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Abstract: Graph theory has experienced notable growth due to its foundational role in applied
mathematics and computer science, influencing fields like combinatorial optimization, biochemistry,
physics, electrical engineering (particularly in communication networks and coding theory), and op-
erational research (with scheduling applications). This paper focuses on computing topological prop-
erties, especially in molecular structures, with a specific emphasis on the nanotube HAC5C7[w, t].
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1. Introduction

Graph theory originated with Leonhard Euler’s solution to the Seven Bridges of Königsberg prob-
lem in 1735. It has since become a fundamental area of applied mathematics, dealing with the study
of objects with connections and points known as graphs. If these connections are all one-way, the
graph is termed a directed graph or digraph. Graph theory finds applications in various fields such as
computer science, where it is used to model communication networks, computational devices, data
organization, and computation flow. Additionally, it is employed to study molecular properties in
chemistry, physics, and biology.

Claude Shannon’s seminal work laid the groundwork for exploring the information content of
graphs and networks over the past half-century [1, 2]. Graph entropy has emerged as a metric to
measure the structural complexity of graphs and networks [3], with applications in disciplines like
information theory, biology, chemistry, and sociology.

In mathematics, graph theory entails the study of graphs, which are represented by vertices (nodes)
connected by edges (lines). These mathematical structures are utilized to examine pairwise relations
between objects, facilitating the construction of road maps, diagrams, and other schematics. Graphs

http://dx.doi.org/10.61091/um119-03
http://www.combinatorialpress.com/um


Zakir et al. 18

play a crucial role in modern technological processes and communication, fostering logical and ab-
stract thinking. For instance, connecting dots to form shapes like animals in a game represents a basic
form of graph.

Chemical graph theory, a branch with around 500 articles published annually, focuses on chemical
indices derived from graph theory. These indices find applications in chemistry, aiding chemists in
their analyses. Prominent indices include the Zagreb indices, Wiener index, Randic index, and various
connectivity indices [4–7]. Topological indices, defined as graph invariants useful for chemical deter-
minations, play a significant role in quantitative structure-property and structure-activity relationships
(QSPR and QSAR) [8–15].

The study of graphs extends to their relationship with finite sequences of symbols, as seen in Parikh
word representable graphs (PWRGs). PWRGs are introduced based on the concept of subwords and
the Parikh matrix, leading to investigations into their properties [16–22].

Furthermore, chemical graph theory has sparked interest in various topological indices associated
with graphs, aiming to describe molecular structures in terms of these indices [23–29]. Numerous
studies have provided formulas for computing these indices and established constraints on their values
[30, 31].

This paper focuses on distance-based topological indices of binary core word PWRGs, expanding
upon recent research in the field.

Topological indices are real numbers associated with compounds and graph networks, providing
insights into their properties. These indices remain invariant and are crucial for predicting the prop-
erties and bioactivity of compounds in cheminformatics. They establish quantitative relationships
between molecular structure and property/activity. Polynomials, such as the Wiener polynomial or
Hosoya polynomial [32], are instrumental in creating distance-dependent topological indices. The M-
polynomial, introduced earlier, is used for degree-dependent topological indices, reflecting the close
relationship between valence and degree in chemistry [33].

Since the 1970s, degree-based graph invariants like the First and Second Zagreb indices have been
widely studied. Various types of graph indices are discussed below.

Definition 1. The first (a, b)-KA index, denoted KA1
(a,b)(G), is defined as

KA1
(a,b)(G) =

∑
xy∈E(G)

[
(dG(x)a + dG(y)a)

]b , (1)

where a, b ∈ R are suitably chosen parameters.

Definition 2. The reduced 1st (a, b)-KA index for a graph G is defined as

RKA1
a,b(G) =

∑
xy∈E(G)

[
(dG(x) − 1)a + (dG(y) − 1)a] . (2)

Definition 3. The reduced 2nd (a, b)-KA index for a graph G is defined as

RKA2
a,b(G) =

∑
xy∈E(G)

[
(dG(x))a(dG(y))a] . (3)

Definition 4. The reduced 2nd (a, b)-KA index for a graph G is defined as

RKA2
a,b(G) =

∑
xy∈E(G)

[
(dG(x) − 1)a(dG(y) − 1)a] . (4)

Definition 5. The Sombor index is introduced in [34] as

S O(G) =
∑

xy∈E(G)

√
(dG(x)2 + (dG(y))2). (5)

If we set a = 2 and b = 1
2 in the first (a, b)-KA index, we obtain the Sombor index.
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(a) The Cylinder Lattice of Hac5c7[w, t] Nan-
otube

(b) The 2-Dimensional Lattice of Hac5c7[w, t]
Nanotube

Figure 1. The Cylinder Lattice and the 2-Dimensional Lattice of Hac5c7[w, t] Nanotube

Definition 6. The modified Sombor index, denoted by mS O(G) [35], for a graph G is defined as

mS O(G) =
∑

xy∈E(G)

1√
(dG(x)2 + (dG(y)2)

. (6)

Definition 7. The reduced Sombor index for a graph G can be defined as

RS O(G) =
∑

xy∈E(G)

√
(dG(x − 1)2 + (dG(y − 1)2). (7)

Definition 8. The reduced modified Sombor index for a graph G can be defined as

RS O(G) =
∑

xy∈E(G)

1√
(dG(x − 1)2 + (dG(y − 1)2)

. (8)

2. Discussion and Results

In this section, we delve into the chemical structures of the nanotubes, specifically HAC5C7[w, t].
By employing the edge partition of the nanotube, we evaluate several topological invariants.

