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Abstract: This paper introduces a novel type of convex function known as the refined modified
(h,m)−convex function, which is a generalization of the traditional (h,m)−convex function. We es-
tablish Hadamard-type inequalities for this new definition by utilizing the Caputo k−fractional deriva-
tive. Specifically, we derive two integral identities that involve the nth order derivatives of given func-
tions and use them to prove the estimation of Hadamard-type inequalities for the Caputo k−fractional
derivatives of refined modified (h,m)−convex functions. The results obtained in this research demon-
strate the versatility of the refined modified (h,m)−convex function and the usefulness of Caputo
k−fractional derivatives in establishing important inequalities. Our work contributes to the existing
body of knowledge on convex functions and offers insights into the applications of fractional calculus
in mathematical analysis. The research findings have the potential to pave the way for future stud-
ies in the area of convex functions and fractional calculus, as well as in other areas of mathematical
research.
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1. Introduction

Fractional calculus is a branch of mathematics that deals with the concepts of fractional differen-
tiation and integration. The history of fractional calculus dates back to the seventeenth century, when
G. W. Leibniz and Marquis de l’Hospital initiated a discussion on semi-derivatives [1]. Since then,
fractional calculus has been an active area of research that has found applications in many fields of
science and engineering, including control theory, signal processing, and fluid mechanics.

The development of fractional calculus owes much to the contributions of Riemann and Liouville.
In 1854, Riemann introduced the first integral operator, known as the Riemann-Liouville fractional
integral operator [2]. This operator provides a natural extension of the classical concept of integration
to non-integer orders. The Riemann-Liouville fractional derivative, which is obtained by applying
the fractional integral operator to a function, was introduced by Liouville in 1832 [1]. The Caputo
fractional derivative formula, which is a refinement of the Riemann-Liouville fractional derivative
formula, was later introduced by Caputo [3]. The Caputo fractional derivative is now widely used in
various fields of science and engineering, including fractional control theory and fractional differential
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equations.
In addition to the classical definitions of fractional derivatives and fractional integrals, numerous

other definitions have been proposed by various authors. For example, the Grünwald-Letnikov frac-
tional derivative, the Riesz fractional derivative, and the Marchaud fractional derivative are among
the most widely used definitions. These different definitions have their own advantages and disad-
vantages and find different applications in different fields. The study of fractional derivatives and
fractional integrals is an active area of research, and many open problems remain to be solved in this
field [2, 4].

The Caputo fractional derivative has a rich history dating back to the seventeenth century when
G. W. Leibniz and Marquis de l’Hospital discussed semi-derivatives [3]. It is an essential tool in the
field of fractional calculus, which is based on fractional differentiation and integration. The Riemann-
Liouville fractional integral operator is the first integral operator in the field of fractional calculus, and
the Riemann-Liouville fractional derivative was obtained using this operator. Caputo later improved
the Riemann-Liouville fractional derivative formula, resulting in the well-known formula for Caputo
fractional derivatives [3].

Definition 1. [3] Let f ∈ ACn[a, b]. The Caputo fractional derivatives of order α ∈ C,Re(α) > 0 of
f are defined as follows:

CDαa+ f (x) =
1

Γ(n − α)

∫ x

a

f (n)(t)
(x − t)α−n+1 dt, x > a, (1)

CDαb− f (x) =
(−1)n

Γ(n − α)

∫ b

x

f (n)(t)
(t − x)α−n+1 dt, x < b, (2)

where n = [α] + 1. If α = n ∈ {1, 2, 3, ...} and usual derivatives of order n exists, then Caputo
fractional derivatives (CDαa+ f )(x) coincides with f (n)(x), whereas (CDαb− f )(x) coincides with f (n)(x),
with exactness to a constant multiplier (−1)n.

In particular we have
(CD0

a+ f )(x) = (CD0
b− f )(x) = f (x), (3)

where n = 1 and α = 0.

The Caputo k-fractional derivative extends the classical Caputo fractional derivative to the k-
analogues of the real and complex numbers [5]. In particular, it is defined for functions f ∈ ACn[a, b],
where n = [α] + 1 and α ∈ C with Re(α) > 0. The definition is given by Equations (1) and (2) for
x > a and x < b, respectively, where Γ is the Gamma function. When α = n and the usual derivatives
of order n exist, the Caputo k-fractional derivatives coincide with the classical derivatives of order n,
with an additional constant multiplier of (−1)n for (CDαb− f )(x) [3].

Definition 2. [5] Let f ∈ ACn[a, b]. The Caputo k−fractional derivatives of order α ∈ C,Re(α) > 0
of f are defined as follows:

CDα,ka+ f (x) =
1

kΓk(n − αk )

∫ x

a

f (n)(t)
(x − t)

α
k −n+1

dt, x > a, (4)

CDα,kb− f (x) =
(−1)n

kΓk(n − αk )

∫ b

x

f (n)(t)
(t − x)

α
k −n+1

dt, x < b, (5)

where k ≥ 1, n = [α] + 1 and Γk(α) =
∫ ∞

0
tα−1e

−tk
k dt, Γk(α + k) = αΓk(α).

Definition 3. [6] The beta function of two variable u and v is defined as follows:

β(u, v) =
∫ 1

0
ϕu−1(1 − ϕ)v−1dϕ,

for Re(u) > 0, Re(v) > 0.
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Convex functions have been a fundamental concept in mathematics for over a century, and have
found numerous applications in fields ranging from optimization and statistics to economics and
physics. A convex function is defined as a function whose graph lies above its secant lines, and
has several important properties such as being differentiable almost everywhere, and having a unique
minimum.

Classical convexity is the most commonly studied version of convexity, and requires a function to
have a non-negative second derivative. A function that is twice differentiable and has a positive second
derivative at every point is called strictly convex. Convex functions have a wide range of applications
in optimization, as they guarantee the existence of a unique global minimum. Examples of classical
convex functions include the exponential function, the logarithm function, and the quadratic function
[7, 8].

Another important version of convexity is quasi-convexity, which requires that a function’s sub-
level sets are convex. A function is quasi-convex if the set of points below its level set is convex.
Quasi-convexity is a weaker form of convexity that is still useful in optimization and other areas of
mathematics. Examples of quasi-convex functions include the absolute value function and the maxi-
mum function [7, 9].

Another version of convexity is known as strongly convexity, which requires that a function’s
second derivative is bounded below by a positive constant. Strong convexity is a more stringent
condition than classical convexity and has applications in optimization algorithms, such as gradient
descent. Examples of strongly convex functions include the quadratic function with a positive-definite
Hessian matrix [7, 10].

