Article

EKFN-Modules

Mankagna Albert DIOMPI1,*, Ousseynou BOUSSO1, Remy Diaga DIOUF1 and Oumar DIANKHA1

1 Département de Mathématiques et Informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, 5005 Dakar (Senegal).

* Correspondence: albertdiompy@yahoo.fr

Abstract: In this paper, we utilize the σ category to introduce EKFN-modules, which extend the concept of the EKFN-ring. After presenting some properties, we demonstrate, under certain hypotheses, that if M is an EKFN-module, then the following equivalences hold: the class of uniserial modules coincides with the class of cu-uniserial modules; EKFN-modules correspond to the class of locally noetherian modules; and the class of CD-modules is a subset of the EKFN-modules.

Keywords: Noetherian, endo-noetherian, EKFN-module, Uniserial, cu-uniserial, Virtually uniserial, Locally noetherian and CD-module

Mathematics Subject Classification: 13C60, 16P20, 16P40.

1. Introduction

Throughout this paper, R denotes a commutative, associative ring with an identity $1 \neq 0$, satisfying the ascending chain condition (ACC) on annihilators. Furthermore, all modules considered are unitary left R-modules. The category of all left R-modules is denoted by R-MOD, with σ representing the full subcategory of R-MOD, whose objects are isomorphic to a submodule of an M-generated module.

A module M is termed noetherian (or artinian) if every ascending (or descending) chain of its submodules becomes stationary. A module M is classified as endo-noetherian (or endo-artinian) if, for any family $(f_i)_{i \geq 1}$ of endomorphisms of M, the sequence $\{\text{Ker}(f_1) \subseteq \text{Ker}(f_2) \subseteq \cdots\}$ (or $\{\mathcal{I}(f_1) \supseteq \mathcal{I}(f_2) \supseteq \cdots\}$, respectively) stabilizes. It is immediately evident that every noetherian ring is endo-noetherian, although the converse is not universally true. For instance, $\mathbb{Q}_\mathbb{Z}$ is an endo-noetherian module but not noetherian, as evidenced by the increasing sequence:

$$\mathbb{Z} \subset \frac{1}{2}\mathbb{Z} \subset \frac{1}{4}\mathbb{Z} \subset \cdots$$

In [1], C. T. Gueye et al. introduced the class of EKFN-rings. These rings satisfy the following condition: every endo-noetherian module is noetherian. The aim of this paper is to extend the notion of EKFN-rings to the σ category. This new class of modules within this category is termed EKFN-modules, signifying that every endo-noetherian object in σ is noetherian.

Recall that an R-module M is defined as uniserial if its submodules are linearly ordered by inclusion. Moreover, M is described as serial if it is a direct sum of uniserial modules. The R-module M is classified as cyclic-uniform uniserial (cu-uniserial) if, for every non-zero finitely generated submodule $K \subseteq M$, the quotient $K/\text{Rad}(K)$ is both cyclic and uniform; here, $\text{Rad}(K)$ denotes the intersection
of all maximal submodules of M. A module M is termed cyclic-uniform serial (cu-serial) if it is a direct sum of cyclic-uniform uniserial modules. An R-module M is virtually uniserial if, for every non-zero finitely generated submodule $K \subseteq M$, the quotient $K/\text{Rad}(K)$ is virtually simple. Similarly, an R-module M is called virtually serial if it is a direct sum of virtually uniserial modules. M is considered locally noetherian if every finitely generated submodule of M is noetherian. A submodule N of M is defined as small in M if, for every proper submodule L of M, the sum $N + L \neq M$. A module M is described as hollow if every proper submodule of M is small in M.

A module P is projective if and only if for every surjective module homomorphism $f : N \to M \to 0$ and every homomorphism $g : P \to M$, there exists a module homomorphism $h : P \to N$ such that $f \circ h = g$. A submodule N of M is termed superfluous if the only submodule T of M satisfying $N + T = M$ is M itself. A morphism $f : A \to B$ of modules is considered minimal provided that $\ker(f)$ is a superfluous submodule of A. A module N is designated a small cover of a module M if there exists a minimal epimorphism $f : N \to M$. N is called a flat cover of M if N is a small cover of M and N is flat. A module A is a projective cover of B provided that A is projective and there exists a minimal epimorphism $A \to B$. It is noted that the projective cover of a module does not always exist but is unique when it does. A ring is termed perfect if every module over this ring possesses a projective cover. The singular submodule $Z(M)$ of a module M is the set of elements $m \in M$ such that $mI = 0$ for some essential right ideal I of R.

