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Abstract: A module M over a commutative ring is termed an S CDF-module if every Dedekind
finite object in σ[M] is finitely cogenerated. Utilizing this concept, we explore several properties and
characterize various types of S CDF-modules. These include local S CDF-modules, finitely generated
S CDF-modules, and hollow S CDF-modules with Rad(M) = 0 , M. Additionally, we examine QF
S CDF-modules in the context of duo-ring.
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1. Introduction

Throughout this paper, all rings are assumed to be either commutative or duo-rings with 1 , 0.
A module M over a commutative ring is termed Dedekind finite (respectively, finitely cogenerated)
if every monomorphism f : M −→ M is an automorphism (respectively, if S oc(M) is essential and
finitely generated). Although any finitely cogenerated module is Dedekind finite, the converse is not
generally true. In light of this fact, we utilize theσ[M] category to introduce the concept of an S CDF-
module, which is a generalization of the S CDF-ring. We define a non-zero R-module M as hollow if
every proper submodule of it is superfluous. The socle of a module M, denoted as S oc(M), is defined
as the sum of its minimal non-zero submodules. Conversely, the radical of M is the intersection of
all its maximal submodules. Let C be a subcategory of R-Mod. A module N in C is called finitely
presented (for shot f.p) in C if:

1. N is finitely generated and
2. Every exact sequence 0 → K → L → N → 0 in C, with L finitely generated, K is also finitely

generated.

Let M be an R-module. A module N ∈ σ[M] is called coherent in σ[M] if

1. N is finitely generated and
2. any finitely generated submodule of Nis finitely presented in σ[M].

A non-zero module M is called a hollow module if every proper submodule of M is a small submodule
of M. Let M be a faithful R-module. We say that M is a Quasi-Frobenius (in short QF) module if
HomR(P,M) is either zero or a simple R-module for each simple R-module P.
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2. Some properties of S CDF-modules

Proposition 1. 1. Epimorphic image of S CDF-module is a S CDF-module;
2. If M is a product of modules Mi, 1 ≤ i ≤ n is a S CDF-module. Then so is every Mi;
3. Moreover if Hom(Mi,M j) = 0 for all 1 ≤ i , j ≤ n, then the converse of (2) is true;
4. Every factor module of S CDF-module is a S CDF-module.

Proof. 1. Let M be a S CDF-module and M
′

= f (M) a homomorphic image of M, then Gen(M
′

)
is in Gen(M) [4]. This implies that σ[M

′

] is a full subcategory of σ[M]. Hence M
′

is a S CDF-
module of finite.

2. Results from (1).
3. Suppose that every Mi for 1 ≤ i ≤ n is a S CDF-module. As Hom(Mi,M j) = 0 for Mi for

1 ≤ i , j ≤ n, then by Proposition 2.2 of [1], for every N ∈ σ[
∏n

i=1 Mi] there is a unique
Ni ∈ σ[Mi] 1 ≤ i ≤ n such that N =

∏n
i=1 Ni. If N is a Dedekind finite, Ni is also a Dedekind

finite for all 1 ≤ i ≤ n because if a module is a Dedekind finite, then so is any direct summand
of that module. Since Mi is a S CDF-module, then Ni is finitely cogenerated for all 1 ≤ i ≤ n.
Hence N =

∏n
i=1 Ni is finitely cogenerated. Thus, M is a S CDF-module.

4. Let M a S CDF-module and N a submodule of M. Then by proposition (15.1) of [2], M/N ∈
σ[M]. Let K ∈ σ[M/N], K is also belongs σ[M]. Wich implies K is finitely cogenerated.
Therefore M/N is a S CDF-module.

□

Lemma 1. (15.4 of [2])

1. If a R-module M is finitely generated as a module over S = EndR(M)
then σ[M] = R/Ann(M)-MOD.

2. If R is commutative, then for every finitely generated R-module we have σ[M] = R/Ann(M)-
MOD.

Lemma 2. (Theorem 2.1 of [3])
Let R be a commutative ring. Then the following statements are equivalent:

1. R is an artinian principal ideal ring
2. R is a S CDF-ring.

Proposition 2. Let M a local R-module over S = End(M). If M is S CDF-module, then M is coherent.

Proof. If M is local over S , then M is finitely generated over S = End(M). Referring to the first point
of Lemma 1 and Lemma 2 M � R/Ann(M) and R/Ann(M) is artinian. It is well know that any artinian
ring is noetherian. Therefore M coherent because every noetherian module is coherent.

□

Recall an R-module M is called locally artinian if every finitely generated module in σ[M] is
artinian.

Lemma 3. (41.4 of [2])
Let M be a non-zero R-module. The following are equivalent:

1. M is hollow module and Rad(M) , M
2. M is local.

Proposition 3. Let R commutative ring and M a hollow module with Rad(M) = 0 , M. If M is a
S CDF-module, then M is locally artinian.
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Proof. Let N be a finitely generated module in σ[M]. Successively by Lemmas 3, 1 and 2, M is
artinian. In addition, Rad(M) = 0 implies by referring to [4] proposition 10.15 M is semisimple and
noetherian. If M is semisimple, every module of σ[M] is also semisimple. By [4] Corollary 10.16
finitely generated and artinian are equivalent. Therefore M is locally artinian.

□

3. Characterization theorems

Lemma 4. Suppose a ring R has zero nilradical. R is Dedekind finite if and only if R is artinian.

Definition 1. A non empty set S of a ring R is said to be a mutiplicatively closed subset (briefly m.c.s)
if 1 ∈ S and ab ∈ S for each a, b ∈ S .

Remark 1. We denote the set of all prime and maximal ideals of R by S pec(R) and Max(R) respec-
tively.