Other versions of convexity include p-convexity, which requires a function to be a convex com-
bination of its pth powers, and generalized convexity, which is defined by a broad class of convex
functions including quasi-convex, pseudo-convex, and logarithmically convex functions. P-convexity
has applications in mathematical economics, as it provides a way to model preferences of consumers
with respect to income distributions [11–13]). Generalized convexity has applications in optimization,
game theory, and statistics [14].

In conclusion, the study of convex functions and their various versions has been an active area
of research for many years, and continues to be an important topic in mathematics and other fields.
The different types of convexity provide a rich framework for understanding the behavior of functions
in different settings, and their study has led to important insights and applications in many areas of
science and engineering.

Inequality theory is a fundamental branch of mathematics that deals with the study of inequalities
and their applications. Inequalities play a crucial role in many areas of mathematics, such as analysis,
geometry, number theory, and optimization, as well as in other fields such as physics and economics.
One of the most important inequalities in mathematics is the Hadamard inequality, which provides a
bound on the determinant of a positive definite matrix in terms of its diagonal entries. The inequality
is named after Jacques Hadamard, who first proved it in 1893. The Hadamard inequality has numer-
ous applications in matrix theory, optimization, and statistics, and has been extended to many other
settings, including complex matrices and operator theory [15–17].

The Hadamard inequality can also be generalized to functions, where it provides a bound on the
product of the values of a convex function over an interval in terms of its integral over that inter-
val. In this context, the inequality is known as the Hadamard-Fischer inequality, and has important
applications in probability theory, functional analysis, and optimization [18, 19].

In recent years, there has been growing interest in the study of fractional calculus and its appli-
cations in inequality theory. Fractional calculus provides a way to extend the classical calculus to
non-integer orders, and has been used to develop new inequalities and bounds for various mathemat-
ical objects, such as functions, integrals, and differential equations. The study of fractional calculus
and its applications in inequality theory has led to new insights and results in many areas of mathe-
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matics and physics [19, 20]. In conclusion, the study of inequality theory is an important and active
area of research in mathematics and other fields. The Hadamard inequality, in particular, has been a
fundamental result in matrix theory and has numerous applications in optimization and statistics. The
generalization of the Hadamard inequality to functions and its extensions to fractional calculus have
further enriched the field, and continue to be an active area of research.

The Hadamard inequality for convex function is stated in undermentioned theorem:

Theorem 1. [21] If f : J → R is a convex function defined on the interval J, then for a, b ∈ J, a < b
we have

f
(
a + b

2

)
≤

1
b − a

∫ b

a
f (x)dx ≤

f (a) + f (b)
2

.

The Hadamard inequality is a fundamental inequality that is a straightforward consequence of
convexity for traditional convex functions, and has been extensively studied in the literature. However,
the extension of the Hadamard inequality to the Caputo k−fractional derivatives of generalized convex
functions has not been fully explored.

This paper presents a study of Caputo fractional derivatives for a generalized convex function,
with the goal of exploring new notions and concepts motivated by analytic representation of convex
functions. The study will focus on the Hadamard inequality for Caputo k−fractional derivatives of
the refined modified (h,m)−convex function, a type of generalized convex function. The refined
modified (h,m)−convex function is a type of generalized convex function that has been shown to
have many useful properties in optimization and analysis. By studying the Hadamard inequality for
Caputo k−fractional derivatives of this function, we aim to provide new insights into the behavior of
generalized convex functions and their fractional derivatives.

This paper is structured as follows; In Section 2, we provide the necessary definitions and back-
ground information that will be used throughout the paper. In Section 3, we introduce two versions of
the Hadamard inequality for refined modified (h,m)−convex functions using the Caputo k−fractional
derivatives. We also present several special cases of these inequalities in the form of corollaries.
Section 4 is devoted to establishing error estimates of Hadamard-type inequalities by utilizing two
integral identities, including arbitrary order derivatives of function f . The derivations and analyses
of these inequalities are presented in detail. In Section 5, we provide concluding remarks and sum-
marize the main contributions of this paper. Furthermore, we identify some open problems for future
research in this area. Overall, this paper contributes to the study of the Hadamard inequality for re-
fined modified (h,m)−convex functions using fractional calculus techniques. The results presented
in this paper have potential applications in various fields, including optimization, numerical analysis,
and mathematical physics.

2. Basic Definitions

This section provides the necessary definitions and background information that will be used
throughout the paper. We begin by introducing the concept of convexity and its various definitions,
which are central to the study of refined modified (h,m)−convex functions and their derivatives.

Definition 4. [22] A function f : J → R, where J is an interval in R, is said to be convex if, for any
x, y ∈ J and any α ∈ [0, 1], it satisfies the inequality

f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y).

In other words, f is convex if its graph lies below the line segment connecting any two of its points.

Definition 5. [23] A function f : J → R is called h−convex if, for any x, y ∈ J and any α ∈ (0, 1), it
satisfies the inequality

f (αx + (1 − α)y) ≤ h(α) f (x) + h(1 − α) f (y),
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where h : (0, 1)→ R is a non-negative function. In other words, f is h−convex if its graph lies below
a weighted average of the line segments connecting any two of its points, with weights determined by
the function h.

[24] introduced the concept of modified h−convex function, which we define as follows:

Definition 6. [24] Let f , h : J ⊆ R→ R be non-negative functions. The function f is called modified
h−convex if, for any x, y ∈ J and any α ∈ [0, 1], it satisfies the inequality

f (αx + (1 − α)y) ≤ h(α) f (x) + (1 − h(α)) f (y).

In other words, f is modified h−convex if its graph lies below a weighted average of the line segments
connecting any two of its points, with weights determined by the function h.

Definition 7 (Modified (h,m)-Convex Function). Let f , h : J ⊆ R → R be non-negative functions,
and let m, α ∈ [0, 1] and x, y ∈ J. We say that f is a modified (h,m)-convex function if it satisfies the
inequality

f (αx + m(1 − α)y) ≤ h(α) f (x) + m(1 − h(α)) f (y).

Definition 8 (Refined Modified (h,m)-Convex Function). Let f , h : J ⊆ R → R be non-negative
functions, and let m, α ∈ [0, 1] and x, y ∈ J. We say that f is a refined modified (h,m)-convex function
if it satisfies the inequality

f (αx + m(1 − α)y) ≤ h(α)(1 − h(α))( f (x) + m f (y)),

where h is a non-negative function.

In both cases, the functions h and m play a role in controlling the behavior of the function f . The
modified (h,m)-convexity condition allows for a more general form of convexity, where the weight
given to each point x and y in the convex combination αx + m(1 − α)y can depend on α. The refined
modified (h,m)-convexity condition further refines this by introducing an additional factor (1− h(α)),
which can also depend on α. These concepts are useful in the study of inequalities involving convex
functions, such as the Hadamard inequality mentioned earlier.

