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Abstract: We investigate the Sombor indices for a diverse group of nonsteroidal anti-inflammatory
drugs (NSAIDs) to understand their molecular architecture and physicochemical properties. By utiliz-
ing quantitative structure-property relationship (QSPR) modeling, we establish mathematical models
linking Sombor indices to key pharmacodynamic and toxicological parameters. Our study sheds light
on how the molecular composition of NSAIDs influences their drug profiles and biological behavior,
offering valuable insights for drug development and safety assessment.
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1. Introduction

Painkillers are widely used to alleviate acute and chronic pain. While acute pain often dissi-
pates when the underlying cause is addressed, chronic pain can persist, leading to prolonged reliance
on opioids [1]. However, prolonged or excessive use of opioids can have detrimental effects on
health. The human body contains numerous nerves responsible for transmitting messages between
body parts, with nerve endings located primarily in the skin, gastrointestinal system, and connective
tissues. Painkillers, or analgesics, act through two primary mechanisms: inhibiting the release of
prostaglandins to prevent pain signals from reaching the brain, or disrupting communication between
nerves to block pain signals [2]. These mechanisms provide temporary relief from pain. Painkillers
are broadly categorized into non-prescription (over-the-counter) and prescription medications, with
varying efficacy in pain reduction:

• Nonsteroidal anti-inflammatory drugs (NSAIDs);
• Non-opioid analgesics;
• Opioid analgesics;
• Combination analgesics.

This study focuses on NSAIDs, which, despite their widespread use, may not be suitable for ev-
eryone and can sometimes cause adverse effects [3]. NSAID gels and creams applied to the skin
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may offer localized relief with fewer side effects compared to oral formulations. Chemical graph the-
ory, a branch of mathematical chemistry, deals with chemical graphs that represent molecular struc-
tures [4–6]. Topological indices, a key tool in chemical graph theory, bridge mathematical concepts
with chemistry [7–9]. In this study, we employ topological indices to analyze a variety of pharmaceu-
ticals, developing unique indicators based on node degrees to characterize their chemical properties
and processes.

Chemists and pharmacists can utilize graph theory resources for further research, including Quanti-
tative Structure-Activity/Property/Toxicity Relationship (QSAR/QSPR/QSTR) modeling, which pre-
dicts biological activity based on molecular structure [10]. Husin et al. provided a topological analysis
of certain networks [11]. Recent research has focused on pharmaceutical topological indices and their
use in QSAR modeling [12]. Chemical compounds are often represented as vertices on a graph, with
edges denoting bonds between them. NSAID drugs under investigation in this study are treated as
chemical compounds, and topological indices are defined accordingly. Regression analysis demon-
strates a strong correlation between obtained features and NSAID characteristics.

In chemistry, valence and degree in graph theory are related concepts. Quantitative Structure-
Property Relationship (QSPR) plays a crucial role in drug design by providing a cost-effective alter-
native to traditional experimental testing methods [13–15]. QSAR models are increasingly used in
environmental toxicity assessment and drug development to predict toxicity, resistance, and physico-
chemical properties [13–15]. In theoretical chemistry, drugs are represented as molecular networks,
with edges representing bonds between atoms and vertices representing atoms [13–15].

Experimental determinations in chemistry can be costly, but QSPR modeling research can help
reduce these costs by providing insights into biological processes and structural facets. QSPR and
QSAR techniques enable the construction of accurate models predicting the characteristics or actions
of organic molecules [16–18]. However, developing realistic models requires an approach capable
of encoding predicted molecular structure descriptors effectively. Descriptor-based modeling allows
researchers to pinpoint specific traits influencing the activity or property of interest in compounds
[19, 20].

