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Abstract: In this paper, we introduce the concept of the generalized 3-rainbow dominating function
of a graph G. This function assigns an arbitrary subset of three colors to each vertex of the graph with
the condition that every vertex (including its neighbors) must have access to all three colors within
its closed neighborhood. The minimum sum of assigned colors over all vertices of G is defined as
the g3-rainbow domination number, denoted by γg3r. We present a linear-time algorithm to deter-
mine a minimum generalized 3-rainbow dominating set for several graph classes: trees, paths (Pn),
cycles (Cn), stars (K1, n), generalized Petersen graphs (GP(n, 2), GP (n, 3)), and honeycomb networks
(HC(n)).
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1. Introduction

Domination and its variations in graphs have been extensively studied [1, 2]. For a graph G =
(V, E), a set S is a domination set if each vertex in V \ S is adjacent to a vertex in S . The domination
number γ(G) is the minimum cardinality of a dominating set of G. We call a dominating set of
cardinality γ(G) a γ(G)-set. For subsets S ,T ⊆ V , the set S is said to dominate T if every vertex in T
is adjacent to a vertex in S .

Domination describes situations where every unoccupied vertex requires a guard in its adjacent
vertices. In such scenarios, only one type of guard is assumed. Consider a more complex scenario
where there are multiple types of guards (let’s say k types), and each vertex that lacks a guard must
have all types of guards in its adjacent vertices.

From a practical perspective, consider a workshop with 5 mechanics performing the same task,
each requiring 7 different tools. Why should only a mechanic with no tools have access to all the tools
in their adjacent vertices? Instead, this condition should apply to all mechanics. In other words, a
mechanic with one, two, three, or any number of tools should have access to all 7 required tools around
them. Therefore, we propose a modification to the definition in the following article: ”All graph
vertices must see all labels in their neighborhood.” This relaxation leads to the following definitions:
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Let G be a graph and let f be a function assigning to each vertex a subset of colors selected from
the set {1, 2, 3}; that is, f : V(G) → P{1, 2, 3}. If for every vertex v ∈ V(G) such that f (v) = ∅, we
have

⋃
u∈V(G) f (u) = {1, 2, 3}.

A type of domination in graphs: Consider a set of 3 colors assigned randomly to each vertex of a
graph G. If we require that every vertex with an empty set assigned to it must have all 3 colors in its
neighborhood, then this is called the 3-rainbow dominating function of a graph G. The parameter γ3r,
which is the minimum total number of colors selected over all vertices of G, is called the 3-rainbow
domination number of G.

Definition 1. Assume G is a graph and let f be a function that assigns to each vertex a set of colorful
items selected from the set {1, 2, 3}; that is, f : V(G) → P({1, 2, 3}). A function f is described as
a generalized 3-rainbow dominating function (g3rd f ) of G if for each vertex v ∈ V(G), we have⋃

u∈N[v] f (u) = {1, 2, 3}. Therefore, f is named a generalized 3-rainbow dominating function (g3rd f )
of G. The weight ω( f ) of a function f is defined as ω( f ) =

∑
v∈V(G) | f (v)|. Given a graph G, the

minimum weight of a g3rd f is called the generalized 3-rainbow dominating number of G, denoted by
γg3r(G).

The following theorem is simple.

Theorem 1. Assume G is a graph. Then,

min{|G|, γ(G)} ≤ γg3r ≤ 3γ(G). (1)

2. Generalized 3-Rainbow Domination in Graphs

Lemma 1. a. γg3r(kn) = 3z.
b. γg3r(km,n) = 6.
c. γg3r(k1,n) = 3.

Proof. a. To check γg3r for graphs kn, where V(kn) = {v1, . . . , vn}, we can label f (v1) = {1, 2, 3} and
the rest of the vertices as ∅. Then, γg3r = 3 and γ(G) = 1.

b. Generally, for graphs km,n, where V(km,n) = {u1, . . . , um, v1, . . . , vn} with ui not adjacent to v j and
vice versa, we can label f (u1) = {1}, f (u2) = {2}, f (v1) = {1}, and f (v2) = {2}. Since f (u1) = {1}
and f (v1) = {1}, and f (v2) = {2}, at least one of the remaining vertices must have f = {3}, say
f (v3) = {2}, and then for the same reason, f (u3) = {3}. Therefore, if the rest of the vertices are
∅, then w( f ) = 6.

c. For graphs k1,n or star graphs, γg3r is w( f ) = 3.
□

Definition 2. A tree graph with n vertices having k pendant vertices of degree k + 2, and the initial
and final vertices of the graph have degree k + 1, is denoted by Fk.

Theorem 2. For the tree graphs Fk, γg3r = 3n.

Lemma 2. For the paths pi, we have

• for pi if i = 2, 3, then γg3r = 3,
• for pi if i, n ∈ N and 3n + 1 ≤ i ≤ 3(n + 1), then γg2r = 3n + 3.

