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Abstract: In this paper, we utilize the σ category to introduce EKFN-modules, which extend the
concept of the EKFN-ring. After presenting some properties, we demonstrate, under certain hy-
potheses, that if M is an EKFN-module, then the following equivalences hold: the class of uniserial
modules coincides with the class of cu-uniserial modules; EKFN-modules correspond to the class of
locally noetherian modules; and the class of CD-modules is a subset of the EKFN-modules.
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1. Introduction

Throughout this paper, R denotes a commutative, associative ring with an identity 1 , 0, satisfying
the ascending chain condition (ACC) on annihilators. Furthermore, all modules considered are unitary
left R-modules. The category of all left R-modules is denoted by R-MOD, with σ representing the full
subcategory of R-MOD, whose objects are isomorphic to a submodule of an M-generated module.

A module M is termed noetherian (or artinian) if every ascending (or descending) chain of its
submodules becomes stationary. A module M is classified as endo-noetherian (or endo-artinian) if,
for any family ( fi)i≥1 of endomorphisms of M, the sequence {Ker( f1) ⊆ Ker( f2) ⊆ · · · } (or {ℑ( f1) ⊇
ℑ( f2) ⊇ · · · }, respectively) stabilizes. It is immediately evident that every noetherian ring is endo-
noetherian, although the converse is not universally true. For instance, QZ is an endo-noetherian
module but not noetherian, as evidenced by the increasing sequence:

Z ⊂
1
2
Z ⊂

1
4
Z ⊂ · · ·

In [1], C. T. Gueye et al. introduced the class of EKFN-rings. These rings satisfy the following
condition: every endo-noetherian module is noetherian. The aim of this paper is to extend the notion
of EKFN-rings to the σ category. This new class of modules within this category is termed EKFN-
modules, signifying that every endo-noetherian object in σ is noetherian.

Recall that an R-module M is defined as uniserial if its submodules are linearly ordered by inclu-
sion. Moreover, M is described as serial if it is a direct sum of uniserial modules. The R-module M is
classified as cyclic-uniform uniserial (cu-uniserial) if, for every non-zero finitely generated submod-
ule K ⊆ M, the quotient K/Rad(K) is both cyclic and uniform; here, Rad(K) denotes the intersection
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of all maximal submodules of M. A module M is termed cyclic-uniform serial (cu-serial) if it is a
direct sum of cyclic-uniform uniserial modules. An R-module M is virtually uniserial if, for every
non-zero finitely generated submodule K ⊆ M, the quotient K/Rad(K) is virtually simple. Similarly,
an R-module M is called virtually serial if it is a direct sum of virtually uniserial modules. M is con-
sidered locally noetherian if every finitely generated submodule of M is noetherian. A submodule N
of M is defined as small in M if, for every proper submodule L of M, the sum N + L , M. A module
M is described as hollow if every proper submodule of M is small in M.

A module P is projective if and only if for every surjective module homomorphism f : N → M →
0 and every homomorphism g : P → M, there exists a module homomorphism h : P → N such
that f ◦ h = g. A submodule N of M is termed superfluous if the only submodule T of M satisfying
N + T = M is M itself. A morphism f : A → B of modules is considered minimal provided that
ker( f ) is a superfluous submodule of A. A module N is designated a small cover of a module M if
there exists a minimal epimorphism f : N → M. N is called a flat cover of M if N is a small cover of
M and N is flat. A module A is a projective cover of B provided that A is projective and there exists
a minimal epimorphism A → B. It is noted that the projective cover of a module does not always
exist but is unique when it does. A ring is termed perfect if every module over this ring possesses a
projective cover. The singular submodule Z(M) of a module M is the set of elements m ∈ M such that
mI = 0 for some essential right ideal I of R.

We define ZM(N), as a dual of the singular submodule, by ZM(N) =
⋂
{Ker( f ); f : N → U,U ∈ Γ},

where Γ denotes the class of all M-small modules. A module M is termed discrete if it satisfies
conditions (D1) and (D2):

(D1): For every submodule N of M, there exists a decomposition M = M1 ⊕M2 such that M1 ⊆ N and
M2 ∩ N is small in M2.