2. Material and Methods

In this study, we employed a rigorous methodology to compute Sombor indices and develop Quan-
titative Structure-Property Relationship (QSPR) models for the molecular graph of NSAID drugs [3],
as illustrated in Figure 59. Initially, we collected a comprehensive dataset of NASID drugs, namely
Ketorolac, Diclofenac, Naproxen, Ibuprofen, Meloxicam, Nabumetone, Indomethacin, Famotidine,
Etodolac, and Piroxicam, from reliable sources (see Table 1) and meticulously preprocessed the data.
Sombor indices were then calculated using established mathematical methods (edge partition tech-
nique) and Maple software, yielding a set of descriptors. Subsequently, we partitioned the dataset
into distinct training, validation, and test subsets for model development and assessment. QSPR mod-
els were constructed employing regression model techniques with defined algorithms and executed
using SPSS. Furthermore, external validation on an independent dataset was conducted to ensure the
generalizability of the regression models. The interpretation of model findings and statistical analyses
were integral parts of our methodology. To enhance reproducibility, the availability of code and data
was maintained. This methodology ensures the robustness of our Sombor index-based QSPR mod-
eling for NSAID drugs with properties namely, boiling point (BP), polarity (Pol), complexity (C),
refractivity (R), and molecular weight (MW).
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Figure 1. Molecular Graphs of NASID Drugs
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Drugs Bp Pol C R MW MV
Ketorolac 493.2 26.67 376 70.19 83.1 198.2
Diclofenac 412 27.93 304 75.46 73.1 209.8
Naproxen 403.9 24.81 277 64.85 72.1 195.3
Ibuprofen 157 23.76 203 60.73 62.4 203.3

Meloxicam 581.3 34.25 628 88.62 83.5 220.7
Nabumetone 372.3 26.17 262 68.43 64.3 213.5
Indomethacin 499.4 36.64 506 94.81 83.3 275.6
Famotidine 662.4 31.66 469 80.46 100.3 191.7
Etodolac 507.9 31.66 400 80.46 84.9 248.3

Piroxicam 568.5 32.27 611 87.04 91.3 229.8

Table 1. Different Nsaids and their Physical and Chemical Properties

3. Sombor Indices and Computational Results

Numerous degree-based graph invariants, also known as ”topological indices,” have been presented
and thoroughly investigated in the mathematical and chemical literature [19, 20]. Generally,

T I(G) =
∑

i j∈E(G)

F(di, d j). (1)

Here, F(x, y) represents a function having commutative property, i.e., F(x, y) = F(y, x).
Sombor and reduced Sombor index [21] are given by

S O(G) =
∑

i j∈E(G)

√
d2

i + d2
j , (2)

S Ored(G) =
∑

uvϵE(G)

√
(di − 1)2 + (d j − 1)2. (3)

In Eq. (2), the ordered pair (x, y), where x = di, y = d j, a ≥ b, known as the degree-coordinate
of the edge i j ∈ E(G), are expressed by a point degree in a 2D coordinate system, see Figure 2. On
the other hand, the dual point degree refers to the coordinates (b, a) pertaining to the edge i j. The
distance, assuming Euclidean metrics, between the origin (O) and the degree-point of the edge i j is√

d2
i + d2

j (represented by A in Figure 2).

Figure 2. A Geometric Representation of Edge I j
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Kulli and Gutman presented the modified Sombor index [22], as follows:

mS Ored(G) =
∑

uvϵE(G)

1√
d2

i + d2
j

.

Mendez-Bermudez et al. presented max and min Sombor indices [23]:

maxS O(G) =
∑

i jϵE(G)

max(di, d j),

minS O(G) =
∑

i jϵE(G)

min(di, d j).

Wang and Wu in [24] introduced the ideas of exponential and exponential reduced Sombor indices:

eS O(G) =
∑

i jϵE(G)

e
√

d2
i +d2

j ,

eS Ored(G) =
∑

i jϵE(G)

e
√

(di−1)2+(d j−1)2
.

Author introduced the idea of the multiplicative version of Sombor indices:

MS O(G) =
∏

i jϵE(G)

√
d2

i + d2
j ,

MS Ored(G) =
∏

i jϵE(G)

√
(di − 1)2 + (d j − 1)2.

