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1. Introduction

The study of spectral graph theory explores connections between the algebraic characteristics of
the spectra of specific matrices associated with a graph. Various matrices, including the Laplacian
matrix, incidence matrix, adjacency matrix, and distance matrix, are connected to a graph.

The idea of graph energy originated in quantum chemistry in 1930 when E. Huckel introduced
the chemical applications of graph theory in molecular orbital theory for the π-electron network of
conjugated hydrocarbons, leading to the discovery of eigenvalues.

In [1], the distance spectrum and distance energy of some families of graphs are calculated. Hampi-
holi in [2] presents results for different energies for the shadow graph. In [3], the author defines
maximum reverse degree energy, provides some properties, and generates results for this energy for
some families. In [4], the maximum degree energy of a graph is defined, and bounds for its results
are given. [5] establishes relations between the maximum energy and minimum energy of the shadow
and splitting graphs of a graph. In [6], the characteristic polynomial of the minimum degree matrix of
graphs obtained by certain graph operations is discussed, along with bounds for the largest minimum
degree eigenvalue and minimum degree energy of graphs. [7] provides the energy of a graph class in
terms of another graph class after removing a vertex. In [8], the corresponding energy of a given graph
G is expressed as a multiple of various graph energies of the regular splitting graph S (G). Numer-
ous applications of graph theory in computer science and engineering are detailed in [9]. [10] proves
that the splitting graph S ′(G) is a Zagreb hyper-energetic graph. In [11], various lower and upper
bounds for graph energy E(G) are derived. [12] presents bounds and characterizations on the largest
eigenvalue of the Sombor matrix S (G) and Sombor energy of graphs. Statistical information on the
research of graph energies and their applications is provided in [13]. [14] introduces the Sombor char-
acteristic polynomial and the Sombor energy for some graph classes. In [15], the author establishes

http://dx.doi.org/10.61091/um119-08
http://www.combinatorialpress.com/um


Ibrahim, A. and Nazeer, S. 74

the relationship between energy and Sombor energy of the m-splitting graph and m-shadow graph
of a k-regular graph. [16] calculates average degree eigenvalues and average degree energy for some
families of graphs. In [17], Kousar and Nazeer present results for numerous graph energies of the reg-
ular subdivision graph and complete graph. The study of the energies of some classes of non-regular
graphs is shown in [18].

This paper is organized as follows: Section 2 presents the results of the maximum degree energy
of the splitting graph and shadow graph of a complete graph after removing a vertex. Section 3
discusses the results of the maximum reverse degree energy of the splitting graph and shadow graph
of a complete graph after removing a vertex.

2. Preliminaries

Let G be a simple, undirected and finite graph and let its vertex set and edge set be denoted by
V(G) = {v1, v2, v3, ..., vp} and E(G) = {e1, e2, e3, ..., eq} respectively. The number of edges associated
with a vertex v of a graph G is called the degree of vertex v and is denoted by dv or d(v) [19].

Let λ1, λ2, λ3, ..., λk be the eigenvalues of G. Gutman in 1978 [20] defined the energy of the graph
G as the sum of the absolute values of all eigenvalues of G. Therefore,

E(G) =
k∑

i=1

|λi|.

The maximum degree matrix Me(G) = [Mi j] [4] of G is defined as

[Mi j] =

max(di, d j), if vi and v j are adjacent;
0, otherwise.

Adiga defined the maximum degree energy M(G) of a simple connected graph G as the sum of the
absolute values of eigenvalues of the maximum degree matrix M[i j] of G.

Let ∆(G) denote the maximum degree among the vertices of G. The reverse vertex degree of a
vertex vi in G is defined as cvi = ∆(G) − d(vi) + 1 where d(vi) is the degree of vertex vi. Then the
maximum reverse degree matrix is defined as MR(G) = (ri j) [3], where

[ri j] =

max(ci, c j), if vi and v j are adjacent;
0, otherwise.

The maximum reverse degree energy MR(G) of a simple connected graph G is the sum of the
absolute values of eigenvalues of the maximum reverse degree matrix r[i j] of G.

3. Maximum Degree Energy of Complete Graph

Theorem 1. For the complete graph Kn with n ≥ 4, the maximum degree energy Me(Kn) is given by
Me(Kn) = 2 · deg(v)2, where v is any vertex.