3. Two Versions of Hadamard Inequality for Refined Modified (h,m)−Convex Function

In this section, we present two versions of Hadamard inequality for refined modified (h,m)−convex
function via the Caputo k−fractional derivatives. The first version is based on a lower bound for the
Caputo k−fractional derivative of refined modified (h,m)−convex function, while the second version
involves an upper bound for the same derivative. These inequalities provide powerful tools for estab-
lishing bounds on the difference quotients of refined modified (h,m)−convex functions. We start by
presenting the first version of the Hadamard inequality.

Theorem 2. Let f : [0,∞) → R be a function such that f ∈ ACn[a, b], 0 ≤ a < b. Also let f (n) be a
refined modified (h,m)−convex function on [a,mb] with m ∈ (0, 1]. Then the following inequality for
Caputo k−fractional derivatives hold:

f (n)
(
bm + a

2

)
≤

(
h
(

1
2

)) (
1 − h

(
1
2

))
kΓk(n − αk + k)

(mb − a)n− αk

[
mn− αk +1(−1)n(CDα,kb− f (

a
m

)) + (CDα,ka+ f (mb)
]

≤

(
n −
α

k

) (
h
(
1
2

)) (
1 − h

(
1
2

)) [{
f (n)(a) + 2m f (n)(b) + m2 f (n)

( a
m2

)} ∫ 1

0
h(t)(1 − h(t))tn− αk −1dt

]
. (6)
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Proof. Since f (n) is refined modified (h,m)− convex function on [a,mb], we have

f (n)
(um + v

2

)
≤ h

(
1
2

) (
1 − h

(
1
2

)) (
f (n)(v) + m f (n)(u)

)
, u, v ∈ [a, b]. (7)

By setting u = (1 − t) a
m + tb ≤ b and v = m(1 − t)b + ta ≥ a in the above inequality for t ∈ [0, 1], then

by integrating over [0, 1] after multiplying with tn− αk −1 we have

f (n)
(
bm + a

2

) ∫ 1

0
tn− αk −1dt ≤h

(
1
2

) (
1 − h

(
1
2

))
×

[∫ 1

0
tn− αk −1 f (n) (m(1 − t)b + ta) dt + m

∫ 1

0
tn− αk −1 f (n)

(
(1 − t)

a
m
+ tb

)
dt

]
.

Now, if we set w = (1 − t) a
m + tb and z = m(1 − t)b + ta in the right hand side of above inequality, we

get

f (n)
(
bm + a

2

)
1

n − αk
≤h

(
1
2

) (
1 − h

(
1
2

))
×

∫ mb

a

(
mb − z
mb − a

)n− αk −1 f (n)(z)dz
(mb − a)

+ m
∫ b

a
m

w − a
m

b − b
m

n− αk −1 m f (n)(w)dw(
b − a

m

)  .
From which we can write the following inequality:

f (n)
(
bm + a

2

)
≤ h

(
1
2

) (
1 − h

(
1
2

))
kΓk(n − αk + k)

(mb − a)n− αk

[
CDα,ka+ f (mb) + mn− αk +1(−1)n

(
CDα,kb− f

( a
m

))]
. (8)

On the other hand, by using refined modified (h,m)− convexity of f (n), we have

m f (n)
(
(1 − t)

a
m
+ tb

)
≤ h(t)(1 − h(t))

(
m2 f (n)

( a
m2

)
+ m f (n)(b)

)
.

Multiplying both side by (n− αk )(h(1
2 ))(1−h( 1

2 ))tn− αk −1 and integrating over [0, 1], after some calculation
we get

mn− αk +1
(
h
(

1
2

)) (
1 − h

(
1
2

))
(mb − a)n− αk

kΓk

(
n −
α

k
+ k

)
(−1)n

(
CDα,kb− f

( a
m

))
≤ m

(
n −
α

k

) (
h
(
1
2

)) (
1 − h

(
1
2

)) [(
m f (n)

( a
m2

)
+ f (n)(b)

) ∫ 1

0
h(t)(1 − h(t))tn− αk −1dt

]
. (9)

By using refined modified (h,m)− convexity of f (n), we have

f (n) (m(1 − t)b + ta) ≤ h(t)(1 − h(t))
(
m f (n)(b) + f (n)(a)

)
.

Multiplying both side by
(
n − αk

) (
h
(

1
2

)) (
1 − h

(
1
2

))
tn− αk −1 and integrating over [0, 1], after some cal-

culation we get(
h
(

1
2

)) (
1 − h

(
1
2

))
(mb − a)n− αk

kΓk

(
n −
α

k
+ k

) (
CDα,ka+ f (mb)

)
≤

(
n −
α

k

) (
h
(
1
2

)) (
1 − h

(
1
2

)) [(
m f (n)(b) + f (n)(a)

) ∫ 1

0
h(t)(1 − h(t))tn− αk −1dt

]
. (10)

Addition of (9) and (10) yields.(
h
(

1
2

)) (
1 − h

(
1
2

))
kΓk

(
n − αk + k

)
(mb − a)n− αk

[
mn− αk +1(−1)n

(
CDα,kb− f

( a
m

))
+

(
CDα,ka+ f (mb)

)]
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≤

(
n −
α

k

) (
h
(
1
2

)) (
1 − h

(
1
2

)) [{
f (n)(a) + 2m f (n)(b) + m2 f (n)

( a
m2

)} ∫ 1

0
h(t)(1 − h(t))tn− αk −1dt

]
. (11)

By combining the inequalities (8) and (11), we get the required result.

f (n)
(
bm + a

2

)
≤

(
h
(

1
2

)) (
1 − h

(
1
2

))
kΓk

(
n − αk + k

)
(mb − a)n− αk

[
mn− αk +1(−1)n

(
CDα,kb− f

( a
m

))
+

(
CDα,ka+ f (mb)

)]
≤

(
n −
α

k

) (
h
(
1
2

)) (
1 − h

(
1
2

)) [{
f (n)(a) + 2m f (n)(b) + m2 f (n)

( a
m2

)} ∫ 1

0
h(t)(1 − h(t))tn− αk −1dt

]
.

