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1. Introduction

The decomposition of a graph H is a set of graphs {G1, G2, . . . , Gm} such that for every
edge e in H there exists exactly one graph Gi, where 1 ≤ i ≤ m, such that e ∈ E(Gi). If H is
the complete graph Kn and all graphs Gi are isomorphic to a fixed graph G, then we say that
there is a G-design of Kn. A graph is called bicyclic if it is a simple graph with exactly two
cycles. A graph G is connected if for every two vertices u, v ∈ V (G) there exists a path between
u and v. For this paper we will focus only on G-designs of graphs Kn where G is a connected
bicyclic graph on nine edges with at least one cycle that is not a 3-cycle, which we may refer
to as non-triangular connected bicyclic graphs. The class of triangular unicyclic graphs—i.e.,
graphs with exactly two cycles of length three—with nine edges was completely characterized
for K18k and K18k+1 by Freyberg, Froncek, Jeffries, Jensen, and Sailstad [1].

Assume G is a non-triangular connected bicyclic graph with nine edges. Because a complete
graph Kn has n(n − 1)/2 edges, it is apparent that n ≡ 0, 1 (mod 9) if there is a G-design of
Kn. This paper considers only G-designs of Kn in the cases when n ≡ 0, 1 (mod 18).

2. Definitions and Tools

In this section, we introduce the definitions and tools needed to find the desired decompo-
sitions. We begin with the definition of a ρ-labeling:

Definition 1. [2] Given a simple graph G with vertex set V (G) and edge set E(G) where
|E(G)| = n, a ρ-labeling of G is a one-to-one function f : V (G) → {0, 1, 2, . . . , 2n} such that
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the induced length function ℓ : E(G) → {0, 1, 2, . . . , n} where

ℓ(uv) = min{|f(u)− f(v)|, 2n+ 1− |f(u)− f(v)|}

is a bijection.

For bipartite graphs, we can define a more restrictive (and more powerful) labeling.

Definition 2. [2] Let G be a bipartite graph with n edges and vertex bipartition {A,B} and
let f be a ρ-labeling of G. Then f is an α-labeling if for all a ∈ A and b ∈ B we have
f(a) < f(b) ≤ n.

The ρ- and α-labelings were defined by Rosa [2] as a means to determine if K2n+1 or K2nk+1

has a G-design. The following definition is a variation of the ρ-labeling for tripartite graphs.

Definition 3. [3] Let G be a tripartite graph with n edges and vertex tripartition {A,B,C}
and let f be a ρ-labeling of G. Then f is a ρ-tripartite labeling of G if

1. f(a) < f(v) for any edge av ∈ E(G) where a ∈ A;
2. for every edge bc ∈ E(G), where b ∈ B and c ∈ C, there exists an edge b′c′ ∈ E(G), where

b′ ∈ B and c′ ∈ C, such that |f(b)− f(c)|+ |f(b′)− f(c′)| = 2n;
3. for all b ∈ B and c ∈ C, we have |f(b)− f(c)| ≠ 2n.

Notice that this definition can be also used when C is empty. In that case, we obtain a
slightly less restrictive version of the α-labeling. We do not require all vertices in A to have
lower labels than vertices in B, but instead only f(a) < f(b) whenever ab is an edge.

We now present definitions of a 1-rotational ρ-labeling and a 1-rotational ρ-tripartite labeling
as tools to find G-designs of K2n. By G⊖w we denote the graph arising from G by deletion of
its vertex w.

Definition 4. [4] Let G be a graph on n edges. A 1-rotational ρ-labeling of G is a one-to-one
function f : V (G) → {0, 2n− 2} ∪ {∞} such that

1. for some pendant vertex w ∈ V (G), we have f(w) = ∞;
2. f restricted to V (G⊖ w) is a ρ-labeling of G⊖ w.

Definition 5. [4] Let G be a tripartite graph with n edges and vertex tripartition
{A,B,C}. Then a 1-rotational ρ-tripartite labeling of G is a one-to-one function h : V (G) →
{0, 1, 2, . . . , 2n− 2} ∪ {∞} such that

1. h is a 1-rotational ρ-labeling of G with h(w) = ∞, where w has a degree of one;
2. if the edge av ∈ E(G) \ {uw}, where a ∈ A, then h(a) < h(v);
3. if bc ∈ E(G), where b ∈ B and c ∈ C, then there exists an edge b′c′ ∈ E(G), where b′ ∈ B

and c′ ∈ C, such that |h(b)− h(c)|+ |h(b′)− h(c′)| = 2n.

