

Article

EKFN-Modules

Mankagna Albert DIOMPY^{1,*}, Ousseynou BOUSSO¹, Remy Diaga DIOUF¹ and Oumar DIANKHA¹

- ¹ Département de Mathématiques et Informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, 5005 Dakar (Senegal).
- * Correspondence: albertdiompy@yahoo.fr

Abstract: In this paper, we utilize the σ category to introduce *EKFN*-modules, which extend the concept of the *EKFN*-ring. After presenting some properties, we demonstrate, under certain hypotheses, that if *M* is an *EKFN*-module, then the following equivalences hold: the class of uniserial modules coincides with the class of *cu*-uniserial modules; *EKFN*-modules correspond to the class of locally noetherian modules; and the class of *CD*-modules is a subset of the *EKFN*-modules.

Keywords: Noetherian, endo-noetherian, *EKFN*-module, Uniserial, *cu*-uniserial, Virtually uniserial, Locally noetherian and *CD*-module **Mathematics Subject Classification:** 13C60, 16P20, 16P40.

1. Introduction

Throughout this paper, *R* denotes a commutative, associative ring with an identity $1 \neq 0$, satisfying the ascending chain condition (ACC) on annihilators. Furthermore, all modules considered are unitary left *R*-modules. The category of all left *R*-modules is denoted by *R*-MOD, with σ representing the full subcategory of *R*-MOD, whose objects are isomorphic to a submodule of an *M*-generated module.

A module *M* is termed noetherian (or artinian) if every ascending (or descending) chain of its submodules becomes stationary. A module *M* is classified as endo-noetherian (or endo-artinian) if, for any family $(f_i)_{i\geq 1}$ of endomorphisms of *M*, the sequence $\{Ker(f_1) \subseteq Ker(f_2) \subseteq \cdots\}$ (or $\{\Im(f_1) \supseteq \Im(f_2) \supseteq \cdots\}$, respectively) stabilizes. It is immediately evident that every noetherian ring is endo-noetherian, although the converse is not universally true. For instance, $\mathbb{Q}_{\mathbb{Z}}$ is an endo-noetherian module but not noetherian, as evidenced by the increasing sequence:

$$\mathbb{Z} \subset \frac{1}{2}\mathbb{Z} \subset \frac{1}{4}\mathbb{Z} \subset \cdots$$

In [1], C. T. Gueye et al. introduced the class of *EKFN*-rings. These rings satisfy the following condition: every endo-noetherian module is noetherian. The aim of this paper is to extend the notion of *EKFN*-rings to the σ category. This new class of modules within this category is termed *EKFN*-modules, signifying that every endo-noetherian object in σ is noetherian.

Recall that an *R*-module *M* is defined as uniserial if its submodules are linearly ordered by inclusion. Moreover, *M* is described as serial if it is a direct sum of uniserial modules. The *R*-module *M* is classified as cyclic-uniform uniserial (cu-uniserial) if, for every non-zero finitely generated submodule $K \subseteq M$, the quotient K/Rad(K) is both cyclic and uniform; here, Rad(K) denotes the intersection

of all maximal submodules of M. A module M is termed cyclic-uniform serial (cu-serial) if it is a direct sum of cyclic-uniform uniserial modules. An R-module M is virtually uniserial if, for every non-zero finitely generated submodule $K \subseteq M$, the quotient K/Rad(K) is virtually simple. Similarly, an R-module M is called virtually serial if it is a direct sum of virtually uniserial modules. M is considered locally noetherian if every finitely generated submodule of M is noetherian. A submodule N of M is defined as small in M if, for every proper submodule L of M, the sum $N + L \neq M$. A module M is described as hollow if every proper submodule of M is small in M.