A ring R is called a S -artinian if for each descending chain of ideals {Ii}i∈N of R these exist s ∈ S
and k ∈ N such that sIk ⊆ In for all n ≥ k.

Lemma 5 (By example 3 of [5]). Every artinian R-module M is a S -artinian module where S ⊆ R is
m.c.s.

Definition 2. Let M be a R-module. A propoer submodule P of M is said to be prime if for any r ∈ R
and m ∈ M with rm ∈ P, we have m ∈ P or r ∈ (P :R M).
M is said to be reduced if intersection of all prime submodules of M is equal to zero.

If N is a submodule of a R-module, then cl(N) = {m ∈ M,mI ⊆ Nfor some large left ideal of R}.
If cl(N) = N, then N is said to be closed.

Definition 3. A submodule N of a R-module M is termed closed prime provided the following two
conditions are satisfied:

1. if N′ is a submodule such that N ⊂ N′ ⊆ M, then (N : N′) ⊂ (N : M).
2. cl(N) = M

Theorem 1. Let M be a finitely generated module over commutative ring. The following properties
are equivalent.

1. M is a S CDF-module
2. M is artinian
3. M is P-artinian for each P ∈ S pec(R)
4. M is µ-artinian for each µ ∈ Max(R).

Proof. (1)⇒ (2) Result from Proposition 1
(2)⇔ (3)⇔ (4) these equivalences follow the theorem 2 [5]
(2) ⇒ (1) Let N be a Dedekind finite object of σ[M]. There is an epimorphism φ : M(Λ) −→ K such
that N is a submodule of K. Since M is finitely generated then card(Λ) is finite. The first theorem of
isomorphism implies M(Λ)/kerφ ≃ K.
M artinian, card(Λ) finite implies M(Λ) is also artinian. Since artinian modules are stable of submod-
ules and factor modules, then K and N are artinian. Since N is artinian, has a simple submodule, in
fact S oc(N) is an essential submodule.
Now let’s prouve that S oc(N) is finitely generated.
M finitely generated implies σ[M] ≃ R/Ann(M)-MOD. Hence every object of σ[M] is a R/Ann(M)-
module therefore R/Ann(M) is an artinian ring. In addition for an artinian ring, finitely generated is
equivalent to artinian. Then N is finitely generated. S oc(N) is also finitely generated because every
submodule of artinian finitely generated module is finitely generated. □
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Theorem 2. Let M be an hollow module and Rad(M) , M. The following are equivalent:

1. M is a S CDF-module
2. M is locally artinian
3. Every cyclic module in σ[M]is a direct sum of a self-projective M-injective module and a finitely

cogenerated module.

Proof. (1)⇒ (2) Result of Proposition 3
(2) ⇒ (1) M locally artinian and M finitely generated implies M artinian. In addition, Rad(M) = 0
implies M is semisimple. Then M =

⊕
i Mi is a direct sum of a finite set of simple modules. N ∈

σ[M], then N is also semisimple and finite lenght. Therefore N is artinian and noetherian. For a
semisimple module, artinian, noetherian and finitely cogenerated coincide.
(2)⇔ (3) Results from 3.Theorem of [6]. □

Recall a R-module M is uniform if every non-zero submodule of M is an essential submodule.

Definition 4. Let M be a module such that every module in σ[M] is a direct sum of uniform modules.
Then we will say that M is an S U-module.

Definition 5. A module M is said to be pure-semisimple if every module in σ[M] is a direct sum of
finitely presented modules.

Theorem 3. Let R be a commutative ring and M a local R-module. Then the following are equivalent:

1. M is a S CDF-module;
2. M is a S U-module;
3. M is pure-semisimple;

Proof. Referring Lemmas 1 and 2 M ≃ R/Ann(M) is an artinian ideal principal ring. Basing on
[7], artinian with principal ideal and uniserial coincide. Therefore M is uniserial. In addition, it is
well known that every uniserial module is serial. Basing on Theorem 5.2.1 from [8] we have the
equivalences. □

Definition 6. A uniserial module M is said to be homo-uniserial if whenever A, B, C and D are
submodules of M such that A and C are maximal submodules of B and D respectively, then B/A ≃
D/C.

Corollary 1. Let M be a module over a commutative ring R. Then the following are equivalent:

1. M is a S CDF-module;
2. Every module in σ[M] is a direct sum of homo-uniserial modules.
3. Every module in σ[M] is a direct sum of homo-uniserial modules of finite length.

Proof. Results from Theorem 3 and Theorem 5.2.4 of [8] □

Now, we suppose that R is a duo-ring. It is a ring such that every one-sided ideal is two-sided
ideal.We have the following theorem.

Theorem 4. Let R be a duo-ring and M faithfully balanced left finite generated R-module. Assume
soc(M) is square-free. then the following statements are equivalent

1. M is a S CDF-module;
2. M is a QF-module;
3. M ≃ M1 × M2 × ...... × Ms where each Mi is a local artinian module with a simple socle.

Proof. Assume S = End(M) the ring of endomorphism of M. If M is an R-module, then M is an
S -module. Thus it follows from the first point of lemma 1 σ[M] = R/Ann(M)-Mod. As R/Ann(M) is
a duo ring, and M is isomorphic to R/Ann(M) and from Theorem 9 of [9] M is artinian .Since M is
also square-free,it results from Theorem 15.27 of [10] that the statements are equivalent. □
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Corollary 2. Let R be a duo-ring and M faithfully balanced left finite generated R-module. Assume
soc(M) is square-free. then the following statements are equivalent

1. M is a S CDF-module;
2. M is a QF-module;
3. M is self injective;
4. M is a cogenerator;

Proof. The corollary results from Theorem 4 and theorem 30.7 from [4] □
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