2.1. Topological Indices of HAC5C7[w; t] Nanotube

Figure 1 displays the carbon nanotube HAC5C7[w; t]’s molecular graphs. Cycles C5 and C7(C5C7)
net, a trivalent decoration made by alternating C5 and C7 by various chemicals, make up the architec-
ture of this nanotube. It can cover a torus or a cylinder.

Heptagon and pentagon nets make up the structure of this nanotube. Since all C5C7 nets are 8 bytes
in size and there are wt heptagons C7 in H, the size of the vertex set of the HAC5C7[w; t] nanotube
(w, t) is equal to n = V(HAC5C7[w; t]) = 8wt + 2w. On the other hand, the first row of H has w
numbers of vertices with degree 2, while the last row of H contains w numbers of vertices.

Figure 1 shows that the edge set of HAC5C7[w, t] may be classified into the following groups:

E1 = { jk ∈ E(HAC5C7[w, t]) : d j = 2; dk = 2},
E2 = { jk ∈ E(HAC5C7[w, t]) : d j = 3; dk = 2},
E3 = { jk ∈ E(HAC5C7[w, t]) : d j = 3; dk = 3}.

Such that |E1| = 0; |E2| = 4w; |E3| = 12wt − 2w. We may immediately obtain the findings listed below
from this edge partition.
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Theorem 1. The KA1
(a,b) of HAC5C7[w, t] is

KA1
(a,b)(HAC5C7[w, t]) = αw + βwt,

where α = 2
[
2(3a + 2a)b − (2 × 3a)b

]
and β = 12

[
(2 × 3a)b

]
.

Proof. Consider a chemical structure of nanotube HAC5C7[w, t] that is shown in Figure 1, using the
edge partition of nanotube HAC5C7[w, t] and by using the Eq. (1),

KA1
(a,b)(HAC5C7[w, t]) = |E1| [2a + 2a]b + |E2| [3a + 2a]b + |E3| [3a + 3a]b

= 0[2(a+1)]b + 4w[3a + 2a]b + (12wt − 2w)[2 × 3a]b

= 2[2(3a + 2a)b − (2 × 3a)b]w + 12[(2 × 3a)b]wt

= αw + βwt,

where α = 2[2(3a + 2a)b − (2 × 3a)b] and β = 12
[
(2 × 3a)b

]
. □

Theorem 2. The RKA1
(a,b) of HAC5C7[w, t] is

RKA1
(a,b)(HAC5C7[w, t]) = αw + βwt,

where α = 2
[
2(1 + 2a)b − 2(ab+b)

]
and β = 3

[
2(ab+b+2)

]
.

Proof. Consider a chemical structure of nanotube HAC5C7[w, t] that is shown in Figure 1, using the
edge partition of nanotube HAC5C7[w, t], by using Eq. (2), we have

RKA1
(a,b)(HAC5C7[w, t]) = |E1|[(2 − 1)a + (2 − 1)a]b + |E2|[(3 − 1)a + (2 − 1)a]b

+|E3|[(3 − 1)a + (3 − 1)a]b

= 0[2]b + 4w[1 + 2a]b + (12wt − 2w)[2(a+1)]b

= 2[2(1 + 2a)b − 2(ab+b)]w + 3[2(ab+b+2)]wt

= αw + βwt,

where α = 2
[
2(1 + 2a)b − 2(ab+b)

]
and β = 3

[
2(ab+b+2)

]
. □

Theorem 3. The KA2
(a,b) of HAC5C7[w, t] is

KA2
(a,b)(HAC5C7[w, t]) = αw + βwt,

where α = 2
[
2(6)ab − (3)2ab

]
and β = 4

[
(3)(2ab+1)

]
.

Proof. Consider a chemical structure of nanotube HAC5C7[w, t] shown in Figure 1, using the edge
partition of nanotube HAC5C7[w, t] and by Eq. (3), we have

KA2
(a,b)(HAC5C7[w, t]) = |E1|[2a × 2a]b + |E2|[3a × 2a]b + |E3|[3a × 3a]b

= 0[22a]b + 4w[6a]b + (12wt − 2w)[32a]b

= 2[2(6)ab − (3)2ab]w + 4[(3)(2ab+1)]wt

= αw + βwt,

where α = 2
[
2(6)ab − (3)2ab

]
and β = 4

[
(3)(2ab+1)

]
. □

Theorem 4. The RKA2
(a,b) index of HAC5C7[w, t] is

RKA2
(a,b)(HAC5C7[w, t]) = αw + βwt,

where, α = 2ab+2 − 22ab+1 and β = 3
[
22(ab+1)