A module *P* is projective if and only if for every surjective module homomorphism $f: N \to M \to 0$ and every homomorphism $g: P \to M$, there exists a module homomorphism $h: P \to N$ such that $f \circ h = g$. A submodule *N* of *M* is termed superfluous if the only submodule *T* of *M* satisfying N + T = M is *M* itself. A morphism $f: A \to B$ of modules is considered minimal provided that $\ker(f)$ is a superfluous submodule of *A*. A module *N* is designated a small cover of a module *M* if there exists a minimal epimorphism $f: N \to M$. *N* is called a flat cover of *M* if *N* is a small cover of *M* and *N* is flat. A module *A* is a projective cover of *B* provided that *A* is projective and there exists a minimal epimorphism $A \to B$. It is noted that the projective cover of a module does not always exist but is unique when it does. A ring is termed perfect if every module over this ring possesses a projective cover. The singular submodule Z(M) of a module *M* is the set of elements $m \in M$ such that mI = 0 for some essential right ideal *I* of *R*.

We define $\overline{Z}_M(N)$, as a dual of the singular submodule, by $\overline{Z}_M(N) = \bigcap \{Ker(f); f : N \to U, U \in \Gamma\}$, where Γ denotes the class of all *M*-small modules. A module *M* is termed *discrete* if it satisfies conditions (D_1) and (D_2) :

- (*D*₁): For every submodule *N* of *M*, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq N$ and $M_2 \cap N$ is small in M_2 .
- (*D*₂): For any summand *K* of *M*, every exact sequence $M \rightarrow K \rightarrow 0$ splits.

The structure of our paper is outlined as follows: Initially, we present preliminary results on *EKFN*-rings and some fundamental properties of the σ category, particularly when *M* is finitely generated. Subsequently, we characterize the class of *EKFN*-modules in rings that satisfy the ACC on annihilators.

2. Preliminary results

Lemma 1. (*Theorem 3.10 of* [1]) Let R be a commutative ring. These conditions are equivalent:

- 1. R is an EKFN-ring.
- 2. *R* is a artinian principal ideal ring.

Lemma 2. (From 15.4 of [2]) Let R be a ring and M a R-module. These conditions are verified:

- 1. If M is finitely generated as a module over S = End(M), then $\sigma = R/Ann(M)$ -Mod.
- 2. If R is commutative, then for every finitely generated R-module M, we have $\sigma = R/Ann(M)-Mod$

Proof. 1. For a generated set m_1, m_2, \dots, m_k of M_s , let's consider the map

$$\varphi: R \longrightarrow R(m_1, m_2, \cdots m_k) \subset M^k r \longmapsto r(m_1, m_2, \cdots m_k)$$

We have $ker(\varphi) = \bigcap_{i \le k} Ann(m_i) = Ann(M)$, then $R/Ann(M) \simeq Im(\varphi) \subset M^k$.

2. The second point is a consequence of (1) since we have $R/Ann(M) \subset S = End(M)$ canonically.

Lemma 3. (*From 15.2 of [2]*) For two *R*-modules *M*, *N* the following are equivalent:

1. N is a subgenerator in σ ;

Recall a module *M* is a *S*-module if every hopfian object of σ is noetherian.

Proposition 1. Let M be a R-module. If M is a S-module then M is an EKFN-module.

Proof. Let *N* be an endo-noetherian module in σ . *N* is also hopfian because every endo-noetherian module is strongly hopfian and every strongly hopfian module is hopfian. As *M* is a *S*-module then *N* is noetherian.

3. Aims results

Proposition 2. Let *M* be an EKFN-module. Then the homomorphic image of every endo-noetherian module of σ is endo-noetherian.

Proof. Let N be an endo-noetherian module in σ ; as M is an EKFN-module, then N is noetherian. Assume that $f : N \longrightarrow f(N) = K$ is an homomorphism image of N. It's well-known that homomorphism image of noetherian module is noetherian. Thus K is noetherian and therefore K is endo-notherian.