We define $\bar{Z}_M(N)$, as a dual of the singular submodule, by $\bar{Z}_M(N) = \cap \{\ker(f); f : N \to U, U \in \Gamma\}$, where Γ denotes the class of all M-small modules. A module M is termed discrete if it satisfies conditions (D_1) and (D_2):

(D_1): For every submodule N of M, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq N$ and $M_2 \cap N$ is small in M_2.

(D_2): For any summand K of M, every exact sequence $M \to K \to 0$ splits.

The structure of our paper is outlined as follows: Initially, we present preliminary results on $EKFN$-rings and some fundamental properties of the σ category, particularly when M is finitely generated. Subsequently, we characterize the class of $EKFN$-modules in rings that satisfy the ACC on annihilators.

2. Preliminary results

Lemma 1. (Theorem 3.10 of [1]) Let R be a commutative ring. These conditions are equivalent:

1. R is an $EKFN$-ring.
2. R is a artinian principal ideal ring.

Lemma 2. (From 15.4 of [2]) Let R be a ring and M a R-module. These conditions are verified:

1. If M is finitely generated as a module over $S = \text{End}(M)$, then $\sigma = R/\text{Ann}(M)$-Mod.
2. If R is commutative, then for every finitely generated R-module M, we have $\sigma = R/\text{Ann}(M)$-Mod

Proof. 1. For a generated set $m_1, m_2, \ldots m_k$ of M, let’s consider the map

$$\varphi : R \to R(m_1, m_2, \ldots m_k) \subset M^k \mapsto r(m_1, m_2, \ldots m_k)$$

We have $\ker(\varphi) = \cap_{i \in \mathbb{K}} \text{Ann}(m_i) = \text{Ann}(M)$, then $R/\text{Ann}(M) \simeq \text{Im}(\varphi) \subset M^k$.

2. The second point is a consequence of (1) since we have $R/\text{Ann}(M) \subset S = \text{End}(M)$ canonically. \square

Lemma 3. (From 15.2 of [2]) For two R-modules M, N the following are equivalent:

1. N is a subgenerator in σ;
2. $\sigma = \sigma[N]$;
3. $N \in \sigma$ and $M \in \sigma[N]$.

Recall a module M is a S-module if every hopfian object of σ is noetherian.

Proposition 1. Let M be a R-module. If M is a S-module then M is an EKFN-module.

Proof. Let N be an endo-noetherian module in σ. N is also hopfian because every endo-noetherian module is strongly hopfian and every strongly hopfian module is hopfian. As M is a S-module then N is noetherian. \hfill \Box

3. Aims results

Proposition 2. Let M be an EKFN-module. Then the homomorphic image of every endo-noetherian module of σ is endo-noetherian.

Proof. Let N be an endo-noetherian module in σ; as M is an EKFN-module, then N is noetherian. Assume that $f : N \rightarrow f(N) = K$ is an homomorphism image of N. It’s well-known that homomorphism image of noetherian module is noetherian. Thus K is noetherian and therefore K is endo-noetherian. \hfill \Box

Remark 1. In general, neither a submodule nor a quotient of endo-noetherian module is endo-noetherian. For example:

- Let R be the free ring over \mathbb{Z} generated by $\{x_n, n \in N\}$. Then, R is left endo-noetherian but the left ideal I generated by $\{x_n, n \in N\}$ infinite direct sum of left ideals I_n generate by $\{x_n\}$, therefore the R-module I is not endo-noetherian.
- \mathbb{Q} is an endo-noetherian \mathbb{Z}-module but $\mathbb{Q}/\mathbb{Z} = \bigoplus_{p \in \mathbb{P}} \mathbb{Z}(p^\infty)$ is not endo-noetherian.

Proposition 3. Let M be an EKFN-module. Then these conditions are verified.

1. Every submodule of an endo-noetherian module of σ is endo-noetherian.
2. Every quotient of an endo-noetherian module of σ is endo-noetherian.

Proof. Let M be an EKFN-module.

1. Let N be an endo-noetherian module in σ and P a submodule of N. As M is an EKFN-module, then N is noetherian and so P because every submodule of a noetherian module is noetherian. Therefore P is endo-noetherian.
2. If N is an endo-noetherian module of σ then N is noetherian and it is known that every quotient of a noetherian module is noetherian. Therefore every quotient of N is endo-noetherian. \hfill \Box

Proposition 4. Let R be a commutative ring. We suppose M is finitely generated over $S = \text{End}(M)$. If M is an EKFN-module then these conditions are verified:

1. $S = \text{End}(M)$ has stable range 1 and $\text{codim}(\text{End}(M)) \leq \dim(M) + \text{codim}(M)$.
2. There are, up to isomorphism, only many finitely indecomposable projective $\text{End}(M)$-modules.