(D2): For any summand K of M, every exact sequence M → K → 0 splits.

The structure of our paper is outlined as follows: Initially, we present preliminary results on
EKFN-rings and some fundamental properties of the σ category, particularly when M is finitely
generated. Subsequently, we characterize the class of EKFN-modules in rings that satisfy the ACC
on annihilators.

2. Preliminary results

Lemma 1. (Theorem 3.10 of [1] ) Let R be a commutative ring. These conditions are equivalent:

1. R is an EKFN-ring.
2. R is a artinian principal ideal ring.

Lemma 2. ( From 15.4 of [2]) Let R be a ring and M a R-module. These conditions are verified:

1. If M is finitely generated as a module over S = End(M), then σ = R/Ann(M)-Mod.
2. If R is commutative, then for every finitely generated R-module M, we have σ = R/Ann(M)-Mod

Proof. 1. For a generated set m1,m2, · · ·mk of MS , let’s consider the map

φ : R −→ R(m1,m2, · · ·mk) ⊂ Mkr 7−→ r(m1,m2, · · ·mk)

We have ker(φ) =
⋂

i≤k Ann(mi) = Ann(M), then R/Ann(M) ≃ Im(φ) ⊂ Mk.
2. The second point is a consequence of (1) since we have R/Ann(M) ⊂ S = End(M) canonically.

□

Lemma 3. (From 15.2 of [2]) For two R-modules M, N the following are equivalent:

1. N is a subgenerator in σ;
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2. σ = σ[N];
3. N ∈ σ and M ∈ σ[N].

Recall a module M is a S -module if every hopfian object of σ is noetherian.

Proposition 1. Let M be a R-module. If M is a S -module then M is an EKFN-module.

Proof. Let N be an endo-noetherian module in σ. N is also hopfian because every endo-noetherian
module is strongly hopfian and every strongly hopfian module is hopfian. As M is a S -module then
N is noetherian. □

3. Aims results

Proposition 2. Let M be an EKFN-module. Then the homomorphic image of every endo-noetherian
module of σ is endo-noetherian.

Proof. Let N be an endo-noetherian module in σ; as M is an EKFN-module, then N is noethe-
rian. Assume that f : N −→ f (N) = K is an homomorphism image of N. It’s well-known that
homomorphism image of noetherian module is noetherian. Thus K is noetherian and therefore K is
endo-notherian. □

Remark 1. In general, neither a submodule nor a quotient of endo-noetherian module is endo-
noetherian. For example:

• Let R be the free ring over Z generated by {xn, n ∈ N}. Then, R is left endo-noetherian but the
left ideal I generated by {xn, n ∈ N} infinite direct sum of left ideals In generate by {xn}, therefore
the R-module I is not endo-noetherian.
• Q is an endo-noetherian Z-module but Q/Z =

⊕
p∈P Z(p∞) is not endo-noetherian.

Proposition 3. Let M be an EKFN-module. Then these conditions are verified.

1. Every submodule of an endo-noetherian module of σ is endo-noetherian.
2. Every quotient of an endo-noetherian module of σ is endo-noetherian.

Proof. Let M be an EKFN-module.

1. Let N be an endo-noetherian module in σ and P a submodule of N. As M is an EKFN-module,
then N is noetherian and so P because every submodule of a noetherian module is noetherian.
Therefore P is endo-noetherian.

2. If N is an endo-noetherian module of σ then N is noetherian and it is known that every quotient
of a noetherian module is neotherian. Therefore every quotient of N is endo-noetherian.

□

Proposition 4. Let R be a commutative ring. We suppose M is finitely generated over S = End(M).
If M is an EKFN-module then these conditions are verified:

1. S = End(M) has stable range 1 and codim(End(M)) ≤ dim(M) + codim(M).
2. There are, up to isomorphim, only many finitely indecomposable projective End(M)-modules.