Remark 1. In general, neither a submodule nor a quotient of endo-noetherian module is endonoetherian. For example:

- Let *R* be the free ring over **Z** generated by $\{x_n, n \in N\}$. Then, *R* is left endo-noetherian but the left ideal *I* generated by $\{x_n, n \in N\}$ infinite direct sum of left ideals I_n generate by $\{x_n\}$, therefore the *R*-module *I* is not endo-noetherian.
- \mathbb{Q} is an endo-noetherian \mathbb{Z} -module but $\mathbb{Q}/\mathbb{Z} = \bigoplus_{p \in \mathbb{P}} \mathbb{Z}(p^{\infty})$ is not endo-noetherian.

Proposition 3. Let M be an EKFN-module. Then these conditions are verified.

- *1.* Every submodule of an endo-noetherian module of σ is endo-noetherian.
- 2. Every quotient of an endo-noetherian module of σ is endo-noetherian.

Proof. Let *M* be an *EKFN*-module.

- 1. Let *N* be an endo-noetherian module in σ and *P* a submodule of *N*. As *M* is an *EKFN*-module, then *N* is noetherian and so *P* because every submodule of a noetherian module is noetherian. Therefore *P* is endo-noetherian.
- 2. If N is an endo-noetherian module of σ then N is noetherian and it is known that every quotient of a noetherian module is neotherian. Therefore every quotient of N is endo-noetherian.

Proposition 4. Let R be a commutative ring. We suppose M is finitely generated over S = End(M). If M is an EKFN-module then these conditions are verified:

- 1. S = End(M) has stable range 1 and $codim(End(M)) \le dim(M) + codim(M)$.
- 2. There are, up to isomorphim, only many finitely indecomposable projective End(M)-modules.
- *Proof.* 1. *M* finitely generated *EKFN*-module over S = End(M) implies *M* is artinian, hence *M* has a finite Goldie dimension. In addition *M* is cohopfian means every injective endomorphism of *M* is bijective. Referring to Theorem 4.3 of [3], then the endomorphism ring S = End(M) is semilocal. Therefore S = End(M) has stable range 1.
 - 2. As End(M) is semilocal then by theorem 4.10 of [3] we have the result.

Corollary 1. Let *M* be a R - EKFN-module. If *B* and *C* two arbitrary *R*-modules and $A \oplus B \simeq A \oplus C$, then $B \simeq C$.

Proof. We prove this corollary by referring to Proposition 4 and Theorem 4.5 (Evans) of [3].

Proposition 5. Let *R* be a commutative ring and *M* a finitely generated *R*-module. If *M* is a EKFN-module, then every object of σ has a projective cover.

Proof. M finitely generated over commutative ring, by referring to Lemma 2,

 $\sigma = R/Ann(M)$ -MOD meaning that every object of σ is a R/Ann(M)-module. In addition, by Lemma 1, R/Ann(M) is artinian principal ideal ring. So M is artinian. It is well known that every artinian module is perfect. By definition of perfect ring, every object of σ have projective covers. \Box

Proposition 6. Let R be a ring and M a finitely generated module over S = End(M). Assume every simple S-module has a flat cover. If M is an EKFN-module then M is a finite direct sum of S-modules with local endomorphism ring.

Proof. M finitely generated over S = End(M) implies that $M \simeq R/Ann(M)$ and M EKFN-module implies that *M* is artinian. Hence S = End(M) is semilocal. In addition, since every simple *S*-module has a flat cover, by referring on Theorem 3.8 of [4], S = End(M) is semiperfect. By Proposition 3.14 of [3] *M* is a direct sum of *R*-modules with local endomorphism ring.

Theorem 1. Let *R* be a commutative ring. If *M* is a finitely generated EKFN-module then the following are equivalent:

- 1. Every object of σ is cu-uniserial.
- 2. Every object of σ is uiserial.

Proof. (2) \Rightarrow (1) obvious

(1) \Rightarrow (2) *M* a finitely generated *EKFN*-module implies $M \simeq R/Ann(M)$ is a artinian principal ideal ring. Hence R/Ann(M) is a finite product of commutative artinian local rings. Suppose $R/Ann(M) = R_1/Ann(M) \times R_2/Ann(M)$ with R_1 and R_2 are local rings.