3. Relevant Theorems

Having defined our means of decomposing K18k and K18k+1, we now provide theorems to
support the legitimacy of our tools and definitions. The proofs for these can be found in the
provided references.

Theorem 1. [2] Let G be a graph with n edges. There exists a cyclic G-decomposition of
K2n+1 if G admits a ρ-labeling.

Theorem 2. [2] Let G be a bipartite graph on n edges that admits an α-labeling. Then there
exists a cyclic G-decomposition of K2nk+1 for all k ≥ 1.
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Theorem 3. [3] Let G be a tripartite graph on n edges that admits a ρ-tripartite labeling.
Then there exists a cyclic G-decomposition of K2nk+1 for all k ≥ 1.

Theorem 4. [4] Let G be a tripartite graph on n edges and a vertex of degree one that admits
a 1-rotational ρ-tripartite labeling. Then there exists a 1-rotational G-decomposition of K2nk

for all k ≥ 1.

When partite set C (from Definition 5) is an empty set, then the following theorem is an
easy corollary of the previous one.

Corollary 1. [4] Let G be a bipartite graph on n edges and a vertex w of degree one such that
G ⊖ w admits an α-labeling. Then there exists a 1-rotational G-decomposition of K2nk for all
k ≥ 1.

Using our tools and the theorems that support them, we are now ready to label our class of
graphs to find decompositions of K18k and K18k+1.

4. Catalog of Graphs and Necessary Conditions

Here, we catalog all 33 non-isomorphic non-triangular connected bicyclic graphs with nine
edges. Each graph is given a unique name Hi(j, k; ℓ), which defines the i-th non-isomorphic
graph containing cycles Cj and Ck connected by a path of length ℓ. This notation was previously
used by Froncek and Lee in [5].

The following necessary conditions for existence of the G-designs are easy to observe.

Theorem 5. Let G be a non-triangular connected bicyclic graph with nine edges. If there
exists a G-decomposition of Kn, then n ≡ 0, 1 (mod 9). Furthermore, if G ∈

{
H1(6, 3; 0),

H1(5, 4; 0)
}
, then n ≡ 1, 9 (mod 18).

Proof. Because our graphs have nine edges, we must have 9 | n(n−1)/2, which implies n ≡ 0, 1
(mod 9). Furthermore, consider if G ∈

{
H1(6, 3; 0), H1(5, 4; 0)

}
. When n is even, then Kn is

odd-regular, and because all vertices in G are even, no G-decomposition of Kn can exist with
n ≡ 0, 10 (mod 18).

H1(6, 3; 0) H1(5, 4; 0) H1(5, 3; 0) H2(5, 3; 0) H3(5, 3; 0)

H4(5, 3; 0) H1(5, 3; 1) H1(4, 4; 0) H2(4, 4; 0) H3(4, 4; 0)

H1(4, 4; 1) H1(4, 3; 0) H2(4, 3; 0) H3(4, 3; 0) H4(4, 3; 0)
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H5(4, 3; 0) H6(4, 3; 0) H7(4, 3; 0) H8(4, 3; 0) H9(4, 3; 0)

H10(4, 3; 0) H11(4, 3; 0) H12(4, 3; 0) H13(4, 3; 0) H14(4, 3; 0)

H15(4, 3; 0) H16(4, 3; 0) H1(4, 3; 1) H2(4, 3; 1) H3(4, 3; 1)

H4(4, 3; 1) H5(4, 3; 1) H1(4, 3; 2)

5. Graph Labelings

A ρ-tripartite labeling for each graph can be found in the Appendix. Also, 1-rotational ρ-
tripartite labelings for each such tripartite graph with a pendant edge (i.e., a degree-1 vertex)
can be found along side those ρ-tripartite labelings. For the bicyclic graphs that are bipartite,
we provide α-labelings and, for those with a pendant edge, 1-rotational ρ-labelings where the
removal of the degree-1 vertex w results in an α-labeling of the remaining graph G⊖ w.

Five of the graphs cataloged in Section 4 do not have a pendant edge, two of which were
shown in Theorem 5 not to decompose K18k at all. Decompositions of K18k into copies of the
other three graphs without a pendant edge—i.e., H1(5, 3; 1), H1(4, 4; 1), and H1(4, 3; 2)—are
treated in Section 6.

6. Graphs Without a Pendant Edge

For those graphs that do not have a degree-1 vertex, a 1-rotational ρ-labeling is not possible.
In this section, we find an alternative approach for settling decompositions of K18k. Again, we
note that this is only for graphs H1(5, 3; 1), H1(4, 4; 1), and H1(4, 3; 2).