Theorem 1. Let G be the graph of Indomethacin. Sombor indices for G are given as follows:

• S O(G) = 95.8923.
• S Ored(G) = 59.6384.
• mS O(G) = 7.7898.
• maxS O(G) = 77.
• minS O(G) = 55.
• eS O(G) = 1070.1959.
• eS Ored(G) = 273.3562.
• MS O(G) = 235574.7015.
• MS Ored(G) = 20661.2691.

Proof. Let G be the graph of Indomethacin with edge set E. Let Em,n be edges in G such that |E1,2| = 1,
|E1,3| = 5, |E2,2| = 3, |E2,3| = 11, and |E3,3| = 7. By applying the definitions, we obtain the following
result:

S O(G) =
∑

uv∈E(G)

√
d2

u + d2
v

= (1)
√

1 + 4 + (5)
√

1 + 9 + (3)
√

4 + 4

+ (11)
√

4 + 9 + (7)
√

9 + 9
= 95.8923.

Similarly, the other indices can be computed. □

Theorem 2. Let G be the graph of Famotidine. Sombor indices for G are

• S O(G) = 70.0920.
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Figure 3. 3D Graph of NSAID Drugs with Sombor Indices

• S Ored(G) = 43.9437.
• mS O(G) = 5.8103.
• maxS O(G) = 60.
• minS O(G) = 34.
• eS O(G) = 742.5617.
• eS Ored(G) = 206.7093.
• MS O(G) = 258486.2172.
• MS Ored(G) = 137384.0165.

Proof. Let G be the graph of Famotidine with edge set E. Let Em,n be edges in G such that |E1,3| = 3,
|E1,4| = 4, |E2,2| = 4, |E2,3| = 9, and |E2,4| = 1. The proof is straightforward by applying the
definitions. □

Topological indices for other drugs can be computed using similar procedures. Table ?? includes
all computed values of NSAID drugs for different versions of Sombor indices. Figures 3 and 4 depict
2D and 3D graphical representations of calculated TIs for various NSAID drugs.

Drugs SO(G) S Ored(G) mSO(G) maxSO(G) minSO(G) eS O(G) eS Ored(G) MSO(G) MS Ored(G)
Ketorolac 73.53 44.87 6.148 57 45 810.74 204.49 88660.04 11591.78
Diclofenac 68.36 41.44 5.95 55 39 682.28 175.73 65674.10 8586.50
Naproxen 62.55 38.43 5.30 51 35 654.05 168.07 49562.47 2897.94
Ibuprofen 48.48 28.61 4.73 27 39 432.42 114.17 16418.53 2146.63

Meloxicam 92.27 58.90 6.96 75 51 1224.87 319.23 7220833.86 495345.12
Nabumetone 56.08 32.85 5.32 45 33 523.10 132.37 7739.77 715.55
Indomethacin 95.89 59.64 7.79 77 55 1070.20 273.36 235574.70 20661.27
Famotidine 70.09 43.94 5.81 60 34 742.56 206.71 258486.22 19440
Etodolac 82.99 53.39 5.26 68 46 1039.67 276.30 2101571.34 137384.02

Piroxicam 73.40 56.67 7.15 72 52 1178.40 271.29 7108008.33 487605.34

Table 2. Topological Indices of NSAID Drugs

4. Regression Model and Structure Analysis

Regression models (RM) are statistical techniques used to analyze and model the relationship be-
tween a dependent variable and one or more independent variables. Common types of regression
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Figure 4. 2D Graph of NSAID Drugs with Sombor Indices

models include linear regression, logistic regression, and polynomial regression, each suited to differ-
ent types of data and research questions. Here, we will use liner regression model, Eq. (4), to check
the relationship between topological indices and the physiochemical features of NSAIDs.

P = A + b(T I), (4)

where, P stands for the NSAID’s characteristic. TI is an independent variable, a and b are regression
confident. SPSS is used to find these constants. A linear regression model is used to analyze nine TIs
for NSAID and their properties.