□

Corollary 1. By setting k = 1 in the inequality (6), the following Caputo fractional derivatives
inequality holds:

f (n)
(
bm + a

2

)
≤

(
h
(

1
2

)) (
1 − h

(
1
2

))
Γ(n − α + 1)

(mb − a)n−α

[
mn−α+1(−1)n

(
CDαb− f

( a
m

))
+

(
CDαa+ f (mb)

)]
≤ (n − α)

(
h
(
1
2

)) (
1 − h

(
1
2

)) [{
f (n)(a) + 2m f (n)(b) + m2 f (n)

( a
m2

)} ∫ 1

0
h(t)(1 − h(t))tn−α−1dt

]
. (12)

Corollary 2. By setting m = 1 in the inequality (6), the following Caputo k−fractional derivatives
inequality holds for refined modified h−convex function:

f (n)
(
b + a

2

)
≤

(
h
(

1
2

)) (
1 − h

(
1
2

))
kΓk

(
n − αk + k

)
(b − a)n− αk

[
(−1)n

(
CDα,kb− f (a)

)
+

(
CDα,ka+ f (b)

)]
≤

(
n −
α

k

) (
h
(
1
2

)) (
1 − h

(
1
2

))
2
[(

f (n)(a) + f (n)(b)
) ∫ 1

0
h(t)(1 − h(t))tn− αk −1dt

]
. (13)

Corollary 3. By setting k = 1 and m = 1 in the inequality (6), the following Caputo fractional
derivatives inequality holds:

f (n)
(
b + a

2

)
≤

(
h
(

1
2

)) (
1 − h

(
1
2

))
Γ(n − α + 1)

(b − a)n−α

[
(−1)n

(
CDαb− f (a)

)
+

(
CDαa+ f (b)

)]
≤ (n − α)

(
h
(
1
2

)) (
1 − h

(
1
2

))
2
[(

f (n)(a) + f (n)(b)
) ∫ 1

0
h(t)(1 − h(t))tn−α−1dt

]
. (14)

Corollary 4. If we choose “ h” is identity function in (6) and using the definition of beta function, the
following Caputo k−fractional derivatives inequality hold:

f (n)
(
bm + a

2

)
≤

kΓk(n − αk + k)

(mb − a)n− αk

[
mn− αk +1(−1)n

(
CDα,kb− f

( a
m

))
+

(
CDα,ka+ f (mb)

)]
≤

(
n −
α

k

) [{
f (n)(a) + 2m f (n)(b) + m2 f (n)

( a
m2

)}
β
(
2, n −

α

k
+ 1

)]
. (15)

Corollary 5. If “ h” is identity function and set m = 1 in (6) and using the definition of beta function
the following Caputo k−fractional derivatives inequality hold for convex function:

f (n)
(
b + a

2

)
≤

kΓk(n − αk + k)

(b − a)n− αk

[
(−1)n

(
CDα,kb− f (a)

)
+

(
CDα,ka+ f (b)

)]
≤ 2

(
n −
α

k

) [{
f (n)(a) + f (n)(b)

}
β
(
2, n −

α

k
+ 1

)]
. (16)
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Corollary 6. If “ h” is identity function and set k = 1 in (6) and using the definition of beta function
the following Caputo fractional derivatives inequality hold for convex function:

f (n)
(
bm + a

2

)
≤
Γ(n − α + 1)
(mb − a)n−α

[
mn− αk +1(−1)n

(
CDαb− f

( a
m

))
+

(
CDαa+ f (mb)

)]
≤ (n − α)

[{
f (n)(a) + 2m f (n)(b) + m2 f (n)

( a
m2

)}
β (2, n − α + 1)

]
. (17)

Corollary 7. If “ h” is identity function and set k = 1,m = 1 in (6) and using the definition of beta
function the following Caputo fractional derivatives inequality hold for convex function:

f (n)
(
b + a

2

)
≤
Γ(n − α + 1)

(b − a)n−α

[
(−1)n

(
CDαb− f (a)

)
+

(
CDα,ka+ f (b)

)]
≤ 2 (n − α)

[{
f (n)(a) + f (n)(b)

}
β (2, n − α + 1)

]
. (18)

Theorem 3. Let f : [0,∞) → R be a function such that f ∈ ACn[a, b], 0 ≤ a < b. Also let f (n) be a
refined modified (h,m)−convex function on [a,mb] with m ∈ (0, 1]. Then the following inequality for
Caputo k−fractional derivatives hold:

f (n)
(
bm + a

2

)
≤ 2(n− αk ) kΓk(n − αk + k)

(mb − a)n− αk
h
(
1
2

) (
1 − h

(
1
2

)) [(
CDα,k

( a+bm
2 )+

f (mb)
)

+mn− αk +1(−1)n
(

CDα,k
( a+bm

2m )−
f
( a
m

))]
≤ h

(
1
2

)
h
( t
2

) (
1 − h

(
1
2

)) (
1 − h

( t
2

)) [
f n(a) + 2m f (n)(b) + m2 f (n)

( a
m2

)]
. (19)

Proof. By putting u = t
2b + (2−t)

2
a
m and v = t

2a + m (2−t)
2 b in (7) where t ∈ [0, 1], and multiplying with

tn− αk −1, then integrating over [0, 1] one can have

f (n)
(
bm + a

2

) ∫ 1

0
tn− αk −1dt ≤h

(
1
2

) (
1 − h

(
1
2

))
×

[{
f (n)

(
t
2

a + m
(2 − t)

2
b
)

dt + m f (n)
(

t
2

b +
(2 − t)

2
a
m

)
dt

}∫ 1

0
tn− αk −1

]
.

By change of variables, as we did to get (8), one can also get

f (n)
(
bm + a

2

)
≤2(n− αk ) kΓk(n − αk + k)

(mb − a)n− αk
h
(
1
2

) (
1 − h

(
1
2

))
×

[(
CDα,k

( a+bm
2 )+

f (mb)
)
+ mn− αk +1(−1)n

(
CDα,k

( a+bm
2m )−

f
( a
m2

))]
. (20)

On the other hand, by using refined modified (h,m)− convexity of f (n), we have

f (n)
(

t
2

a + m
(
2 − t

2
b
))
≤ h

( t
2

) (
1 − h

( t
2

)) [
f (n) (a) + m f (n)(b)

]
.

Multiplying both side by
(
n − αk

) (
h
(

1
2

)) (
1 − h

(
1
2

))
tn− αk −1 and integrating over [0, 1], after some cal-

culation we get

2(n− αk )

(mb − a)n− αk
h
(
1
2

) (
1 − h

(
1
2

))
kΓk

(
n −
α

k
+ k

) (
CDα,k

( a+bm
2 )+

f (mb)
)

≤ h
(
1
2

)
h
( t
2

) (
1 − h

(
1
2

)) (
1 − h

( t
2

)) [
f (n)(a) + m f (n)(b)

]
. (21)
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By using refined modified (h,m)− convexity of f (n), we have

m f (n)
(

t
2

b + m
(
2 − t

2

)
a

m2

)
≤ h

( t
2

) (
1 − h

( t
2

)) [
m f (n)(b) + m2 f (n)

( a
m2

)]
.