Proof.

1. M finitely generated EKFN-module over $S = \text{End}(M)$ implies M is artinian, hence M has a finite Goldie dimension. In addition M is cohopfian means every injective endomorphism of M is bijective. Referring to Theorem 4.3 of [3], then the endomorphism ring $S = \text{End}(M)$ is semilocal. Therefore $S = \text{End}(M)$ has stable range 1.
2. As $\text{End}(M)$ is semilocal then by theorem 4.10 of [3] we have the result. \hfill \Box
Corollary 1. Let \(M \) be a \(R - \text{EKFN} \)-module. If \(B \) and \(C \) two arbitrary \(R \)-modules and \(A \oplus B \cong A \oplus C \), then \(B \cong C \).

Proof. We prove this corollary by referring to Proposition 4 and Theorem 4.5 (Evans) of [3]. □

Proposition 5. Let \(R \) be a commutative ring and \(M \) a finitely generated \(R \)-module. If \(M \) is a EKFN-module, then every object of \(\sigma \) has a projective cover.

Proof. \(M \) finitely generated over commutative ring, by referring to Lemma 2, \(\sigma = R/\text{Ann}(M)\)-MOD meaning that every object of \(\sigma \) is a \(R/\text{Ann}(M) \)-module. In addition, by Lemma 1, \(R/\text{Ann}(M) \) is artinian principal ideal ring. So \(M \) is artinian. It is well known that every artinian module is perfect. By definition of perfect ring, every object of \(\sigma \) have projective covers. □

Proposition 6. Let \(R \) be a ring and \(M \) a finitely generated module over \(S = \text{End}(M) \). Assume every simple \(S \)-module has a flat cover. If \(M \) is an EKFN-module then \(M \) is a finite direct sum of \(S \)-modules with local endomorphism ring.

Proof. \(M \) finitely generated over \(S = \text{End}(M) \) implies that \(M \cong R/\text{Ann}(M) \) and \(M \) EKFN-module implies that \(M \) is artinian. Hence \(S = \text{End}(M) \) is semilocal. In addition, since every simple \(S \)-module has a flat cover, by referring on Theorem 3.8 of [4], \(S = \text{End}(M) \) is semiperfect. By Proposition 3.14 of [3] \(M \) is a direct sum of \(R \)-modules with local endomorphism ring. □

Theorem 1. Let \(R \) be a commutative ring. If \(M \) is a finitely generated EKFN-module then the following are equivalent:

1. Every object of \(\sigma \) is cu-uniserial.
2. Every object of \(\sigma \) is uliserial.

Proof. (2) \(\Rightarrow \) (1) obvious

(1) \(\Rightarrow \) (2) \(M \) a finitely generated EKFN-module implies \(M \cong R/\text{Ann}(M) \) is an artinian principal ideal ring. Hence \(R/\text{Ann}(M) \) is a finite product of commutative artinian local rings. Suppose \(R/\text{Ann}(M) = R_1/\text{Ann}(M) \times R_2/\text{Ann}(M) \) with \(R_1 \) and \(R_2 \) are local rings.

Let \(K \) be a cu-uniserial object of \(\sigma \) and \(L \) a non-zero finitely generated submodule of \(K \). Then \(K \) is uniform and Bezout by Theorem 2.3 of [5]. This means that \(L \) is cyclic and hence there exist \(I_1 = K_1/\text{Ann}(M) \) with \(\text{Ann}(M) \subset K_1 \) and \(I_2 = K_2/\text{Ann}(M) \) with \(\text{Ann}(M) \subset K_2 \) such that \(L \cong (R_1/I_1) \times (R_2/I_2) \). Since \(L \) is uniform, either \(L \cong (R_1/I_1) \) or \(L \cong (R_2/I_2) \). Therefore \(L \) is a local submodule. Hence \(L/\text{Rad}(L) \) is simple submodule of \(M \) thus \(K \) is uniserial. □

Theorem 2. Let \(R \) be a ring and \(M \) a finitely generated \(R \)-module. We suppose \(M/\text{Rad}(M) \) is a subgenerator in \(\sigma \). Then the following statements are equivalent.

1. \(M \) is an EKFN-module.
2. \(M \) is a local cu-uniserial module.
3. \(M \) is a semilocal cu-uniserial module.
4. \(M \) is a virtually uniserial module.