Proof. The conclusion is derived from the fundamental properties of complete graphs Kn, where each
vertex shares an edge with every other vertex, resulting in a degree of (n − 1) for each vertex.

Vertices (n ≥ 4) Degree deg(Kn) Maximum Degree Energy Me(Kn)
n = 4 deg(K4) = 3 Me(K4) = 18
n = 5 deg(K5) = 4 Me(K5) = 32
n = 6 deg(K6) = 5 Me(K6) = 50
...

...
...

nth deg(Kn) = n − 1 Me(Kn) = 2 · deg(v)2
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□

Theorem 2. For a complete graph Kn with n ≥ 4, the maximum degree energy Me(Kn) satisfies the
relation

Me[Kn] =
(

deg(v)
deg(v) − 1

)2

Me[Kn − v].

Proof. Consider a complete graph Kn where each vertex shares exactly one edge with every other
vertex, resulting in a degree of (n − 1) for each vertex. We will prove the given relation using mathe-
matical induction.
Basic step: Let n = 5, then

Me[K5] =
(

deg(v)
deg(v) − 1

)2

Me[K5 − v].

=

(
deg(v)

deg(v) − 1

)2

Me[K4].

=

(
4
3

)2

(18) = 32 = Me[K5].

Hence, the result holds for n = 5.
Induction hypothesis: Assume that the result holds for n = m, i.e.,

Me[Km] =
(

deg(v)
deg(v) − 1

)2

Me[Km − v]

=

(
(m − 1)
(m − 2)

)2

Me[Km−1].

Induction step: Now, we prove the result for n = (m + 1).

Me[Km+1] =
( m
m − 1

)2
Me[Km]

=

( m
m − 1

)2
(

deg(v)
deg(v) − 1

)2

Me[Km − v]

=

(
deg(v)

deg(v) − 1

)2 ( m
m − 1

)2
Me[Km−1]

=

(
m − 1
m − 2

)2 ( m
m − 1

)2
Me[Km−1]

=

( m
m − 1

)2
(
m − 1
m − 2

)2

Me[Km−1]

=

(
deg(v)

deg(v) − 1

)2

Me[Km]. (1)

Eq. (1) demonstrates that the result holds for n = (m + 1).
Since mathematical induction performs the basis and induction steps, the result holds for all n ≥ 5.

Vertices (n ≥ 5) Me(Kn) Me(Kn − v)
n = 5 Me(K5) = 32 Me(K5 − v) = 18
n = 6 Me(K6) = 50 Me(K6 − v) = 32
n = 7 Me(K7) = 72 Me(K7 − v) = 50
n = 8 Me(K8) = 98 Me(K8 − v) = 72
...

...
...
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□

Corollary 1. For n ≥ 5, the difference in energy between a complete graph Kn and its vertex deletion
Kn − v is given by

Me(Kn) − Me(Kn − v) = 4n + 14.

Vertices (n ≥ 5) Me(Kn) Me(Kn − v) Difference
n = 5 Me(K5) = 32 Me(K5 − v) = 18 14
n = 6 Me(K6) = 50 Me(K6 − v) = 32 18
n = 7 Me(K7) = 72 Me(K7 − v) = 50 22
n = 8 Me(K8) = 98 Me(K8 − v) = 72 26
...

...
...

...

4. Maximum Degree Energy of Splitting Graph

Theorem 3. For the splitting graph Sp(Kn − v), where n ≥ 4, we have

Me(Sp(Kn − v)) = 2
√

5Me(Kn−1).

Proof. Consider a complete graph K6, where K6 − v denotes the deletion of a vertex from K6 and
Sp(K6 − v) represents the splitting graph. To demonstrate that

Me(Sp(K6 − v)) = 2
√

5Me(K6−1),

we calculate the energy of Sp(K6 − v).

Me(Sp(K6 − v)) =



0 8 8 8 8 0 8 8 8 8
8 0 8 8 8 8 0 8 8 8
8 8 0 8 8 8 8 0 8 8
8 8 8 0 8 8 8 8 0 8
8 8 8 8 0 8 8 8 8 0
0 8 8 8 8 0 0 0 0 0
8 0 8 8 8 0 0 0 0 0
8 8 0 8 8 0 0 0 0 0
8 8 8 0 8 0 0 0 0 0
8 8 8 8 0 0 0 0 0 0


The characteristic polynomial of Me(Sp(K6 − v)) is:

λ10 − 1920λ8 − 40960λ7 − 20480λ6 + 5111808λ5 + 13107200λ4

− 293601280λ3 − 25168240λ2 + 8053063680λ − 17179869184 = 0.