]
.
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Proof. Consider a chemical structure of nanotube HAC5C7[w, t] shown in Figure 1, using the edge
partition of nanotube HAC5C7[w, t] and Eq. (4), we have

RKA2
(a,b)(HAC5C7[w, t]) = |E1|[(2 − 1)a × (2 − 1)a]b + |E2|[(3 − 1)a × (2 − 1)a]b

+|E3|[(3 − 1)a × (3 − 1)a]b

= 0 + 4w[2a]b + (12wt − 2w)[22a]b

= αw + βwt,

where, α = 2ab+2 − 22ab+1 and β = 3
[
22(ab+1)

]
. □

Theorem 5. The Sombor index of HAC5C7[w, t] is

S (HAC5C7[w, t],H2) = αw + βwt,

where, α = 2
[
2
√

13 − 3
√

2
]

and β = 36
[√

2
]
.

Proof. Consider a chemical structure of nanotube HAC5C7[w, t] shown in Figure 1, using the edge
partition of nanotube HAC5C7[w, t] and Eq. (5), we have

S O(HAC5C7[w, t]) = |E1|
√

(22 + 22) + |E2|
√

(22 + 32) + |E3|
√

(32 + 32)
= 0

√
8 + 4w

√
13 + (12wt − 2w)

√
18

= [4
√

13 − 6
√

2]w + 36[
√

2]wt

= αw + βwt,

where, α = 2
[
2
√

13 − 3
√

2
]

and β = 36
[√

2
]
. □

Theorem 6. The modified Sombor index of HAC5C7[w, t] is

mS O(HAC5C7[w, t],H2) = αw + βwt

where, α = 4
√

13
−
√

2
3 and β = 2

[√
2
]
.

Proof. Consider a chemical structure of nanotube HAC5C7[w, t] shown in Figure 1, using the edge
partition of nanotube HAC5C7[w, t] and Eq. (6), we have

mS O(HAC5C7[w, t]) =
|E1|√

(22 + 22)
+

|E2|√
(22 + 32)

+
|E3|√

(32 + 32)

=
0
√

8
+

4w
√

13
+

(12wt − 2w)
√

18

= [
4
√

13
−

√
2

3
]w + 2[

√
2]wt

= αw + βwt,

where, α = 4
√

13
−
√

2
3 and β = 2

[√
2
]
. □

Theorem 7. The reduced Sombor index of HAC5C7[w, t] is

RS O(HAC5C7[w, t],H2) = αw + βwt,

where, α = 4
[√

5 −
√

2
]

and β = 24
[√

2
]
.
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Proof. Consider a chemical structure of nanotube HAC5C7[w, t] shown in Figure 1, using the edge
partition of nanotube HAC5C7[w, t] and Eq. (7), we have

RS O(HAC5C7[w, t]) = |E1|
√

(2 − 1)2 + (2 − 1)2 + |E2|
√

(2 − 1)2 + (3 − 1)2 + |E3|
√

(3 − 1)2 + (3 − 1)2

= 0
√

2 + 4w
√

5 + (12wt − 2w)
√

8
= 4[

√
5 −
√

2]w + 24[
√

2]wt

= αw + βwt,

where, α = 4
[√

5 −
√

2
]

and β = 24
[√

2
]
. □

Theorem 8. The modified reduced Sombor index of HAC5C7[w, t] is

mRS O(HAC5C7[w, t],H2) = αw + βwt,

where, α = 4
√

5
− 1

1

√
2 and β = 3

[√
2
]
.

Proof. Consider a chemical structure of nanotube HAC5C7[w, t] shown in Figure 1, using the edge
partition of nanotube HAC5C7[w, t] and Eq. (8), we have

mRS O(HAC5C7[w, t]) =
|E1|√

(2 − 1)2 + (2 − 1)2
+

|E2|√
(2 − 1)2 + (3 − 1)2

+
|E3|√

(3 − 1)2 + (3 − 1)2

=
0
√

2
+

4w
√

5
+

(12wt − 2w)
√

8

= [
4
√

5
−

1
1

√
2]w + 3[

√
2]wt

= αw + βwt,

where, α = 4
√

5
− 1

1

√
2 and β = 3

[√
2
]
. □

3. Conclusion

In the realm of molecular studies, topological indices have emerged as indispensable tools, offering
valuable numerical descriptors that encapsulate the nuances of various molecular structures. Through
our in-depth exploration, we’ve calculated numerous topological properties, including, but not lim-
ited to, the 1st KA index, reduced 1st KA index, the 2nd KA index, and the reduced 2nd KA index,
the Sombor index, modified Sombor index, reduced Sombor index, and modified reduced Sombor
index, focusing specifically on the nanotube HAC5C7[w, t]. A notable outcome of our research is the
observation that the culmination of each theorem invariably takes a quadratic form, highlighting a
consistent pattern in our findings. Moreover, the graphical representations and comparisons signifi-
cantly enhanced our comprehension of these indices. Not only did these visuals serve as clarifying
agents, but they also underscored the potency of the indices in delivering outstanding results. As we
forge ahead in this field, the insights gained from this study reaffirm the invaluable role of topological
indices in understanding molecular intricacies.
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