Multiplying both side by
(
n − αk

) (
h
(

1
2

)) (
1 − h

(
1
2

))
tn− αk −1 and integrating over [0, 1], after some cal-

culation we get

2(n− αk )mn− αk +1
(
h
(

1
2

)) (
1 − h

(
1
2

))
(mb − a)n− αk

kΓk

(
n −
α

k
+ k

)
(−1)n

(
CDα,k

( a+bm
2m )−

f
( a
m2

))
≤ h

(
1
2

)
h
( t
2

) (
1 − h

(
1
2

)) (
1 − h

( t
2

)) [
m f (n)(b) + m2 f (n)

( a
m2

)]
. (22)

Addition of (21) and (22) yields.

2(n− αk ) kΓk(n − αk + k)

(mb − a)n− αk
h
(
1
2

) (
1 − h

(
1
2

)) [(
CDα,k

( a+bm
2 )+

f (mb)
)
+ mn− αk +1(−1)n

(
CDα,k

( a+bm
2m )−

f
( a
m

))]
≤ h

(
1
2

)
h
( t
2

) (
1 − h

(
1
2

)) (
1 − h

( t
2

)) [
f n(a) + 2m f (n)(b) + m2 f (n)

( a
m2

)]
. (23)

By combining the inequalities (20) and (23), we get the required result.

f (n)
(
bm + a

2

)
≤2(n− αk ) kΓk

(
n − αk + k

)
(mb − a)n− αk

h
(
1
2

) (
1 − h

(
1
2

)) [(
CDα,k

( a+bm
2 )+

f (mb)
)

+mn− αk +1(−1)n
(

CDα,k
( a+bm

2m )−
f
( a
m

))]
≤h

(
1
2

)
h
( t
2

) (
1 − h

(
1
2

)) (
1 − h

( t
2

)) [
f n(a) + 2m f (n)(b) + m2 f (n)

( a
m2

)]
. (24)

□

Corollary 8. By setting k = 1 in inequality (24), the following inequality holds for Caputo fractional
derivatives:

f (n)
(
bm + a

2

)
≤2(n−α)Γ(n − α + 1)

(mb − a)n−α h
(
1
2

) (
1 − h

(
1
2

))
×

[(
CDα( a+bm

2 )+ f (mb)
)
+ mn−α+1(−1)n

(
CDα( a+bm

2m )− f
( a
m

))]
≤h

(
1
2

)
h
( t
2

) (
1 − h

(
1
2

)) (
1 − h

( t
2

)) [
f n(a) + 2m f (n)(b) + m2 f (n)

( a
m2

)]
. (25)

Corollary 9. By setting m = 1 in inequality (24), the following Caputo k−fractional derivatives holds:

f (n)
(
b + a

2

)
≤2(n− αk ) kΓk(n − αk + k)

(b − a)n− αk
h
(
1
2

) (
1 − h

(
1
2

))
×

[(
CDα,k

( a+b
2 )+

f (b)
)
+ mn− αk +1(−1)n

(
CDα,k

( a+b
2 )−

f (a)
)]

≤h
(
1
2

)
h
( t
2

) (
1 − h

(
1
2

)) (
1 − h

( t
2

))
2
[
f n(a) + 2 f (n)(b)

]
. (26)

Corollary 10. By setting m = 1, k = 1 in inequality (24), the following inequality holds for convex
function via Caputo fractional derivatives:

f (n)
(
b + a

2

)
≤2(n−α)Γ(n − α + 1)

(b − a)n−α h
(
1
2

) (
1 − h

(
1
2

)) [(
CDα( a+b

2 )+ f (b)
)
+ (−1)n

(
CDα( a+b

2 )− f (a)
)]

≤h
(
1
2

)
h
( t
2

) (
1 − h

(
1
2

)) (
1 − h

( t
2

))
2
[
f n(a) + f (n)(b)

]
. (27)
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Corollary 11. If we choose “ h” is identity function in (24), the following Caputo k−fractional deriva-
tives inequality holds:

f (n)
(
bm + a

2

)
≤2(n− αk −2) kΓk(n − αk + k)

(mb − a)n− αk

[(
CDα,k

( a+bm
2 )+

f (mb)
)
+ mn− αk +1(−1)n

(
CDα,k

( a+bm
2m )−

f
( a
m

))]
≤2−4t(2 − t)

[
f n(a) + 2m f (n)(b) + m2 f (n)

( a
m2

)]
. (28)

Corollary 12. If we choose “ h” is identity function k = 1 in (24), the following Caputo fractional
derivatives inequality holds:

f (n)
(
bm + a

2

)
≤2(n−α−2)Γ(n − α + 1)

(mb − a)n−α

[(
CDα( a+bm

2 )+ f (mb)
)
+ mn−α+1(−1)n

(
CDα( a+bm

2m )− f
( a
m

))]
≤2−4t(2 − t)

[
f n(a) + 2m f (n)(b) + m2 f (n)

( a
m2

)]
. (29)

Corollary 13. If we choose “ h” is identity function and m = 1 in (24), the following Caputo
k−fractional derivatives inequality holds:

f (n)
(
b + a

2

)
≤2(n− αk −2) kΓk(n − αk + k)

(b − a)n− αk

[(
CDα,k

( a+b
2 )+

f (b)
)
+ (−1)n

(
CDα,k

( a+b
2 )−

f (a)
)]

≤2−3t(2 − t)
[
f n(a) + f (n)(b)

]
. (30)

Corollary 14. If we choose “ h” is identity function and m = 1, k = 1 in (24), the following Caputo
fractional derivatives inequality holds:

f (n)
(
b + a

2

)
≤2(n−α−2)Γ(n − α + 1)

(b − a)n−α

[(
CDα,k

( a+b
2 )+

f (b)
)
+ (−1)n

(
CDα,k

( a+b
2 )−

f (a)
)]

≤2−3t(2 − t)
[
f n(a) + f (n)(b)

]
. (31)

Theorem 4. Let f : [0,∞) → R be a function such that f ∈ ACn[a, b], 0 ≤ a < b. Also let f (n) be
a refined modified (h,m)−convex function on [a,mb] with m ∈ (0, 1]. Then the following inequalities
for Caputo k−fractional derivatives hold:

kΓk(n − αk )

(b − a)n− αk

{
(CDα,ka+ f (b)) + (−1)n(CDα,kb− f (a))

}
≤

[
f (n)(a) + f (n)(b) + m

{
f (n)

( a
m

)
+ f (n)

(
b
m

)}] ∫ 1

0
tn− αk −1h(t)(1 − h(t))dt

≤

[
f (n)(a) + f (n)(b) + m

{
f (n)

( a
m

)
+ f (n)

(
b
m

)}] (∫ 1

0
{h(t)(1 − h(t)}qdt

) 1
q

(
np − αp

k − p + 1
) 1

p

, (32)

where p−1 + q−1 = 1 and p > 1.