Proof. (1) \(\Rightarrow \) (2) \(M \) finitely generated and EKFN-module implies \(M \cong R/\text{Ann}(M) \) is an artinian principal ideal ring. By [6], modules over commutative artinian principal ideal ring and uniserial modules coincide. And it is easy to see that uniserial modules are cu-uniserial. In addition, \(M \) artinian implies \(M \) is a finite product of artinian local submodules . Hence \(M \) is local.

(2) \(\Rightarrow \) (3) Obvious

(3) \(\Rightarrow \) (1) It follows from theorem 2.10 of [7]

(4) \(\Rightarrow \) (1) Let \(N \) be an endo-noetherian object of \(\sigma \). \(M \) semilocal, hence \(M/\text{Rad}(M) \) is a semisimple artinian module. In addition \(M/\text{Rad}(m) \) subgenerator in \(\sigma \) implies \(\sigma = \sigma[M/\text{Ann}(M)] \) meaning that every object of \(\sigma[M] \) is an object of \(\sigma[M/\text{Ann}(M)] \). Hence \(N \in \sigma[M/\text{Ann}(M)] \). As \(M/\text{Ann}(M) \) is
semisimple then every object of $\sigma[M/\text{Ann}(M)]$ is semisimple therefore N is semisimple. It is well known that for a semisimple module, endo-noetherian and noetherian coincide. In conclusion M is an EKFN-module.

Recall M is locally noetherian if every finitely generated submodule of M is noetherian.

Lemma 4. (From 27.3 of [2])

For an R-module M the following assertions are equivalent:

1. M is locally noetherian;
2. Every finitely generated module in σ is noetherian;

Theorem 3. Let M be a finitely generated module. The following conditions are equivalent:

1. M is EKFN-module;
2. M is locally noetherian;

Proof. 1) \implies 2) Let M be an EKFN-module and N be a finitely generated module $\in \sigma$. M finitely generated implies $\sigma = R/\text{Ann}(M)$-MOD i.e. every object of σ is a $R/\text{Ann}(M)$-module. In addition M EKFN-module implies by referring to Lemma 2 $M \simeq R/\text{Ann}(M)$ is an artinian and so noetherian. We know that any finitely generated module over noetherian ring is noetherian; therefore N is noetherian. By Lemma 4 we can deduce that M is locally noetherian.

2) \implies 1) Let $N \in \sigma$ be an endo-noetherian module. Since M is locally noetherian, by Corollary 2.3 of [8]; $R/\text{Ann}(M)$ is an noetherian ring and $\sigma = R/\text{Ann}(M)$-MOD. Hence N is a $R/\text{Ann}(M)$-module. $M \simeq R/\text{Ann}(M)$ is finitely generated and noetherian. Moreover $N \in \sigma$ implies N is an ideal of $R/\text{Ann}(M)$; hence a submodule of M. It’s well know over noetherian ring, every submodule of finitely generated module is finitely generated. So N is noetherian because over noetherian ring, finitely generated and noetherian coincide. Therefore M is an EKFN-module.

Corollary 2. For an R-module M the following assertions are equivalent:

1. M is EKFN-module;
2. every injective module in σ is a direct sum of indecomposable. modules;

Proof. It results from Theorem 3 and 27.5 of [2].

Recall a R is a CD-ring if every consigular R-module is discrete, and M is a CD-module if every M-cosingular module in σ is discrete.

Lemma 5. (Theorem 2.23 of [9]) The following are equivalent for a CD-module M.

1. M has finite hollow dimension;
2. M is semilocal and finitely generated

Lemma 6. (Proposition 2.26 of [9]) Let R be a commutative domain. Then the following are equivalent.

1. R is a CD-ring;
2. Every consigular R-module is projective;
3. R is a field.

Theorem 4. Let M be a R-module with finite hollow dimension then the class of EKFN-modules contains the class of CD-modules.

Proof. Suppose that M is a CD-module. Let $N \in \sigma$ be an endo-noetherian module. Since M is CD-module with finite hollow dimension referring to Lemma 5 M is finitely generated and so $M \simeq R/\text{Ann}(M)$. As M is CD-module, $R/\text{Ann}(M)$ is a CD-ring and by Lemma 6 $R/\text{Ann}(M)$ is a field.
Hence $R/\text{Ann}(M)$ is noetherian; $M \cong R/\text{Ann}(M)$ is finitely generated and noetherian. Moreover $N \in \sigma$ implies N is an ideal of $R/\text{Ann}(M)$; hence a submodule of M. It’s well known over noetherian ring, every submodule of finitely generated module is finitely generated. So N is noetherian because over noetherian ring, finitely generated and noetherian coincide. Therefore M is an EKFN-module. □

Conflict of Interest

The authors declare no conflict of interest.

References