

3Q2
k

arctan
Q2

k + 16(−1)k

8P2k
=

1
2

arctan2

√
2

4
− arctan2 1

3
−
π2

16
. (44)
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