The eigenvalues are:

λ1 = 51.7771, λ2 = λ3 = λ4 = λ5 = 4.9443, λ6 = λ7 = λ8 = λ9 = −12.9443, λ10 = −19.7771.

Thus, the spectral matrix Spec(Me(Sp(K6 − v))) is:(
−19.7771 −12.9443 4.9443 51.7771

1 4 4 1

)
Hence, Me(Sp(K6 − v)) = 143.1084 = 2

√
5Me(Sp(K5)) = 2

√
5Me(K6 − v).
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Me(Kn) Me(Sp(Kn − v)) Me(Kn − v) = 2
√

5Me(Kn−1)
Me(K6) = 50 Me(Sp(K6 − v)) = 143.1084 Me(Sp(K6 − v)) = 2

√
5(32)

Me(K7) = 72 Me(Sp(K7 − v)) = 223.6068 Me(Sp(K7 − v)) = 2
√

5(50)
Me(K8) = 98 Me(Sp(K8 − v)) = 321.9938 Me(Sp(K8 − v)) = 2

√
5(72)

Me(K9) = 128 Me(Sp(K9 − v)) = 438.2698 Me(Sp(K9 − v)) = 2
√

5(98)
...

...
...

□

5. Maximum Degree Energy of Shadow Graph

Theorem 4. For a complete graph Kn with n ≥ 6, the maximum degree energy of its shadow graph is
given by

Me(D(Kn − v)) = 4Me(Kn−1).

Proof. Consider a complete graph K6. Let K6 − v denote the deletion of a vertex from K6, and let
D(K6 − v) represent its shadow graph. We aim to demonstrate that

Me(D(K6 − v)) = 4Me(K6 − v).

The maximum degree energy matrix Me(D(K6 − v)) for K6 − v is as follows:

0 8 8 8 8 0 8 8 8 8
8 0 8 8 8 8 0 8 8 8
8 8 0 8 8 8 8 0 8 8
8 8 8 0 8 8 8 8 0 8
8 8 8 8 0 8 8 8 8 0
0 8 8 8 8 0 8 8 8 8
8 0 8 8 8 8 0 8 8 8
8 8 0 8 8 8 8 0 8 8
8 8 8 0 8 8 8 8 0 8
8 8 8 8 0 8 8 8 8 0


The characteristic polynomial of Me(D(K6 − v)) is

λ10 − 2560λ8 − 8190λ7 − 983040λ6 − 4194304λ5 = 0.

Its eigenvalues are λ1 = 64, λ2 = 8.5850e−15, λ3 = 5.3785e−15, λ4 = 3.8317e−15, λ5 = 1.1914e−15,
λ6 = −4.3013e−15, λ7 = λ8 = λ9 = λ10 = −16. Thus,

Spec(Me(D(K6 − v))) =
(
−16 −4.3013e−15 1.1914e−15 3.8317e−15 5.3785e−15 8.5850e−15 64

4 1 1 1 1 1 1

)
Therefore, Me(D(K6 − v)) = 128 = 4Me(K5) = 4Me(K6 − v).
The Table below demonstrates the relationship between the maximum degree energies of the com-

plete graph and its shadow graph after vertex deletion:

Me(Kn) Me(D(Kn − v)) Me(D(Kn − v)) = 4Me(Kn−1)
Me(K6) = 50 Me(D(K6 − v)) = 128 Me(D(K6 − v)) = 4(32)
Me(K7) = 72 Me(D(K7 − v)) = 200 Me(D(K7 − v)) = 4(50)
Me(K8) = 98 Me(D(K8 − v)) = 288 Me(D(K8 − v)) = 4(72)

Me(K9) = 128 Me(D(K9 − v)) = 392 Me(D(K9 − v)) = 4(98)
...

...
...

□
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6. Maximum Reverse Degree Energy of Complete Graph

Theorem 5. For the complete graph Kn with n ≥ 4, we have MR[Kn] = 2(n−1), where v is any vertex.