First, we define the following notation for any graphs G and H and positive integers m and
n: Let m ·G denote the graph composed of m vertex-disjoint copies of G; whereas, if we write
mG, then the copies of G need not be vertex-disjoint, just edge-disjoint. Let G∪H denote the
edge-disjoint union of graphs G and H. If H is a subgraph of G, then we use G \H to denote
the subgraph of G with edge set E(G) \ E(H). If G and H are vertex-disjoint, then we use
G ∨H to denote the join of G and H, i.e., the graph with vertex set V (G) ∪ V (H) and edge
set E(G) ∪ E(H) ∪

{
uv : u ∈ V (G), v ∈ V (H)

}
. We also use Km×n to denote the complete

multipartite graph with m parts of size n each. Now, consider the following.
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Theorem 6. [6] If v is an odd positive integer, then there exists a PBD(v, {3, 5}).

Corollary 2. There exists a decomposition of Kv×m into copies of K3×m and K5×m for any
positive integers v,m with v odd.

For brevity of notation, we now substitute the names G1, G2, and G3 for graphs H1(5, 3; 1),
H1(4, 4; 1), and H1(4, 3; 2), respectively. When these graphs have vertex set {a, b, c, d, e, f,
g, h} ⊂ N, then we also use G1[a, b, c, d, e, f, g, h], G2[a, b, c, d, e, f, g, h], and G3[a, b, c, d, e, f,
g, h] to denote the graphs with edge sets {ag, ah, be, bf, bg, cd, ce, de, fh}, {ag, ah, bf, bg, bh,
ce, cf, de, df}, and {ag, ah, bf, bg, bh, cd, ce, cf, de}, respectively. For example, if we identify
the vertex labels seen in the Appendix with their vertices, then the ρ-tripartite labelings
of H1(5, 3; 1), H1(4, 4; 1), and H1(4, 3; 2) shown therein correspond to G1[1, 3, 4, 11, 2, 0, 14, 5],
G2[0, 1, 2, 3, 4, 6, 7, 9], and G3[12, 10, 8, 0, 17, 7, 6, 5], respectively.

Example 1. Let V (K9) = Z9 and let

∆1 =
{
G1[0, 1, 2, 3, 4, 5, 6, 7], G1[1, 8, 6, 2, 5, 7, 0, 3],

G1[4, 1, 6, 3, 8, 2, 7, 0], G1[7, 4, 0, 3, 5, 8, 6, 2]
}
,

∆3 =
{
G3[0, 1, 2, 3, 4, 5, 6, 7], G3[3, 2, 8, 6, 4, 7, 0, 1],

G3[6, 8, 5, 7, 4, 0, 2, 3], G3[7, 5, 1, 0, 4, 8, 6, 3]
}
.

Then ∆j is a Gj-decomposition of K9, for j ∈ {1, 3}.

Example 2. Let V (K18) = Z18 and let

∆2 =
{
G2[0, 4, 1, 2, 7, 5, 11, 15], G2[1, 5, 2, 3, 4, 6, 8, 12], G2[2, 6, 3, 0, 5, 7, 9, 13],

G2[3, 7, 0, 1, 6, 4, 10, 14], G2[4, 0, 11, 15, 5, 1, 9, 13], G2[5, 1, 8, 12, 6, 2, 10, 14],

G2[6, 2, 9, 13, 7, 3, 11, 15], G2[7, 3, 10, 14, 4, 0, 8, 12], G2[4, 0, 14, 16, 6, 2, 12, 17],

G2[5, 1, 15, 16, 7, 3, 13, 17], G2[6, 2, 12, 16, 4, 0, 14, 17], G2[7, 3, 13, 16, 5, 1, 15, 17],

G2[4, 0, 10, 17, 6, 2, 8, 16], G2[5, 1, 11, 17, 7, 3, 9, 16], G2[6, 2, 8, 17, 4, 0, 10, 16],

G2[7, 3, 9, 17, 5, 1, 11, 16], G2[15, 8, 13, 14, 11, 12, 9, 10], G2[17, 9, 14, 15, 16, 13, 10, 11],

G2[12, 10, 15, 17, 8, 14, 11, 16], G2[13, 11, 17, 12, 9, 15, 16, 8],

G2[14, 16, 12, 13, 10, 17, 8, 9]
}
.

Then ∆2 is a G2-decomposition of K18.