Lemma 3. For the cycles Cn, we have

• for Ci if i = 2, 3, then γg3r = 3,
• for Ci if i, n ∈ N and i = 3n, then γg3r = 3n,
• for Ci if i, n ∈ N and 3n + 1 ≤ i ≤ 3(n + 1), then γg3r = 3n + 3.
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2.1. γg3r for graphs GP(n, 2)

Definition 3. Assume n ≤ 3 and k be initial natural numbers k < n. The generalized Petersen GP(n, k)
is defined as follows. Let Cn, C′n be two decompositions of length n. Suppose the vertices of Cn are
u1, . . . , un and edges uiui+1 for i = 1, . . . , n − 1 and unu1. Assume the vertices of C′n are v1, . . . , vn

and edges vivi+k for i = 1, . . . , n, the sum i + k being derived modulo ( mod ). The graph GP(n, k) is
obtained from i = 1, . . . , n. It’s clear that GP(n, k) = GP(n, n − k). The graph GP(5, 2) or GP(5, 3) is
the famous Petersen graph.

Theorem 3. For graphs GP(n, 2) with (n, 2) = 1, we have

γg3r ≤


6
⌊

n
3

⌋
, if n ≡ 0 (mod 3);

6
(⌊

n
3

⌋
+ 1
)
, if n ≡ 2 (mod 3);

6
⌊

n
3

⌋
+ 3, if n ≡ 1 (mod 3).

(2)

Proof. We use the following partition of V(GP(n, 2)):

(a) If n ≡ 0 (mod 3), then n = 3k. We use the following algorithm to define the function f on
GP(n, 2) where (n, 2) = 1:

1. f (ui) = ∅ if i . 0 (mod 3) and f (ui) = {1, 2, 3} if i ≡ 0 (mod 3).
2. f (v3t) = ∅ = f (v3t−1) for t = 1, 2, . . . , f (v3t+1) = {1, 2, 3} for t = 0, 1, 2, . . . .

In the graph GP(n, 2), the outer circle consists of vertices with multiples of 3 labeled {1, 2, 3},
resulting in γg3r for the outer circle equal to 2

⌊
n
3

⌋
, and the inner circle consists of vertices with

multiples of 3k+1 labeled {1, 2, 3}, resulting in γg3r for the inner circle equal to 3
⌊

n
3

⌋
. Therefore,

γg3r ≤ 3
⌊

n
3

⌋
+ 3
⌊

n
3

⌋
= 6
⌊

n
3

⌋
.

(b) If n ≡ 2 (mod 3), then we use the following algorithm to define the function f on GP(n, 2)
where (n, 2) = 1:

1. f (ui) = ∅ if i , n and i . 0 (mod 3), f (ui) = {1, 2, 3} if i ≡ 0 (mod 3), and f (un) = {1, 2, 3}.
2. f (v3t) = ∅ = f (v3t−1) for t = 0, 1, 2, . . . , f (v3t+1) = {1, 2, 3} for t = 1, 2, . . . .

In the graph GP(n, 2), the outer circle consists of vertices with multiples of 3 and the vertex
un labeled {1, 2, 3}, resulting in γg3r for the outer circle equal to 3

⌊
n
3

⌋
+ 3, and the inner circle

consists of vertices with multiples of 3k + 1 labeled {1, 2, 3}, resulting in γg3r for the inner circle
equal to 3

⌊
n
3

⌋
+ 3. Therefore, γg3r(GP(n, 2)) ≤ 3

⌊
n
3

⌋
+ 3 + 3

⌊
n
3

⌋
+ 3 = 6

⌊
n
3

⌋
+ 6.

(c) If n ≡ 1 (mod 3), then we use the following algorithm to define the function f on GP(n, 2)
where (n, 2) = 1:

1. f (ui) = ∅ if i , n and i . 0 (mod 3), and f (ui) = {1, 2, 3} if i ≡ 0 (mod 3).
2. f (v3t) = ∅ = f (v3t−1) for t = 1, 2, . . . , f (v3t+1) = {1, 2, 3} = f (vn) for t = 0, 1, 2, . . . .

In the graph GP(n, 2), the outer circle consists of vertices with multiples of 3 and the vertex
un labeled {1, 2, 3}, resulting in γg3r for the outer circle equal to 3

⌊
n
3

⌋
+ 3, and the inner circle

consists of vertices with multiples of 3k+1 and the vertex vn labeled {1, 2, 3}, resulting in γg3r for
the inner circle equal to 3

⌊
n
3

⌋
+ 3. Therefore, γg3r(GP(n, 2)) ≤ 3

⌊
n
3

⌋
+ 3+ 3

⌊
n
3

⌋
+ 3 = 6

(⌊
n
3

⌋
+ 1
)
.

□

Theorem 4. For graphs GP(n, 3) where (n, 3) = 1, we have:

γg3r ≤

 6
⌊

n
3

⌋
+ 3, if n ≡ 1 (mod 3);

6
⌈

n
3

⌉
, if n ≡ 2 (mod 3).

