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Abstract: In the realm of graph theory, recent developments have introduced novel concepts, notably
the νε-degree and εν-degree, offering expedited computations compared to traditional degree-based
topological indices (TIs). These TIs serve as indispensable molecular descriptors for assessing chem-
ical compound characteristics. This manuscript aims to meticulously compute a spectrum of TIs
for silicon carbide S iC4-I[r, s], with a specific focus on the εν-degree Zagreb index, the νε-degree
Geometric-Arithmetic index, the εν-degree Randić index, the νε-degree Atom-bond connectivity in-
dex, the νε-degree Harmonic index, and the νε-degree Sum connectivity index. This study contributes
to the ongoing advancement of graph theory applications in chemical compound analysis, elucidating
the nuanced structural properties inherent in silicon carbide molecules.
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1. Introduction

Semi-conductors, such as silicon, offer affordability, non-toxicity, and find widespread utility in
electronics, being integral to the functioning of nearly all electronic devices. Silicon carbide (SiC),
composed of lightweight elements, exhibits a low thermal expansion coefficient, strong covalent
bonds, high thermal conductivity, and remarkable hardness. Discovered by the American scientist
E.G. Acheson in 1891, this material was hailed as the hardest substance on Earth until 1929. SiC
presents various colors, such as green or black, upon the adding of impurities like aluminum (Al),
iron (Fe), or oxygen (O). Due to its exceptional heat resistance, SiC finds application in furnace com-
ponents such as heating elements, core tubes, and refractory bricks. Moreover, it serves as a precursor
for graphene sheets [1, 2]. Its versatile properties contribute to its extensive usage in electronics,
transportation vehicles, and applications in quantum physics. For further insights, refer to [3–5]. This
paper delves into the topological properties of silicon carbide S iC4-I[r, s].

http://dx.doi.org/10.61091/um119-04
http://www.combinatorialpress.com/um


Nigar et al. 26

Chemical graph theory is a field of discrete mathematics that addresses various chemical chal-
lenges. It involves the exploration of chemical structures present in molecular compounds relevant to
pharmaceuticals and artificial food products [5–10]. The interdisciplinary nature of chemical graph
theory lies in its connection between chemistry and mathematics. Notably, graph theory was pio-
neered by Euler in the 18th century [11].

In chemical graph theory, molecules are typically represented as simple connected graphs, with
chemical bonds depicted as edges and atoms as vertices. This graphical representation enables sci-
entists to investigate and comprehend isomerism phenomena in chemical compounds. By studying
the graph structures, researchers can analyze the behavior of different isomers of the same chemical
compound.

Furthermore, chemical graph theory finds applications in the detection and resolution of drug-
related issues [12–15].

The numerical value associated with a molecular graph is known as a topological index, which
represents a unique type of graph invariant. These molecular descriptors play a significant role in
Quantitative Structure-Activity Relationship (QSAR) studies [16]. A topological index can be con-
ceptualized as a function that assigns each molecular structure a real number. One of the earliest
topological indices introduced is the Wiener index, proposed by H. Wiener in 1947 [17].

Topological indices serve as valuable tools for predicting the physicochemical properties and
bioactivity of chemical compounds. Over the years, hundreds of topological descriptors have been
defined to better understand the structural characteristics of these compounds [18].

The concept of νε-degree and εν-degree based Topological Indices (TIs) in graph theory was
proposed by Chellali et al. [19]. Subsequently, Horoldagva et al. [20] extended these indices to
mathematics. The νε-degree and εν-degree based Zagreb and Randić indices are considered more
powerful than classical vertex-type indices. For more detailed information about εν-degree and νε-
degree based TIs, refer to [21–23]. Zhong [24] introduced the harmonic index, while Randić defined
the Randić index in 1975 [25], and Gutman introduced the first and second Zagreb indices [26].
Initially, these indices were based on classical degrees, but the ϵν-degree and νϵ-degree versions of
these TIs offer more benefits. For more advanced information about graphs, silicon carbide, ϵν-degree
and νϵ-degree, and topological indices, see [27–31].

2. Basic Definitions and Notations

Let ζ = (V, E) be an undirected, connected, and simple graph, where E(ζ) denotes the collection
of edges and V(ζ) denotes the collection of nodes. A simple graph is one that does not have a loop
or multiple edges. If a graph has a connection between any two nodes, it is said to be connected.
Silicon carbide’s 2D molecular structures are both simple and interconnected. The degree of a vertex
ν, denoted as deg(ν), is the number of vertices connected to a fixed vertex ν. An edge e is represented
by e = υω ∈ E(ζ).

2.1. Definitions

If ζ is a simple connected graph, the degree (deg(υ)) represents the count of different edges inci-
dent to any node within the closed neighborhood of υ. The vertex-edge degree (νε-degree) can be
calculated by considering the number of distinct edges incident on any node υ within its open neigh-
borhood. Moreover, the edge-vertex degree (εν-degree) of an edge ě is defined as the count of vertex
unions between the open neighborhoods of the endpoints ω and υ. The εν-degree and νε-degree based
Topological Indices (TIs) are presented below in mathematical notation.

The εν degree-based Zagreb index can be determined as follows:

Mev(ζ) =
∑
eεE

degev(e)2.
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The 1st νε-degree Zagreb alpha index (Mαve
1 (ζ)) is determined as:

Mαve
1 (ζ) =

∑
υεV

degev(υ)2.

The 1st νε-degree Zagreb beta index (Mβve
1 (ζ)) computed as:

Mβve
1 (ζ) =

∑
υωεE

degve(ω) + degve(υ).