Proof. Since f (n) is refined modified (h,m)−convex function on [a,mb] then for m ∈ (0, 1] and t ∈
[0, 1], we have

f (n)(ta+ (1− t)b)+ f (n)((1− t)a+ tb) ≤ h(t)(1−h(t))
[

f (n)(a) + f (n)(b) + m
{

f (n)
( a
m

)
+ f (n)

(
b
m

)}]
.

By multiplying both side of above inequality with tn− αk −1 and integrating the above inequality with
respect to t on [0, 1], we have∫ 1

0
tn− αk −1

{
f (n)(ta + (1 − t)b) + f (n)((1 − t)a + tb)

}
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≤

[
f (n)(a) + f (n)(b) + m

{
f (n)

( a
m

)
+ f (n)

(
b
m

)}] ∫ 1

0
tn− αk −1h(t)(1 − h(t))dt.

If we set x = ta + (1 − t)b in the left side of above inequality, we get the following inequality

kΓk(n − αk )

(b − a)n− αk

{
(CDα,ka+ f (b)) + (−1)n(CDα,kb− f (a))

}
≤

[
f (n)(a) + f (n)(b) + m

{
f (n)

( a
m

)
+ f (n)

(
b
m

)}] ∫ 1

0
tn− αk −1h(t)(1 − h(t))dt. (33)

Thus, we get the first inequality of (32). The second inequality of (32) follows from the fact by using
the Hölder inequality

∫ 1

0
tn− αk −1h(t)(1 − h(t))dt ≤

(∫ 1

0
{h(t)(1 − h(t)}qdt

) 1
q

(
np − αp

k − p + 1
) 1

p

, (34)

and from (33) and (34) we get the required result.

kΓk(n − αk )

(b − a)n− αk

{
(CDα,ka+ f (b)) + (−1)n(CDα,kb− f (a))

}
≤

[
f (n)(a) + f (n)(b) + m

{
f (n)

( a
m

)
+ f (n)

(
b
m

)}] ∫ 1

0
tn− αk −1h(t)(1 − h(t))dt

≤

[
f (n)(a) + f (n)(b) + m

{
f (n)

( a
m

)
+ f (n)

(
b
m

)}] (∫ 1

0
{h(t)(1 − h(t)}qdt

) 1
q

(
np − αp

k − p + 1
) 1

p

.

□

Corollary 15. By setting k = 1 in inequality (32), the following inequalities holds via Caputo frac-
tional derivatives:

Γ(n − α)
(b − a)n−α

{
(CDαa+ f (b)) + (−1)n(CDαb− f (a))

}
≤

[
f (n)(a) + f (n)(b) + m

{
f (n)

( a
m

)
+ f (n)

(
b
m

)}] ∫ 1

0
tn−α−1h(t)(1 − h(t))dt

≤

[
f (n)(a) + f (n)(b) + m

{
f (n)

( a
m

)
+ f (n)

(
b
m

)}] (∫ 1

0
{h(t)(1 − h(t)}qdt

) 1
q

{p(n − α − 1) + 1}
1
p

. (35)

Corollary 16. By setting m = 1 in inequality (32), the following inequality holds via Caputo
k−fractional derivatives:

kΓk(n − αk )

(b − a)n− αk
{(CDα,ka+ f (b)) + (−1)n(CDα,kb− f (a))}

≤ 2
[
f (n)(a) + f (n)(b)

] ∫ 1

0
tn− αk −1h(t)(1 − h(t))dt

≤ 2
[
f (n)(a) + f (n)(b)

] (∫ 1

0
{h(t)(1 − h(t)}qdt

) 1
q

(
np − αp

k − p + 1
) 1

p

.

Utilitas Mathematica Volume 118, 33–49



Muhammad Ajmal, Muhammad Rafaqat and Labeeb Ahmad 44

Corollary 17. By setting m = 1, k = 1 in inequality (32), the following inequality holds via Caputo
fractional derivatives:

Γ(n − α)
(b − a)n−α {(

CDαa+ f (b)) + (−1)n(CDαb− f (a))}

≤ 2
[
f (n)(a) + f (n)(b)

] ∫ 1

0
tn−α−1h(t)(1 − h(t))dt

≤ 2
[
f (n)(a) + f (n)(b)

] (∫ 1

0
{h(t)(1 − h(t)}qdt

) 1
q

{p(n − α − 1) + 1}
1
p

.

4. Establishing Error Estimates of Hadamard-type Inequalities by Utilizing two Integral
Identities

In order to establish error estimates of Hadamard-type inequalities, we first introduce a supporting
lemmas that utilizes two integral identities. These lemmas plays a crucial role in our analysis and
provides a key step towards our main result. Overall, these supporting lemmas serves as an important
foundation for our subsequent analysis of Hadamard-type inequalities.

Lemma 1. [25] Let f : [a,mb] → R be a differentiable mapping on interval (a,mb) with a ≤ mb.If
f ∈ Cn+1[a.mb], then the following equality for Caputo k-fractional integrals holds

f (n)(mb) + f (n)(a)
2

−
kΓk(n − αk + k)

2(mb − a)n− αk

(
(CDα,ka+ f (mb)) + (−1)n(CDα,kmb− f (a))

)
=

mb − a
2

∫ 1

0
((1 − t)n− αk − tn− αk ) f (n+1)(m(1 − t)b + ta)dt.

Theorem 5. Let f : [0,∞) → R be a function such that f ∈ Cn+1[a, b]. If | f (n+1)| is modified (h,m)-
convex function on [a,mb] with m ∈ (0, 1]. Then the following inequality Caputo for k-fractional
derivatives holds:∣∣∣∣∣∣ f (n)(mb) + f (n)(a)

2
−

kΓk(n − αk + k)

2(mb − a)n− αk

(
(CDα,ka+ f (mb)) + (−1)n(CDα,kmb− f (a))

)∣∣∣∣∣∣
≤

mb − a
2


(∣∣∣ f (n+1)(a) + m f (n+1)(b)

∣∣∣)
(np − αp

k + 1)
1
p

(
(1 − 2

αp
k −np−1)

1
p − (2

αp
k −np−1)

1
p
)

×


∫ 1

2

0
{h(t)(1 − h(t))}q


1
q

+

∫ 1

1
2

{h(t)(1 − h(t))}q
 1

q


 . (36)

where p−1 + q−1 = 1.