Proof. 1. M finitely generated EKFN-module over S = End(M) implies M is artinian, hence M
has a finite Goldie dimension. In addition M is cohopfian means every injective endomorphism
of M is bijective. Referring to Theorem 4.3 of [3], then the endomorphism ring S = End(M) is
semilocal. Therefore S = End(M) has stable range 1.

2. As End(M) is semilocal then by theorem 4.10 of [3] we have the result.
□
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Corollary 1. Let M be a R−EKFN-module. If B and C two arbitrary R-modules and A⊕B ≃ A⊕C,
then B ≃ C.

Proof. We prove this corollary by referring to Proposition 4 and Theorem 4.5 (Evans) of [3]. □

Proposition 5. Let R be a commutative ring and M a finitely generated R-module. If M is a EKFN-
module, then every object of σ has a projective cover.

Proof. M finitely generated over commutative ring, by referring to Lemma 2,
σ = R/Ann(M)-MOD meaning that every object of σ is a R/Ann(M)-module. In addition, by Lemma
1, R/Ann(M) is artinian principal ideal ring. So M is artinian. It is well known that every artinian
module is perfect. By definition of perfect ring, every object of σ have projective covers. □

Proposition 6. Let R be a ring and M a finitely generated module over S = End(M). Assume every
simple S -module has a flat cover. If M is an EKFN-module then M is a finite direct sum of S -modules
with local endomorphism ring.

Proof. M finitely generated over S = End(M) implies that M ≃ R/Ann(M) and M EKFN-module
implies that M is artinian. Hence S = End(M) is semilocal. In addition, since every simple S -module
has a flat cover, by referring on Theorem 3.8 of [4], S = End(M) is semiperfect. By Proposition 3.14
of [3] M is a direct sum of R-modules with local endomorphism ring. □

Theorem 1. Let R be a commuataive ring. If M is a finitely generated EKFN-module then the
following are equivalent:

1. Every object of σ is cu-uniserial.
2. Every object of σ is uiserial.

Proof. (2)⇒ (1) obvious
(1) ⇒ (2) M a finitely generated EKFN-module implies M ≃ R/Ann(M) is a artinian principal ideal
ring. Hence R/Ann(M) is a finite product of commutative artinian local rings. Suppose R/Ann(M) =
R1/Ann(M) × R2/Ann(M) with R1 and R2 are local rings.
Let K be a cu-uniserial object of σ and L a non-zero finitely generated submodule of K . Then K
is uniform and Bezout by Theorem 2.3 of [5]. This means that L is cyclic and hence there exist
left ideal I1 = K1/Ann(M) with Ann(M) ⊂ K1 and I2 = K2/Ann(M) with Ann(M) ⊂ K2 such that
L ≃ (R1 × R2)/I1 × I2 ≃ (R1/I1) × (R2/I2). Since L is uniform, either L ≃ (R1/I1) or L ≃ (R2/I2).
Therefore L is a local submodule. Hence L/Rad(L) is simple submodule of M thus K is uniserial. □

Theorem 2. Let R be a ring and M a finitely generated R-module. We suppose M/Rad(M) is a
subgenerator in σ. Then the following statements are equivalent.

1. M is an EKFN-module.
2. M is a local cu-uniserial module.
3. M is a semilocal cu-uniserial module.
4. M is a virtually uniserial module.