4.1. Regression Models for S O(G)

BP = 1.480 + 6.416[S O(G)],
POL = 10.803 + 0.266[S O(G)],

C = −156.10 + 7.734[S O(G)],
R = 29.043 + 0.660[S O(G)],

MW = 45.776 + 0.471[S O(G)],
MV = 116.383 + 1.482[S O(G)].

4.2. Regression Models for S Ored(G)

BP = 31.066 + 9.476[S Ored(G)],
POL = 13.043 + 0.361[S Ored(G)],

C = −154.500 + 12.166[S Ored(G)],
R = 33.736 + 0.945[S Ored(G)],

MW = 45.621 + 0.746[S Ored(G)],
MV = 143.342 + 1.641[S Ored(G)].
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4.3. Regression Models for mS O(G)

BP = −44.356 + 84.433[mS O(G)],
POL = 7.832 + 3.5997[mS O(G)],

C = −346.319 + 124.118[mS O(G)],
R = 17.141 + 9.924[mS O(G)],

MW = 41.759 + 6.301[mS O(G)],
MV = 155.129 + 11.336[mS O(G)].

4.4. Regression Models for maxS O(G)

BP = 76.044 + 7.5955[maxS O(G)],
POL = 14.796 + 0.207[maxS O(G)],

C = −92.3505 + 8.4489[maxS O(G)],
R = 37.7846 + 0.6698[maxS O(G)],

MW = 46.9939 + 0.5594[maxS O(G)],
MV = 148.4177 + 1.2811[maxS O(G)].

4.5. Regression Models for minS O(G)

BP = 203.1737 + 6.1216[minS O(G)],
POL = 12.5278 + 0.3975[minS O(G)],

C = −179.2887 + 13.5871[minS O(G)],
R = 31.3886 + 1.0657[minS O(G)],

MW = 55.7063 + 0.5623[minS O(G)],
MV = 106.4717 + 2.7307[minS O(G)].

4.6. Regression Models for eS O(G)

BP = 203.1737 + 6.1216[eS O(G)],
POL = 12.5278 + 0.3975[eS O(G)],

C = −7.1468 + 0.4914[eS O(G)],
R = 47.6308 + 0.0353[eS O(G)],

MW = 56.2138 + 0.0283[eS O(G)],
MV = 162.3887 + 0.0733[eS O(G)].

4.7. Regression Models for MS O(G)

BP = 428.0.00002187[MS O(G)],
POL = 28.28879 + 0.00000075395[MS O(G)],
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C = 335.0675 + 0.00003955[MS O(G)],
R = 73.485 + 0.00000211[MS O(G)],

MW = 77.0994 + 0.000001592[MS O(G)],
MV = 215.1036 + 0.000002050[MS O(G)].

4.8. Regression Models for MS Ored(G)

BP = 426.2931 + 0.00031887[MS Ored(G)],
POL = 28.27 + 0.0000111[MS Ored(G)],

C = 334.7768 + 0.0005853[MS Ored(G)],
R = 73.4472 + 0.000031105[MS Ored(G)],

MW = 77.10405 + 0.00002318[MS Ored(G)],
MV = 215.0691 + 0.0000302[MS Ored(G)].

Tables 3-11 represent different attributes of liner regression model used to determine the correlation
coefficient, coefficient of determination and coefficient of variance. Figures 5-58, represents the liner
regression between the observed value and exact value for different properties of NSAID.

Property N A b r r2 S
Boiling Point 9 1.480 6.416 0.685 0.469 0.394

Polarity 9 10.803 0.260 0.902 0.814 -1.477
Complexity 9 -156.10 7.734 0.787 0.619 5.652
Refractivity 9 29.043 0.660 0.891 0.794 -1.543

Molecular Weight 9 45.776 0.471 0.595 0.354 0.253
Molecular Volume 9 116.383 1.482 0.621 0.386 -0.643

Table 3. Parameters of RM for S O(G)