Proof. From Lemma 1 and by using the property of modulus, we get

f (n)(mb) + f (n)(a)
2

−
kΓk(n − αk + k)

2(mb − a)n− αk

(
(CDα,ka+ f (mb)) + (−1)n(CDα,kmb− f (a))

)
≤

mb − a
2

∫ 1

0
|(1 − t)n− αk − tn− αk |

∣∣∣ f (n+1)(m(1 − t)b + ta)
∣∣∣ dt.

By refined modified (h,m)-convexity of | f (n+1)|, we have∣∣∣∣∣∣ f (n)(mb) + f (n)(a)
2

−
kΓk(n − αk + k)

2(mb − a)n− αk

(
(CDα,ka+ f (mb)) + (−1)n(CDα,kmb− f (a))

)∣∣∣∣∣∣
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≤
mb − a

2


∫ 1

2

0
((1 − t)n− αk − tn− αk )h(t)(1 − h(t))

(
| f (n+1)(a)| + m| f (n+1)(b)|

)
dt

+

∫ 1

1
2

((1 − t)n− αk − tn− αk )h(t)(1 − h(t))
(
| f (n+1)(a)| + m| f (n+1)(b)|

)
dt


=

mb − a
2

(∣∣∣ f (n+1)(a) + m f (n+1)(b)
∣∣∣) ∫ 1

2

0
(1 − t)n− αk h(t)(1 − h(t))dt


−

(∣∣∣ f (n+1)(a) + m f (n+1)(b)
∣∣∣) ∫ 1

2

0
tn− αk h(t)(1 − h(t))dt


+

(∣∣∣ f (n+1)(a) + m f (n+1)(b)
∣∣∣) ∫ 1

1
2

(1 − t)n− αk h(t)(1 − h(t))dt


−
(∣∣∣ f (n+1)(a) + m f (n+1)(b)

∣∣∣) ∫ 1

1
2

tn− αk h(t)(1 − h(t))dt
 .

Now, by using the Hölder’s inequality in the right hand side of above inequality, we get∣∣∣∣∣∣ f (n)(mb) + f (n)(a)
2

−
kΓk(n − αk + k)

2(mb − a)n− αk

(
(CDα,ka+ f (mb)) + (−1)n(CDα,kmb− f (a))

)∣∣∣∣∣∣
≤

mb − a
2

(∣∣∣ f (n+1)(a) + m f (n+1)(b)
∣∣∣) (1 − 2

αp
k −np−1

np − αp
k + 1

) 1
p
∫ 1

2

0
{h(t)(1 − h(t))}q


1
q

−
(∣∣∣ f (n+1)(a) + m f (n+1)(b)

∣∣∣) ( 2
αp
k −np−1

np − αp
k + 1

) 1
p
∫ 1

2

0
{h(t)(1 − h(t))}q


1
q

+
(∣∣∣ f (n+1)(a) + m f (n+1)(b)

∣∣∣) (1 − 2
αp
k −np−1

np − αp
k + 1

) 1
p
∫ 1

1
2

{h(t)(1 − h(t))}q
 1

q

−
(∣∣∣ f (n+1)(a) + m f (n+1)(b)

∣∣∣) ( 2
αp
k −np−1

np − αp
k + 1

) 1
p
∫ 1

1
2

{h(t)(1 − h(t))}q
 1

q

 .
After some calculation we get the desired result.∣∣∣∣∣∣ f (n)(mb) + f (n)(a)

2
−

kΓk(n − αk + k)

2(mb − a)n− αk

(
(CDα,ka+ f (mb)) + (−1)n(CDα,kmb− f (a))

)∣∣∣∣∣∣
≤

mb − a
2


(∣∣∣ f (n+1)(a) + m f (n+1)(b)

∣∣∣)
(np − αp

k + 1)
1
p

(
(1 − 2

αp
k −np−1)

1
p − (2

αp
k −np−1)

1
p
)

×


∫ 1

2

0
{h(t)(1 − h(t))}q


1
q

+

∫ 1

1
2

{h(t)(1 − h(t))}q
 1

q


 .

□

Corollary 18. By setting k = 1 in inequality (36), the following Caputo fractional derivatives in-
equality holds: ∣∣∣∣∣∣ f (n)(mb) + f (n)(a)

2
−
Γ(n − α + 1)
2(mb − a)n−α

(
(CDαa+ f (mb)) + (−1)n(CDαmb− f (a))

)∣∣∣∣∣∣
≤

mb − a
2


(∣∣∣ f (n+1)(a) + m f (n+1)(b)

∣∣∣)
(np − αp + 1)

1
p

(
(1 − 2αp−np−1)

1
p − (2αp−np−1)

1
p
)
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×


∫ 1

2

0
{h(t)(1 − h(t))}q


1
q

+

∫ 1

1
2

{h(t)(1 − h(t))}q
 1

q


 .

Corollary 19. By setting m = 1 in inequality (36), the following Caputo k−fractional derivatives
inequality holds: ∣∣∣∣∣∣ f (n)(b) + f (n)(a)

2
−

kΓk(n − αk + k)

2(b − a)n− αk

(
(CDα,ka+ f (b)) + (−1)n(CDα,kb− f (a))

)∣∣∣∣∣∣
≤

b − a
2


(∣∣∣ f (n+1)(a) + f (n+1)(b)

∣∣∣)
(np − αp

k + 1)
1
p

(
(1 − 2

αp
k −np−1)

1
p − (2

αp
k −np−1)

1
p
)

×


∫ 1

2

0
{h(t)(1 − h(t))}q


1
q

+

∫ 1

1
2

{h(t)(1 − h(t))}q
 1

q


 .

Corollary 20. By setting k = 1 and m = 1 in inequality (36), the following holds for convex function
via Caputo fractional derivatives:∣∣∣∣∣∣ f (n)(b) + f (n)(a)

2
−
Γ(n − α + 1)
2(b − a)n−α

(
(CDαa+ f (b)) + (−1)n(CDαb− f (a))

)∣∣∣∣∣∣
≤

b − a
2


(∣∣∣ f (n+1)(a) + f (n+1)(b)

∣∣∣)
(np − αp + 1)

1
p

(
(1 − 2αp−np−1)

1
p − (2αp−np−1)

1
p
)

×


∫ 1

2

0
{h(t)(1 − h(t))}q


1
q

+

∫ 1

1
2

{h(t)(1 − h(t))}q
 1

q


 .