Example 3. Let V (K18 \K9) = Z18 where {9, 10, . . . , 17} are the vertices in the hole. Let

∆1 =
{
G1[0, 1, 2, 3, 9, 4, 10, 11], G1[0, 5, 2, 6, 11, 3, 9, 12], G1[1, 7, 4, 5, 10, 6, 13, 14],

G1[2, 3, 5, 12, 6, 14, 10, 7], G1[2, 4, 8, 15, 6, 7, 14, 5], G1[3, 1, 0, 7, 16, 5, 11, 17],

G1[4, 0, 5, 8, 14, 2, 15, 13], G1[5, 6, 3, 8, 13, 1, 16, 15], G1[6, 8, 1, 2, 12, 7, 10, 9],

G1[7, 4, 0, 6, 17, 8, 12, 11], G1[8, 2, 3, 7, 15, 4, 17, 16], G1[8, 4, 5, 13, 0, 3, 9, 1],

G1[16, 0, 7, 17, 1, 8, 3, 2]
}
,

∆2 =
{
G2[0, 1, 2, 3, 4, 5, 6, 7], G2[0, 4, 2, 3, 6, 9, 1, 5], G2[0, 8, 3, 6, 10, 11, 12, 13],

G2[1, 7, 0, 8, 15, 10, 13, 14], G2[2, 4, 3, 6, 7, 8, 11, 0], G2[2, 5, 1, 7, 12, 15, 14, 16],

G2[3, 4, 2, 5, 13, 12, 17, 16], G2[4, 2, 1, 5, 9, 17, 10, 15], G2[4, 5, 0, 2, 3, 8, 6, 7],

G2[5, 1, 0, 7, 17, 16, 10, 11], G2[6, 3, 2, 8, 7, 1, 12, 15], G2[7, 0, 6, 8, 16, 14, 9, 11],

G2[8, 6, 3, 4, 14, 13, 9, 17]
}
,

Utilitas Mathematica Volume 119, 37–49



R.C. Bunge, D. Froncek and A. Sailstad 42

∆3 =
{
G3[0, 1, 2, 3, 9, 10, 4, 11], G3[0, 1, 11, 3, 5, 6, 9, 12], G3[1, 2, 10, 5, 6, 7, 13, 14],

G3[2, 4, 9, 6, 7, 8, 11, 15], G3[4, 3, 13, 7, 8, 0, 10, 16], G3[5, 6, 16, 0, 1, 2, 12, 13],

G3[5, 6, 1, 3, 15, 8, 16, 17], G3[6, 7, 17, 1, 2, 4, 14, 15], G3[7, 8, 12, 2, 4, 3, 11, 16],

G3[8, 0, 14, 3, 4, 5, 10, 17], G3[8, 7, 5, 4, 9, 1, 0, 12], G3[14, 15, 7, 3, 17, 5, 0, 8],

G3[13, 6, 2, 5, 8, 0, 3, 4]
}
.

Then ∆j is a Gj-decomposition of K18 \K9, for j ∈ {1, 2, 3}.

Example 4. Let V (K9,9) = Z18 with bipartition
{
{j ∈ Z18 : j ≡ k (mod 2)} : k ∈ Z2

}
. Let

∆2 =
{
G2[2, 0, 16, 12, 11, 9, 7, 3] + j : j ∈ {0, 1, . . . , 8}

}
.

Then ∆2 is a G2-decomposition of K9,9.

Example 5. Let V (K9,9,9) = Z27 with tripartition
{
{j ∈ Z27 : j ≡ k (mod 3)} : k ∈ Z3

}
. Let

∆1 =
{
G1[0, 1, 4, 9, 2, 5, 11, 13] + j : j ∈ Z27

}
,

∆3 =
{
G3[0, 2, 5, 18, 16, 6, 7, 10] + j : j ∈ Z27

}
.

Then ∆j is a Gj-decomposition of K9,9,9, for j ∈ {1, 3}.

Example 6. Let V (K9,9,9,9,9) = Z45 with vertex partition
{
{j ∈ Z45 : j ≡ k (mod 5)} : k ∈

Z5

}
. Let

∆1 =
⋃

j∈Z45

{
G1[0, 1, 2, 3, 5, 7, 8, 16] + j, G1[0, 1, 2, 13, 25, 14, 19, 28] + j

}
,

∆3 =
⋃

j∈Z45

{
G3[0, 1, 2, 3, 5, 8, 19, 22] + j, G3[0, 1, 3, 7, 15, 12, 14, 17] + j

}
.