Let *K* be a *cu*-uniserial object of σ and *L* a non-zero finitely generated submodule of *K*. Then *K* is uniform and Bezout by Theorem 2.3 of [5]. This means that *L* is cyclic and hence there exist left ideal $I_1 = K_1/Ann(M)$ with $Ann(M) \subset K_1$ and $I_2 = K_2/Ann(M)$ with $Ann(M) \subset K_2$ such that $L \simeq (R_1 \times R_2)/I_1 \times I_2 \simeq (R_1/I_1) \times (R_2/I_2)$. Since *L* is uniform, either $L \simeq (R_1/I_1)$ or $L \simeq (R_2/I_2)$. Therefore *L* is a local submodule. Hence L/Rad(L) is simple submodule of *M* thus *K* is uniserial. \Box

Theorem 2. Let *R* be a ring and *M* a finitely generated *R*-module. We suppose M/Rad(M) is a subgenerator in σ . Then the following statements are equivalent.

- 1. *M* is an EKFN-module.
- 2. *M* is a local cu-uniserial module.
- 3. *M* is a semilocal cu-uniserial module.
- 4. *M* is a virtually uniserial module.

Proof. (1) \Rightarrow (2) *M* finitely generated and *EKFN*-module implies that $M \simeq R/Ann(M)$ is an artinian principal ideal ring. By [6], modules over commutative artinian principal ideal ring and uniseriel modules coincide. And it is easy to see that uniserial modules are *cu*-uniserial. In addition, *M* artinian implies *M* is a finite product of artinian local submodules. Hence *M* is local.

 $(2) \Rightarrow (3)$ Obvious

(1) \Leftrightarrow (4) It follows from theorem 2.10 of [7]

(3) \Rightarrow (1) Let *N* be an endo-noetherian object of σ . *M* semilocal, hence *M*/*Rad*(*M*) is a semisimple artinian module. In addition *M*/*Rad*(*m*) subgenerator in σ implies $\sigma = \sigma[M/Ann(M)]$ meaning that every object of $\sigma[M]$ is an object of $\sigma[M/Ann(M)]$. Hence $N \in \sigma[M/Ann(M)]$. As *M*/*Ann*(*M*) is

Utilitas Mathematica

semisimple then every object of $\sigma[M/Ann(M)]$ is semisimple therefore N is semisimple. It is well known that for a semisimple module, endo-noetherian and noetherian coincide. In conclusion M is an *EKFN*-module.

Recall *M* is locally noetherian if every finitely generated submodule of M is noetherian.

Lemma 4. (*From 27.3 of* [2]) *For an R-module M the following assertions are equivalent:*

- 1. *M* is locally noetherian;
- 2. Every finitely generated module in σ is noetherian;

Theorem 3. Let *M* be a finitely generated module. The following conditions are equivalent:

- 1. M is EKFN-module;
- 2. *M* is locally noetherian;

Proof. 1) \implies 2) Let *M* an *EKFN*-module and *N* a finitely generated module $\in \sigma$. *M* finitely generated implies $\sigma = R/Ann(M)$ -MOD i.e. every object of σ is a R/Ann(M) -module. In addition *M EKFN*-module implies by referring to Lemma 2 $M \simeq R/Ann(M)$ is an artinian and so noetherian. We know that any finitely generated module over noetherian ring is noetherian; therefore *N* is noetherian. By Lemma 4 we can deduce that *M* is locally noetherian.