(3)

Proof. We use the following partition of V(GP(n, 3)):
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(a) If n ≡ 1 (mod 3), we use the following algorithm to define the function f on GP(n, 3) where
(n, 3) = 1:

1. In the graph GP(n, 3), the vertices u3k+1 for k = 0, 1, 2, . . . in the outer circle are labeled
{1, 2, 3}, and the rest of the vertices are labeled ∅. This results in γg3r for the outer circle
equal to 3

⌊
n
3

⌋
+ 3.

2. Vertices v3k+2 for k = 0, 2, 4, . . . in the inner circle are labeled {1, 2, 3}, and vertices v3k for
k = 1, 3, 5, . . . are also labeled {1, 2, 3}. The rest of the vertices are labeled ∅. This results in
γg3r for the inner circle equal to 3

2

⌊
n
3

⌋
. Therefore, γg3r(GP(n, 3)) ≤ 3

⌊
n
3

⌋
+3+ 3

2

⌊
n
3

⌋
+ 3

2

⌊
n
3

⌋
=

6
⌊

n
3

⌋
+ 3.

(b) If n ≡ 2 (mod 3), we use the following algorithm to define the function f on GP(n, 3) where
(n, 3) = 1:

1. In the graph GP(n, 3), the vertices u3k+1 for k = 0, 1, 2, . . . in the outer circle are labeled
{1, 2, 3}, and the rest of the vertices are labeled ∅. This results in γg3r for the outer circle
equal to 6

⌈
n
3

⌉
.

2. Vertices v3k+2 for k = 0, 2, 4, . . . in the inner circle are labeled {1, 2, 3}, and vertices v3k for
k = 1, 3, 5, . . . are also labeled {1, 2, 3}. The rest of the vertices are labeled ∅. This results
in γg3r for the inner circle equal to 3

2

⌈
n
3

⌉
. Therefore, γg3r(GP(n, 3)) ≤ 3

⌈
n
3

⌉
+ 3

2

⌈
n
3

⌉
+ 3

2

⌊
n
3

⌋
=

6
⌈

n
3

⌉
.

□

Definition 4. The honeycomb structure HC(1) has six sides. The honeycomb HC(2) is formed by
appending six hexagons to the outer edges of HC(1). Similarly, the honeycomb system HC(n) is
obtained from HC(n − 1) by adding six sides around the perimeter of HC(1). The number of vertices
and edges in HC(n) are 6n2 and 9n2 − 3n, respectively. In graph theory, the honeycomb system can
be represented as a brick structure by collapsing one set of opposite vertices along the direct lines,
resulting in the same number of vertices and edges. The honeycomb structure is widely used in various
applications such as all-to-all broadcasting in computer networking and in chemistry to model the
shape of various compounds.

Lemma 4. [3] The boundary of HC(n) is the cycle C6(2n−1).

Lemma 5. [3] For n ≥ 2, |V(HC(n))| − |V(HC(n − 1))| = 6(2n − 1).

Theorem 5. For the honeycomb network HC(n), we have

γg3rHC(n) =
n∑

k=2

γg3rC3(4k−2) =

n∑
k=2

3(4k − 2).

Proof. According to Lemma 1, HC(1) = C6 and HC(2) = C18, and so on, where HC(n) = C6(2n−1). To
find the generalized 3-rainbow dominating number of the honeycomb network HC(n), we label each
cycle separately up to the nth cycle. Then, we calculate γg3r for each cycle and add them together.
The labeling algorithm starts by labeling all the vertices of the first cycle with ∅, so γg3rHC(1) = 0.

To label the second cycle (without considering subsequent cycles), we select an arbitrary vertex
with degree 3 and label it {1, 2, 3}, and then label the rest of the vertices in the cycle in the same
pattern as the first cycle. The vertices are labeled as follows:

{1, 2, 3}, ∅, ∅, {1, 2, 3}, ∅, ∅, . . . , ∅.

According to Lemma 3, γg3rC3n = 3n. So, for k being the number of cycles,

γg3rHC(2) = γg3rC6(2(2)−1) = γg3rC18 = γg3rC3(6) = 3(4k − 2).
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Remark 1. The generalized 3-rainbow dominating number of the honeycomb network HC(n) is equal
to the generalized 3-rainbow dominating number of the same cycle and the previous cycles.

Then,

γg3rHC(3) = γg2rC6(2(3)−1) + γg3rC6(2(2)−1)

= γg3rC30 + γg2rC18

=

3∑
k=2

γg3rC3(4k−2)

=

3∑
k=2

3(4k − 2).

This process continues until

γg3rHC(n) =
n∑

k=2

γg3rC3(4k−2) =

n∑
k=2

3(4k − 2).

□

3. Conclusion and Future Works

In this paper, we have extended the concept of 3-rainbow domination to make it more applicable
in various fields while reducing associated costs. Instead of requiring vertices with empty labels,
we introduced a new condition that each vertex must have 3 neighbors. This generalized 3-rainbow
domination was applied to simple graphs as well as honeycomb networks.

Moving forward, there are several avenues for future research. One potential direction is to ex-
tend the concept of generalized k-rainbow domination to honeycomb networks and develop different
algorithms to solve related problems.
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