Then ∆j is a Gj-decomposition of K9,9,9,9,9, for j ∈ {1, 3}.

Finally, we turn our attention to how the above examples can be used to settle the missing
case for our graphs without a pendant edge.

Theorem 7. If G ∈
{
H1(5, 3; 1), H1(4, 4; 1), H1(4, 3; 2)

}
, then there exists a G-decomposition

of K18k for any k ≥ 1.

Proof. If k = 1 and G = G2 = H1(4, 4; 1), then the result follows from Example 2. If k = 1
and G ∈ {G1, G3} =

{
H1(5, 3; 1), H1(4, 3; 2)

}
, then the result follows from Examples 1 and 3

and the fact that K18
∼=

(
K18 \ K9

)
∪ K9. We now assume that k ≥ 2. Note that Kn

∼=(
(2k − 1) ·K9

)
∨K9 ∪K(2k−1)×9

∼= K18 ∪ (2k − 2)(K18 \K9) ∪K(2k−1)×9. Hence, we need only
prove the existence of G-decompositions of K18 \ K9 and K(2k−1)×9. The former is shown in
Example 3. If G = G2, then a G-decomposition of K(2k−1)×9 follows from the G2-decomposition
of K9,9. If G ∈ {G1, G3}, then we note that there exists a {K3×9, K5×9}-decomposition of
K(2k−1)×9 (by Corollary 2), and the result follows from Examples 5 and 6.

7. Main Results

From our constructions and labelings, we reach the following main results.

Theorem 8. Let G be a connected bicyclic graph with exactly nine edges and at least one cycle
that is not a 3-cycle. Then there exists a G-decomposition of K18k+1 for any k ≥ 1.
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Proof. For K18k+1 for any k ≥ 1, the proof follows from Theorems 2 and 3 and the α-labelings
and ρ-tripartite labelings given in the Appendix.

Theorem 9. Let G be a connected bicyclic graph with exactly nine edges and at least one cycle
that is not a 3-cycle, except for H1(6, 3; 0) and H1(5, 4; 0). Then there exists a G-decomposition
of K18k for any k ≥ 1.

Proof. For graphs G = H1(5, 3; 1), H1(4, 4; 1) and H1(4, 3; 2), the result follows from Theo-
rem 7. For the remaining graphs with a pendant edge, the proof follows from Theorem 4 and
Corollary 1 along with the 1-rotational ρ-tripartite labelings and 1-rotational ρ-labelings given
in the Appendix.

8. Conclusion

This paper provides a catalog of the 33 non-isomorphic connected bicyclic graphs on nine
edges with at least one cycle that is not a 3-cycle and determines whether or not each decom-
poses K18k and K18k+1. It was found that all graphs decompose K18k+1 and all graphs except
for H1(6, 3; 0) and H1(5, 4; 0) decompose K18k. For further research in this direction, there are
many classes of graphs on nine edges that have not yet been explored. Additionally, the tools
used in this paper only apply to decompositions of K18k+1 and K18k for k ≥ 1, and they do not
apply to K18k+9 and K18k+10. It may be worth further exploring other graph classes as well as
decompositions of these other complete graphs.
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Appendix

The left column contains the ρ-tripartite labelings for each graph, and the 1-rotational ρ-
tripartite labelings are provided in the right column, if they exist. The graph vertices are
organized into three rows denoted by A, B, and C; each row denotes the partite set to which a
vertex belongs. All lengths on edges between vertices in partite sets B and C show the positive
difference of their labels (as mentioned in Definition 3, part 2, and in Definition 5, part 3) in
parentheses.

A

B

C

H1(6, 3; 0)

01

8

17

2

763

8

9(9)

71 4 65

2

3

A

B

C

H1(5, 4; 0)

10

12

13

2
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87 42 1 53

6

9(9)
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B

C

H1(5, 3; 0)

1 0
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9
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2

6(13)

1

3 4

7
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9

08

∞
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5
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B
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9

4
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8 2

6(13)

1

3 4

7
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9

08

∞

6

5

4

1410
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4

5

1

7(10)

6

8(8)

2

A

B

C

H3(5, 3; 0)

8

0

17

12

9

4

710 8

2

6(13)

1

3 4

7

5(5)

9

08 ∞

6

5

4

1410
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4

5
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A

B

C

H4(5, 3; 0)

60

17

12

9

4
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6(13)

1

3 4

7

5(5)

9

08

∞

6

5

4

1410

∞3

4

5

1

7(10)

6

8(8)

2

A

B

C

H1(5, 3; 1)

20

4
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1
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