Property N A b r r2 S
Boiling Point 9 31.066 9.476 0.740 0.548 -2.760

Polarity 9 13.043 0.361 0.917 0.841 -1.137
Complexity 9 -154.500 12.166 0.905 0.819 -1.043
Refractivity 9 33.736 0.945 0.932 0.869 -1.210

Molecular Weight 9 45.621 0.746 0.690 0.476 0.294
Molecular Volume 9 143.342 1.641 0.680 0.462 -0.800

Table 4. Parameters of RM for S Ored(G)

Property N A b r r2 S
Boiling Point 9 -44.356 84.433 0.219 0.048 0.439

Polarity 9 7.832 3.600 0.817 0.667 -1.729
Complexity 9 -346.319 124.118 0.823 0.677 -0.706
Refractivity 9 17.141 9.924 0.873 0.762 -1.727

Molecular Weight 9 41.759 6.301 0.520 0.270 0.327
Molecular Volume 9 155.129 11.336 0.310 0.096 0.857

Table 5. Parameters of RM for mS O(G)
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Property N A b r r2 S
Boiling Point 9 19.934 7.596 0.834 0.696 0.182

Polarity 9 14.670 0.254 0.908 0.824 -1.160
Complexity 9 -92.351 8.449 0.884 0.781 -1.303
Refractivity 9 37.784 0.670 0.928 0.861 -1.163

Molecular Weight 9 46.994 0.559 0.727 0.552 0.014
Molecular Volume 9 148.418 1.128 0.552 0.305 0.555

Table 6. Parameters of RM for maxS O(G)

Property N A b r r2 S
Boiling Point 9 203.174 6.122 0.350 0.123 1.234

Polarity 9 12.528 0.398 0.740 0.548 -1.454
Complexity 9 -179.289 13.587 0.740 0.548 -1.726
Refractivity 9 31.389 1.066 0.753 0.567 -1.452

Molecular Weight 9 55.706 0.563 0.381 0.145 1.212
Molecular Volume 9 106.4717 2.731 0.613 0.376 -0.313

Table 7. Parameters of RM for minS O(G)

Property N A b r r2 S
Boiling Point 9 203.174 6.122 0.717 0.514 0.595

Polarity 9 12.528 0.398 0.859 0.738 -0.778
Complexity 9 -7.147 0.491 0.924 0.854 -1.197
Refractivity 9 47.631 0.035 0.879 0.773 -0.777

Molecular Weight 9 56.214 0.028 0.661 0.437 0.457
Molecular Volume 9 162.389 0.073 0.568 0.323 -0.691

Table 8. Parameters of RM for eS O(G)

Property N A b r r2 S
Boiling Point 9 138.618 1.528 0.759 0.576 0.3555

Polarity 9 17.638 0.056 0.820 0.672 -0.796
Complexity 9 -15.250 1.956 0.902 0.814 -1.369
Refractivity 9 46.328 0.144 0,822 0.676 -0.799

Molecular Weight 9 54.372 0.119 0.695 0.483 0.219
Molecular Volume 9 157.782 0.307 0.523 0.274 -0.867

Table 9. Parameters of RM for eS Ored(G)

Property N A b r r2 S
Boiling Point 9 428.280 0.00003 0.458 0.235 0.565

Polarity 9 28.289 0.0000008 0.515 0.265 0.537
Complexity 9 335.068 0.00004 0.798 0.637 -1.459
Refractivity 9 73.485 0.000002 0.558 0.311 0.683

Molecular Weight 9 77.099 0.000002 0.395 0.156 0.518
Molecular Volume 9 215.104 0.0000002 0.189 0.036 -0.102

Table 10. Parameters of RM for MS O(G)
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Property N A b r r2 S
Boiling Point 9 426.293 0.0003 0.460 0.212 0.612

Polarity 9 28.27 0.00001 0.517 0.267 0.565
Complexity 9 334.777 0.0006 0.801 0.642 -1.498
Refractivity 9 73.447 0.00003 0.562 0.316 0.568

Molecular Weight 9 77.104 0.00002 0.397 0.158 0.561
Molecular Volume 9 215.069 0.00003 0.182 0.033 -0.073