2) \implies 1) Let $N \in \sigma$ an endo-noetherian module. Since *M* is locally noetherian, by Corollary 2.3 of [8]; R/Ann(M) is an noetherian ring and $\sigma = R/Ann(M)$ -MOD. Hence *N* is a R/Ann(M)-module. $M \simeq R/Ann(M)$ is finitely generated and noetherian. Morever $N \in \sigma$ implies *N* is an ideal of R/Ann(M); hence a submodule of *M*. It's well know over noetherian ring, every submodule of finitely generated module is finitely generated. So *N* is noetherian because over noetherian ring, finitely generated and noetherian coincide. Therefore *M* is an *EKFN*-module.

Corollary 2. For an *R*-module *M* the following assertions are equivalent:

- 1. M is EKFN-module;
- 2. every injective module in σ is a direct sum of indecomposable. modules;

Proof. It results from Theorem 3 and 27.5 of [2].

Recall a *R* is a *CD*-ring if every consigular *R*-module is discrete, and *M* is a *CD*-module if every *M*-cosingular module in σ is discrete.

Lemma 5. (*Theorem 2.23 of* [9]) *The following are equivalent for a CD-module M.*

- 1. *M* has finite hollow dimension;
- 2. *M* is semilocal and finitely generated

Lemma 6. (*Proposition 2.26 of [9]*) Let *R* be a commutative domain. Then the following are equivalent.

- 1. R is a CD-ring;
- 2. Every consigular R-module is projective;
- *3. R* is a field.

Theorem 4. Let *M* be a *R*-module with finite hollow dimension then the class of EKFN-modules contains the class of CD-modules.

Proof. Suppose that *M* is a *CD*-module. Let $N \in \sigma$ an endo-noetherian module. Since *M* is *CD*-module with finite hollow dimension referring to Lemma 5 *M* is finitely gererated and so $M \simeq R/Ann(M)$. As *M* is *CD*-module, R/Ann(M) is a *CD*-ring and by Lemma 6 R/Ann(M) is a field.

Mankagna Albert DIOMPY, Ousseynou BOUSSO, Remy Diaga DIOUF and Oumar DIANKHA 32

Hence R/Ann(M) is noetherian; $M \simeq R/Ann(M)$ is finitely generated and noetherian. Morever $N \in \sigma$ implies *N* is an ideal of R/Ann(M); hence a submodule of *M*. It's well know over noetherian ring, every submodule of finitely generated module is finitely generated. So *N* is noetherian because over noetherian ring, finitely generated and noetherian coincide. Therefore *M* is an *EKFN*-module.

Conflict of Interest

The authors declare no conflict of interest.

References

- 1. Ndiaye, M.A. and Gueye, C.T., 2013. On commutative EKFN-ring with ascending chain condition on annihilators. *International Journal of Pure and Applied Mathematics*, *86*(5), pp.871-881.
- 2. Wisbauer, R., 1991. *Foundations of modules and rings theory*. Gordon and Breach Science Publishers.
- 3. Facchini, A., 1998. *Module theory: Endomorphism rings and direct sum decompositions in some classes of modules*. Birkhäuser Verlag.
- 4. Lomp, C., 1999. On semilocal modules and rings. *Communications in Algebra*, 27(8), pp.3961-3975.
- 5. Nikandish, R., Nikmehr, M.J. and Yassine, A., 2022. Cyclic-Uniform Uniserial Modules and Rings. *arXiv preprint arXiv:2208.07940*.
- 6. Faith, C., 1966. On Köthe rings. Mathematische Annalen, 164, pp.207-212.
- 7. Behboodi, M., Moradzadeh-Dehkordi, A. and Nejadi, M.Q., 2020. Virtually uniserial modules and rings. *Journal of Algebra, 549*, pp.365-385.
- 8. Kourki, F. and Tribak, R., 2018. Some results on locally noetherian modules and locally artinian modules. Kyungpook Mathematical Journal, 58(1), pp.1-8.
- 9. Hamzekolaee, A.R.M., Talebi, Y., Harmanci, A. and Ungor, B., 2020. Rings for which every cosingular module is discrete. *Hacettepe Journal of Mathematics and Statistics*, 49(5), pp.1635-1648.