Proof. (1)⇒ (2) M finitely generated and EKFN-module implies that M ≃ R/Ann(M) is an artinian
principal ideal ring. By [6], modules over commutative artinian principal ideal ring and uniseriel
modules coincide. And it is easy to see that uniserial modules are cu-uniserial. In addition, M
artinian implies M is a finite product of artinian local submodules . Hence M is local.
(2)⇒ (3) Obvious
(1)⇔ (4) It follows from theorem 2.10 of [7]
(3) ⇒ (1) Let N be an endo-noetherian object of σ. M semilocal, hence M/Rad(M) is a semisimple
artinian module. In addition M/Rad(m) subgenerator in σ implies σ = σ[M/Ann(M)] meaning that
every object of σ[M] is an object of σ[M/Ann(M)]. Hence N ∈ σ[M/Ann(M)]. As M/Ann(M) is
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semisimple then every object of σ[M/Ann(M)] is semisimple therefore N is semisimple. It is well
known that for a semisimple module, endo-noetherian and noetherian coincide. In conclusion M is
an EKFN-module. □

Recall M is locally noetherian if every finitely generated submodule of M is noetherian.

Lemma 4. (From 27.3 of [2])
For an R-module M the following assertions are equivalent:

1. M is locally noetherian;
2. Every finitely generated module in σ is noetherian;

Theorem 3. Let M be a finitely generated module. The following conditions are equivalent:

1. M is EKFN-module;
2. M is locally noetherian;

Proof. 1) =⇒ 2) Let M an EKFN-module and N a finitely generated module ∈ σ. M finitely
generated implies σ = R/Ann(M)-MOD i.e. every object of σ is a R/Ann(M) -module. In addition M
EKFN-module implies by referring to Lemma 2 M ≃ R/Ann(M) is an artinian and so noetherian. We
know that any finitely generated module over noetherian ring is noetherian; therefore N is noetherian.
By Lemma 4 we can deduce that M is locally noetherian.
2) =⇒ 1) Let N ∈ σ an endo-noetherian module. Since M is locally noetherian, by Corollary
2.3 of [8]; R/Ann(M) is an noetherian ring and σ = R/Ann(M)-MOD. Hence N is a R/Ann(M)-
module. M ≃ R/Ann(M) is finitely generated and noetherian. Morever N ∈ σ implies N is an
ideal of R/Ann(M); hence a submodule of M. It’s well know over noetherian ring, every submodule
of finitely generated module is finitely generated. So N is noetherian because over noetherian ring,
finitely generated and noetherian coincide. Therefore M is an EKFN-module. □

Corollary 2. For an R-module M the following assertions are equivalent:

1. M is EKFN-module;
2. every injective module in σ is a direct sum of indecomposable. modules;

Proof. It results from Theorem 3 and 27.5 of [2]. □

Recall a R is a CD-ring if every consigular R-module is discrete, and M is a CD-module if every
M-cosingular module in σ is discrete.

Lemma 5. (Theorem 2.23 of [9]) The following are equivalent for a CD-module M.

1. M has finite hollow dimension;
2. M is semilocal and finitely generated

Lemma 6. (Proposition 2.26 of [9]) Let R be a commutative domain. Then the following are equiva-
lent.

1. R is a CD-ring;
2. Every consigular R-module is projective;
3. R is a field.

Theorem 4. Let M be a R-module with finite hollow dimension then the class of EKFN-modules
contains the class of CD-modules.

Proof. Suppose that M is a CD-module. Let N ∈ σ an endo-noetherian module. Since M is
CD-module with finite hollow dimension referring to Lemma 5 M is finitely gererated and so
M ≃ R/Ann(M). As M is CD-module, R/Ann(M) is a CD-ring and by Lemma 6 R/Ann(M) is a field.
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Hence R/Ann(M) is noetherian; M ≃ R/Ann(M) is finitely generated and noetherian. Morever N ∈ σ
implies N is an ideal of R/Ann(M); hence a submodule of M. It’s well know over noetherian ring,
every submodule of finitely generated module is finitely generated. So N is noetherian because over
noetherian ring, finitely generated and noetherian coincide. Therefore M is an EKFN-module. □
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4. Lomp, C., 1999. On semilocal modules and rings. Communications in Algebra, 27(8), pp.3961-
3975.

5. Nikandish, R., Nikmehr, M.J. and Yassine, A., 2022. Cyclic-Uniform Uniserial Modules and
Rings. arXiv preprint arXiv:2208.07940.
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