Proof. The conclusion follows from the definition of a complete graph Kn, where each vertex has the
same degree (n − 1).

Vertices (n ≥ 4) deg(Kn) MR(Kn)
n = 4 deg(K4) = 3 MR(K4) = 6
n = 5 deg(K5) = 4 MR(K5) = 8
n = 6 deg(K6) = 5 MR(K6) = 10
...

...
...

nth deg(Kn) = n − 1 MR(Kn) = 2(n − 1)

□

7. Maximum Reverse Degree Energy of Complete Graph

Theorem 6. For a complete graph Kn where n ≥ 4,

MR[Kn] =
deg(v)

deg(v) − 1
MR[Kn − v].

Proof. Consider a complete graph Kn where each vertex has degree (n − 1), and exactly one edge
is shared by every pair of vertices. We utilize the principle of mathematical induction to prove this
conclusion.
Base step: Let n = 5. Then,

MR[K5] =
deg(v)

deg(v) − 1
MR[K5 − v]

=
deg(v)

deg(v) − 1
MR[K5 − v]

=
deg(v)

deg(v) − 1
MR[K4]

=
4
3

(6) = 8 = MR[K5].

Hence, the result is true for n = 5.
Induction hypothesis: Assume that the result holds for n = m. Then,

MR[Km] =
deg(v)

deg(v) − 1
MR[Km − v]

=
deg(v)

deg(v) − 1
MR[Km−1]

=
(m − 1)
(m − 2)

MR[Km−1].

Induction step: Now, we prove the result for n = (m + 1). That is,

MR[Km+1] =
deg(v)

deg(v) − 1
MR[Km+1 − v].

Consider

MR[Km+1] =
m

m − 1
MR[Km]
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=

( m
m − 1

) deg(v)
deg(v) − 1

MR[Km − v]

=
deg(v)

deg(v) − 1

( m
m − 1

)
MR[Km−1]

=

(
m − 1
m − 2

) ( m
m − 1

)
MR[Km−1]

=

( m
m − 1

) (m − 1
m − 2

)
MR[Km−1]

=
deg(v)

deg(v) − 1
MR[Km]. (2)

The Eq. (2) demonstrates that the result is accurate for n = (m + 1).
Eq. (2) is true because mathematical induction performs the basis and induction stages. Hence,

the result holds for all n ≥ 5.

Vertices (n ≥ 5) MR(Kn) MR(Kn − v)
n = 5 MR(K5) = 8 MR(K5 − v) = 6
n = 6 MR(K6) = 10 MR(K6 − v) = 8
n = 7 MR(K7) = 12 MR(K7 − v) = 10
n = 8 MR(K8) = 14 MR(K8 − v) = 12
...

...
...

□

Corollary 2. The energy difference between a complete graph Kn and its vertex deletion Kn − v is
equal to 2 for n ≥ 5:

MR(Kn) − MR(Kn − v) = 2.

Vertices (n ≥ 5) MR(Kn) MR(Kn − v) Difference
n = 5 MR(K5) = 8 MR(K5 − v) = 6 2
n = 6 MR(K6) = 10 MR(K6 − v) = 8 2
n = 7 MR(K7) = 12 MR(K7 − v) = 10 2
n = 8 MR(K8) = 14 MR(K8 − v) = 12 2
...

...
...

...

8. Maximum Reverse Degree Energy of Splitting Graph

Theorem 7. For a complete graph Kn where n ≥ 4,

MR(Sp(Kn − v)) =
√

4n2 + 1 · MR(Kn−1).

Proof. Consider a complete graph K6, where K6−v is the deletion of a vertex from K6, and Sp(K6−v)
is a splitting graph. We aim to prove that

MR(Sp(K6 − v)) =
√

4n2 + 1 · MR(K6−1).
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MR(Sp(K6 − v)) =



0 1 1 1 1 0 5 5 5 5
1 0 1 1 1 5 0 5 5 5
1 1 0 1 1 5 5 0 5 5
1 1 1 0 1 5 5 5 0 5
1 1 1 1 0 5 5 5 5 0
0 5 5 5 5 0 0 0 0 0
5 0 5 5 5 0 0 0 0 0
5 5 0 5 5 0 0 0 0 0
5 5 5 0 5 0 0 0 0 0
5 5 5 5 0 0 0 0 0 0


The characteristic polynomial of MR(Sp(K6 − v)) is

λ10 − 510λ8 − 1520λ7 + 42235λ6 + 111996λ5 − 1468750λ4

− 2787500λ3 + 24140625λ2 + 23437500λ − 15620000 = 0.