Table 11. Parameters of RM for MS Ored(G)

Figure 5. Linear Regression Model for Boiling Point of NSAIDS Drugs and Observed
Values from So(g)

Figure 6. Linear Regression Model for Polarity of NSAIDS Drugs and Observed Values
from SO(G)
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Figure 7. Linear Regression Model for Complexity of NSAIDS Drugs and Observed Values
from SO(G)

Figure 8. Linear Regression Model for Refractivity of NSAIDS Drugs and Observed Values
from SO(G)

Figure 9. Linear Regression Model for Molar Weight of NSAIDS Drugs and Observed
Values from SO(G)
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Figure 10. Linear Regression Model for Molar Volume of NSAIDS Drugs and Observed
Values from SO(G)

Figure 11. Linear Regression Model for Boiling Point of NSAIDS Drugs and Observed
Values from S Ored(G)

Figure 12. Linear Regression Model for Polarity of NSAIDS Drugs and Observed Values
from S Ored(G)
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Figure 13. Linear Regression Model for Complexity of NSAIDS Drugs and Observed
Values from S Ored(G)

Figure 14. Linear Regression Model for Refractivity of NSAIDS Drugs and Observed
Values from S Ored(G)

Figure 15. Linear Regression Model for Molar Weight of NSAIDS Drugs and Observed
Values from S Ored(G)
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Figure 16. Linear Regression Model for Molar Volume of NSAIDS Drugs and Observed
Values from S Ored(G)

Figure 17. Linear Regression Model for Boiling Point of NSAIDS Drugs and Observed
Values from mS O(G)

Figure 18. Linear Regression Model for Polarity of NSAIDS Drugs and Observed Values
from mS O(G)
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Figure 19. Linear Regression Model for Complexity of NSAIDS Drugs and Observed
Values from mS O(G)

Figure 20. Linear Regression Model for Refractivity of NSAIDS Drugs and Observed
Values from mS O(G)

Figure 21. Linear Regression Model for Molar Weight of NSAIDS Drugs and Observed
Values from mS O(G)
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Figure 22. Linear Regression Model for Molar Volume of NSAIDS Drugs and Observed
Values from mS O(G)

Figure 23. Linear Regression Model for Boiling Point of NSAIDS Drugs and Observed
Values from maxS O(G)

Figure 24. Linear Regression Model for Polarity of NSAIDS Drugs and Observed Values
from maxS O(G)
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Figure 25. Linear Regression Model for Complexity of NSAIDS Drugs and Observed
Values from maxS O(G)

Figure 26. Linear Regression Model for Refractivity of NSAIDS Drugs and Observed
Values from maxS O(G)

Figure 27. Linear Regression Model for Molar Weight of NSAIDS Drugs and Observed
Values from maxS O(G)
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Figure 28. Linear Regression Model for Molar Volume of NSAIDS Drugs and Observed
Values from maxS O(G)

Figure 29. Linear Regression Model for Boiling Point of NSAIDS Drugs and Observed
Values from minS O(G)

Figure 30. Linear Regression Model for Polarity of NSAIDS Drugs and Observed Values
from minS O(G)
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Figure 31. Linear Regression Model for Complexity of NSAIDS Drugs and Observed
Values from minS O(G)

Figure 32. Linear Regression Model for Refractivity of NSAIDS Drugs and Observed
Values from minS O(G)

Figure 33. Linear Regression Model for Molar Weight of NSAIDS Drugs and Observed
Values from minS O(G)

Utilitas Mathematica Volume 119, 83–116



Decoding Nonsteroidal Anti-inflammatory Drugs with Sombor Invariants 103

Figure 34. Linear Regression Model for Molar Volume of NSAIDS Drugs and Observed
Values from minS O(G)

Figure 35. Linear Regression Model for Boiling Point of NSAIDS Drugs and Observed
Values from eS O(G)