Lemma 2. [25] Let f : [a,mb] → R be a differentiable mapping on interval (a,mb) with a ≤ mb. If
f ∈ Cn+2[a.mb], then the following equality for Caputo k-fractional integrals holds:

f (n)(a) + f (n)(mb)
2

−
kΓk(n − αk + k)

2(mb − a)n− αk

(
(CDα,ka+ f (mb)) + (−1)n(CDα,kmb− f (a))

)
=

(mb − a)2

2

∫ 1

0

1 − (1 − t)n− αk +1 − tn− αk +1

n − αk + 1
f (n+2)(ta + m(1 − t)b)dt.

Theorem 6. Let f : [0,∞) → R be a function such that f ∈ Cn+2[a, b]. If | f (n+2)| is modified (h,m)-
convex function on [a,mb] with m ∈ (0, 1]. Then the following inequality Caputo for k-fractional
derivatives holds:∣∣∣∣∣∣ f (n)(a) + f (n)(mb)

2
−

kΓk(n − αk + k)

2(mb − a)n− αk

(
(CDα,ka+ f (mb)) + (−1)n(CDα,kmb− f (a))

)∣∣∣∣∣∣
≤

(mb − a)2

2(n − αk + 1)

(∣∣∣ f (n+2)(a)
∣∣∣ + m

∣∣∣ f (n+2)(b)
∣∣∣) (1 − 2

p(α + 1) + 1

) 1
p
(∫ 1

0
{h(t)(1 − h(t))}q dt

) 1
q

.(37)

Proof. Using Lemma 2 and refined modified (h,m)-convexity of | f (n+2)|, we find □

∣∣∣∣∣∣ f (n)(a) + f (n)(mb)
2

−
kΓk(n − αk + k)

2(mb − a)n− αk

(
(CDα,ka+ f (mb)) + (−1)n(CDα,kmb− f (a))

)∣∣∣∣∣∣
≤

(mb − a)2

2

∫ 1

0

1 − (1 − t)n− αk +1 − tn− αk +1

n − αk + 1

∣∣∣ f (n+2)(ta + m(1 − t)b)
∣∣∣ dt
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≤
(mb − a)2

2

∫ 1

0

1 − (1 − t)n− αk +1 − tn− αk +1

n − αk + 1

{
h(t)(1 − h(t))

(∣∣∣ f (n+2)(a)
∣∣∣ + m

∣∣∣ f (n+2)(b)
∣∣∣)} dt

=
(mb − a)2

2(n − αk + 1)

{(∣∣∣ f (n+2)(a)
∣∣∣ + m

∣∣∣ f (n+2)(b)
∣∣∣) ∫ 1

0
(1 − (1 − t)n− αk +1 − tn− αk +1)h(t)(1 − h(t))dt

}
.

Now, by using Hölder inequality, we have∫ 1

0
(1 − (1 − t)n− αk +1 − tn− αk +1)h(t)dt ≤

(
1 −

2
p(α + 1) + 1

) 1
p
(∫ 1

0
{h(t)(1 − h(t))}q dt

) 1
q

.

This implies∣∣∣∣∣∣ f (n)(a) + f (n)(mb)
2

−
kΓk(n − αk + k)

2(mb − a)n− αk

(
(CDα,ka+ f (mb)) + (−1)n(CDα,kmb− f (a))

)∣∣∣∣∣∣
≤

(mb − a)2

2(n − αk + 1)

(∣∣∣ f (n+2)(a)
∣∣∣ + m

∣∣∣ f (n+2)(b)
∣∣∣) (1 − 2

p(α + 1) + 1

) 1
p
(∫ 1

0
{h(t)(1 − h(t))}q dt

) 1
q

.

Corollary 21. By setting k = 1 in inequality (37), the following Caputo fractional derivatives in-
equality holds:∣∣∣∣∣∣ f (n)(a) + f (n)(mb)

2
−
Γ(n − α + 1)
2(mb − a)n−α

(
(CDαa+ f (mb)) + (−1)n(CDαmb− f (a))

)∣∣∣∣∣∣
≤

(mb − a)2

2(n − α + 1)

(∣∣∣ f (n+2)(a)
∣∣∣ + m

∣∣∣ f (n+2)(b)
∣∣∣) (1 − 2

p(α + 1) + 1

) 1
p
(∫ 1

0
{h(t)(1 − h(t))}q dt

) 1
q

.

Corollary 22. By setting m = 1 in inequality (37), the following Caputo k−fractional derivatives
inequality holds:∣∣∣∣∣∣ f (n)(a) + f (n)(b)

2
−

kΓk(n − αk + k)

2(b − a)n− αk

(
(CDα,ka+ f (b)) + (−1)n(CDα,kb− f (a))

)∣∣∣∣∣∣
≤

(b − a)2

2(n − αk + 1)

(∣∣∣ f (n+2)(a)
∣∣∣ + ∣∣∣ f (n+2)(b)

∣∣∣) (1 − 2
p(α + 1) + 1

) 1
p
(∫ 1

0
{h(t)(1 − h(t))}q dt

) 1
q

.

Corollary 23. By setting k = 1 and m = 1 in inequality (37), the following inequality holds for convex
function via Caputo fractional derivatives:∣∣∣∣∣∣ f (n)(a) + f (n)(b)

2
−
Γ(n − α + 1)
2(b − a)n−α

(
(CDαa+ f (b)) + (−1)n(CDαb− f (a))

)∣∣∣∣∣∣
≤

(b − a)2

2(n − α + 1)

(∣∣∣ f (n+2)(a)
∣∣∣ + ∣∣∣ f (n+2)(b)

∣∣∣) (1 − 2
p(α + 1) + 1

) 1
p
(∫ 1

0
{h(t)(1 − h(t))}q dt

) 1
q

.

5. Conclusions

In conclusion, this paper has presented new refinements and special cases of the Hadamard inequal-
ity for modified (h,m)−convex functions using the Caputo k−fractional derivatives. In particular, we
have shown that the Hadamard inequality holds for these classes of functions with greater generality
than previously established in the literature. Furthermore, we have provided a detailed analysis of
the error estimates of Hadamard-type inequalities using two integral identities, which allows us to
obtain precise upper bounds for the errors. We have also shown that these results hold for arbitrary
order derivatives of function f , which greatly expands the scope of our analysis. The significance
of these results lies in their potential applications in various fields such as finance, engineering, and
physics. Specifically, our refinements of the Hadamard inequality and error estimates can be used to
derive more accurate estimates and bounds in optimization problems, as well as in the modeling and
analysis of various physical and engineering systems.
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