Its eigenvalues are

λ1 = 22.0998,
λ2 = λ3 = λ4 = λ5 = 4.5249,
λ6 = λ7 = λ8 = λ9 = −5.5249,
λ10 = −18.0998.

Spec(Me(Sp(K6 − v))) =
(
−18.0998 −5.5249 4.5249 22.0998

1 4 4 1

)
Thus,

MR(Sp(K6 − v)) = 80.3990 =
√

4n2 + 1 · MR(K5) =
√

4n2 + 1 · MR(K6 − v).

MR(Kn) MR(Sp(Kn − v)) MR(Kn − v) =
√

4n2 + 1 · MR(Kn−1)
MR(K6) = 10 MR(Sp(K6 − v)) = 80.3990 MR(Sp(K6 − v)) =

√
4n2 + 1 · (8)

MR(K7) = 12 MR(Sp(K7 − v)) = 120.4159 MR(Sp(K7 − v)) =
√

4n2 + 1 · (10)
MR(K8) = 14 MR(Sp(K8 − v)) = 168.4280 MR(Sp(K8 − v)) =

√
4n2 + 1 · (12)

MR(K9) = 16 MR(Sp(K9 − v)) = 224.4371 MR(Sp(K9 − v)) =
√

4n2 + 1 · (14)
...

...
...

□

9. Maximum Reverse Degree Energy of Shadow Graph

Theorem 8. For a complete graph Kn where n ≥ 4,

MR(D(Kn − v)) = 2n · MR(Kn−1).

Proof. Consider a complete graph K6, where K6 − v is the deletion of a vertex from K6, and D(K6 − v)
is a shadow graph. We aim to prove that

MR(D(K6 − v)) = 2n · MR(K6 − v).
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MR(D(K6 − v)) =



0 1 1 1 1 0 5 5 5 5
1 0 1 1 1 5 0 5 5 5
1 1 0 1 1 5 5 0 5 5
1 1 1 0 1 5 5 5 0 5
1 1 1 1 0 5 5 5 5 0
0 5 5 5 5 0 1 1 1 1
5 0 5 5 5 1 0 1 1 1
5 5 0 5 5 1 1 0 1 1
5 5 5 0 5 1 1 1 0 1
5 5 5 5 0 1 1 1 1 0


The characteristic polynomial of MR(D(K6 − v)) is

λ10 − 520λ8 − 3040λ7 + 34320λ6 + 203392λ5 − 1036800λ4

− 4792320λ3 + 17141760λ2 + 39813120λ − 127401984 = 0.

Its eigenvalues are

λ1 = 24, λ2 = λ3 = λ4 = λ5 = 4, λ6 = λ7 = λ8 = λ9 = −6, λ10 = −16.

Spec(MR(D(K6 − v))) =
(
−16 −6 4 24

1 4 4 1

)
Thus,

MR(D(K6 − v)) = 80 = 2n · MR(K5) = 2n · MR(K6 − v).

MR(Kn) MR(D(Kn − v)) MR(D(Kn − v)) = 2n · MR(Kn−1)
MR(K6) = 10 MR(D(K6 − v)) = 80 MR(D(K6 − v)) = 2n · (8)
MR(K7) = 12 MR(D(K7 − v)) = 120 MR(D(K7 − v)) = 2n · (10)
MR(K8) = 14 MR(D(K8 − v)) = 168 MR(D(K8 − v)) = 2n · (12)
MR(K9) = 16 MR(D(K9 − v)) = 224 MR(D(K9 − v)) = 2n · (14)

...
...

...

□

10. Conclusion

In this study, we have examined the family of complete graphs and their associated splitting and
shadow graphs to investigate their energies after the deletion of a vertex. Specifically, we have estab-
lished the relationship between the maximum degree energy and the maximum reverse degree energy
of complete graphs and their splitting and shadow graphs for vertex deletions.
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