Figure 36. Linear Regression Model for Polarity of NSAIDS Drugs and Observed Values
from eS O(G)
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Figure 37. Linear Regression Model for Complexity of NSAIDS Drugs and Observed
Values from eS O(G)

Figure 38. Linear Regression Model for Refractivity of NSAIDS Drugs and Observed
Values from eS O(G)

Figure 39. Linear Regression Model for Molar Weight of NSAIDS Drugs and Observed
Values from eS O(G)
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Figure 40. Linear Regression Model for Molar Volume of NSAIDS Drugs and Observed
Values from eS O(G)

Figure 41. Linear Regression Model for Boiling Point of NSAIDS Drugs and Observed
Values from eS Ored(G)

Figure 42. Linear Regression Model for Polarity of NSAIDS Drugs and Observed Values
from eS Ored(G)
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Figure 43. Linear Regression Model for Complexity of NSAIDS Drugs and Observed
Values from eS Ored(G)

Figure 44. Linear Regression Model for Refractivity of NSAIDS Drugs and Observed
Values from eS Ored(G)

Figure 45. Linear Regression Model for Molar Weight of NSAIDS Drugs and Observed
Values from eS Ored(G)
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Figure 46. Linear Regression Model for Molar Volume of NSAIDS Drugs and Observed
Values from eS Ored(G)

Figure 47. Linear Regression Model for Boiling Point of NSAIDS Drugs and Observed
Values from MS O(G)

Figure 48. Linear Regression Model for Polarity of NSAIDS Drugs and Observed Values
from MS O(G)
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Figure 49. Linear Regression Model for Complexity of NSAIDS Drugs and Observed
Values from MS O(G)

Figure 50. Linear Regression Model for Refractivity of NSAIDS Drugs and Observed
Values from MS O(G)

Figure 51. Linear Regression Model for Molar Weight of NSAIDS Drugs and Observed
Values from MS O(G)
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Figure 52. Linear Regression Model for Molar Volume of NSAIDS Drugs and Observed
Values from MS O(G)

Figure 53. Linear Regression Model for Boiling Point of NSAIDS Drugs and Observed
Values from MS Ored(G)

Figure 54. Linear Regression Model for Polarity of NSAIDS Drugs and Observed Values
from MS Ored(G)
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Figure 55. Linear Regression Model for Complexity of NSAIDS Drugs and Observed
Values from MS Ored(G)

Figure 56. Linear Regression Model for Refractivity of NSAIDS Drugs and Observed
Values from MS Ored(G)

Figure 57. Linear Regression Model for Molar Weight of NSAIDS Drugs and Observed
Values from MS Ored(G)
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Figure 58. Linear Regression Model for Molar Volume of NSAIDS Drugs and Observed
Values from MS Ored(G)

5. Correlation Coefficients of Sombor Indices with Properties of NSAIDS Drugs

The correlation coefficient plays a pivotal role in the analysis of the relationship between the prop-
erties of NSAID and their linear regression models. These coefficients are not only valuable for
characterizing these relationships but also for building predictive linear regression models. Gutman,
gives the capacitative text by which we can check the validity of an index. According to Gutman, an
index with specific property of a drug in useful, if its correlation coefficient is greater then 0.8, other-
wise index is useless for us [25]. Table 14 represents the Correlation Coefficients of Sombor indices
with Properties of NSAIDS in tabular form and Figures 59–64 represents graphical representation. ,
Table 12 and 13, represents the coefficient determination and coefficient of variance, respectively.

Topological Index Bp Pol C R MW MV
S O(G) 0.469 0.814 0.619 0.794 0.354 0.386

S Ored(G) 0.548 0.841 0.819 0.819 0.476 0.462
mS O(G) 0.048 0.667 0.677 0.762 0.270 0.096

maxS O(G) 0.696 0.824 0.781 0.861 0.552 0.305
minS O(G) 0.123 0.548 0.548 0.567 0.145 0.376

eS O(G) 0.514 0.0.738 0.854 0.773 0.437 0.323
eS Ored(G) 0.576 0.672 0.814 0.676 0.483 0.274

MS O(G) 0.235 0.265 0.647 0.311 0.156 0.036
MS Ored(G) 0.267 0.517 0.646 0.316 0.158 0.033

Table 12. Coefficient of Determination
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Topological Index Bp Pol C R MW MV
S O(G) 19.632 19.632 19.632 19.632 19.632 19.632

S Ored(G) 22.652 22.652 22.652 22.652 22.652 22.652
mS O(G) 15.252 15.252 15.252 15.252 15.252 15.252

maxS O(G) 24.887 24.887 24.887 24.887 24.887 24.887
minS O(G) 17.736 17.736 17.736 17.736 17.736 17.736

eS O(G) 31.450 31.450 31.450 31.450 31.450 31.450
eS Ored(G) 30.298 30.298 30.298 30.298 30.298 30.298

MS O(G) 162.592 162.592 162.592 162.592 162.592 162.592
MS Ored(G) 160.429 160.429 160.429 160.429 160.429 160.429

Table 13. Coefficient of Vaiance

Figure 59. Graphical Representation of Correlation Coefficients for Boiling Point of Som-
bor Indices with Properties of NSAIDS Drugs

Figure 60. Graphical Representation of Correlation Coefficients for Polarity of Sombor
Indices with Properties of NSAIDS Drugs
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Figure 61. Graphical Representation of Correlation Coefficients for Complexity of Sombor
Indices with Properties of NSAIDS Drugs

Figure 62. Graphical Representation of Correlation Coefficients for Refractivity of Sombor
Indices with Properties of NSAIDS Drugs

Figure 63. Graphical Representation of Correlation Coefficients for Molar Weight of Som-
bor Indices with Properties of NSAIDS Drugs
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Figure 64. Graphical Representation of Correlation Coefficients for Molar Volume of Som-
bor Indices with Properties of NSAIDS Drugs

Topological Index Bp Pol C R MW MV
S O(G) 0.685 0.902 0.787 0.891 0.595 0.621

S Ored(G) 0.740 0.917 0.905 0.932 0.690 0.680
mS O(G) 0.219 0.817 0.832 0.873 0.520 0.310

maxS O(G) 0.834 0.908 0.884 0.928 0.727 0.552
minS O(G) 0.350 0.740 0.740 0.753 0.381 0.613

eS O(G) 0.717 0.859 0.924 0.879 0.661 0.568
eS Ored(G) 0.759 0.820 0.902 0.822 0.695 0.523

MS O(G) 0.458 0.515 0.798 0.558 0.395 0.189
MS Ored(G) 0.460 0.517 0.801 0.562 0.397 0.182

Table 14. Tabular Representation of Correlation Coefficients of Sombor Indices with Prop-
erties of NSAIDS Drugs

6. Conclusion

A structure can be given a single number by employing the topological index. Knowledge of
topological indices plays a key role in the link between quantitative structure activity as well as prop-
erty. our study has provided valuable insights into the relationships between the physical properties
of NSAIDs and different versions of Sombor indices, shedding light on the intricate interplay be-
tween these factors. By calculating and analyzing the correlation coefficients, we have discerned the
strength and direction of associations between specific drug properties and the derived topological
indices. These findings are instrumental in understanding how drug physicochemical characteristics
influence molecular structure and, consequently, their behavior within biological systems. The results
not only contribute to the field of pharmaceutical research but also offer practical implications for
drug design, optimization, and prediction of pharmacological outcomes. According to Gutman [25],
indices with correlation coefficient greater then 0.8 in useful. Table 14, shows significant results in
testing Sombor indices and their implementation on diffident properties of NSAIDs. Sombor and its
reduced version gives best result with polarity of NSAIDs drugs. While, exponential Sombor indices
are best for predicting the complexity of NSAIDs. Reduce Sombor index is good to predict the value
of refractivity for NSAIDs. Further research can build upon these findings to refine drug develop-
ment strategies and enhance the pharmaceutical industry’s ability to deliver safer and more effective
therapeutic agents.
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