The second νε-degree Zagreb index (Mve
2 (ζ)) mathematically defined as:

Mve
2 (ζ) =

∑
υωεE

(degve(ω) × degve(υ)).

The νε-degree Randić index (Rve(ζ)) mathematically satiated as:

Rve(ζ) =
∑
υωεE

(degve(ω) × degve(υ))
−1
2 .

The εν-degree Randić index (Rev(ζ)) determined as:

Rev(ζ) =
∑
eεE

(degve(e))
−1
2 .

The νε-degree Atom Bond Connectivity index (ABCve(ζ)) calculated by formula given below, as:

ABCve(ζ) =
∑
υωεE

√
degve(ω) + degve(υ) − 2

degve(ω) × degve(υ)
.

The νε-degree Geometric Arithmetic index (GAve(ζ)) determined as:

GAve(ζ) =
∑
ωυεE

2

√
degve(ω) × degve(υ)

degve(ω) + degve(υ)
.

The νε-degree Harmonic index (Hve(ζ)):

Hve(ζ) =
∑
ωυεE(G)

2
degve(ω) + degve(υ)

.

The νε-degree Sum-Connectivity index (Xve(ζ)) computed as:

Xve(ζ) =
∑
ωυεE(G)

(degve(ω) + degve(υ))
−1
2 .

Yamac and Cancan discuss this εν and νε degree based TIs for the Sierpinski Gasket Fractal in 2009
[27].

3. Techniques

We utilized a diverse array of methodologies to obtain our findings, encompassing the edge parcel
technique, vertex segment strategy, graph hypothetical device, degree verification tactic, and combi-
natorial techniques. In this investigation, we applied various tools and methodologies. For compu-
tational tasks and verification processes, MATLAB was employed, while MAPLE was utilized for
generating 2D and 3D graphs. Additionally, chem-sketch software was employed for constructing
structural graphs of S iC4 − I[r, s].
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4. 2D Structure of Silicon Carbide S iC4 − I[r, s]

The 2D molecular graph of S iC4-I[r, s] is shown in Figure 1. Any chemical compound’s building
block is the unit cell, as we all know. A molecular structure is made up of a huge number of unit cells
arranged in a certain pattern.In a molecular structure, r represents the number of unit cells in a row,
where s represents the number of rows. In Figure 1 a unit cell and a structure of r = 2 and s = 1,
r = 3 and s = 2 and r = s = 3 are represented. Consequently, the total numbers of vertices, edges and
faces in S iC4 − I[r, s] are;

|V(S iC4 − I[r, s])| = 10rs,

|E(S iC4 − I[r, s])| = 12rs − r − s,

|F(S iC4 − I[r, s])| = 2rs − r − s + 2.

Figure 1. 2-Dimensional Structure of S ic4 − I[r, s], (A) Chemical Unit Cell of S ic4 − I[r, s]
(B) S ic4− I[3, 3], (C) S ic4− I[2, 1] (D) S ic4− I[3, 2], Where Silicon Atoms Si are Blue and
Carbon Atoms C Are Brown

5. Methodology of Silicon Carbide S iC4 − I[r, s] Formulas

The unit cell is used to compute silicon carbide formulae S iC4-I[r, s]. To raise r, interconnect the
unit cells horizontally, then connect the rows vertically to increase s. The connection points must be
correct. Where r is the number of rows and s is the number of columns.

5.1. Vertex Partition

There are 3 kinds of nodes based on the degree of nodes. Vertices of 1st, 2nd and 3rd degree are
represented as V1, V2 and V3 respectively as shown in Table 1.

[r, s] [1, 1] [2, 1] [3, 1] [1, 2] [2, 2] [3, 2] [1, 3] [2, 3] [3, 3]

V1 3 6 9 3 6 9 3 6 9
V2 4 6 8 8 10 12 12 14 16
V3 3 8 13 9 24 39 15 40 65

Table 1. Vertex Partition of S iC4-I[r, s]

deg(ω) Cardinality
V1 3r
V2 2r + 4s − 2
V3 10rs − 5r − 4s + 2

Table 2. Degree of Vertex with Corresponding Cardinality
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Total vertices Total edges
10rs 15rs − 4r − 2s + 1

Table 3. Vertex and Edges Frequency of S iC4-I[r, s]

5.2. Edge Partition

By using above methodology we will partition the edges of S iC4-I[r, s]. In the instance of S iC4-
I[r, s], there are five distinct edge portions, as shown in Table 4. It is important to note that the
variables r, s ≥ 1.

(deg(ω), deg(υ)) εν-degree Cardinality
(2, 1) 3 2
(3, 1) 4 3r − 2
(2, 2) 4 r + 2s − 2
(3, 2) 5 2r + 4s − 2
(3, 3) 6 15rs − 10r − 8s + 5

Table 4. εν-Degree of S iC4-I[r, s]

6. Main Results For Silicon Carbide S iC4-I[r, s]

In this section, we calculate the main results for silicon carbide S iC4-I[r, s]. We calculate the TIs
using different basic definitions and values given in tables. The specific TI index uses specific values
in the table and provides information about the correlation coefficient. These correlation constants
represent the connection between the numerical number and the characterization of any graph or
network.

deg(ω) υε-degree Cardinality
1 2 2
1 3 2r − 2
2 4 2
2 5 2r + 4s − 4
3 6 2
3 7 3r
3 8 2r + 4s − 6
3 9 10rs − 10r − 8s + 8

Table 5. υε-Degree of S iC4-I[r, s] for all r, s ≥ 1
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deg(ω),deg(υ) εν-degree Cardinality
(3,1) (7,3) 3r − 2
(2,1) (4,2) 2
(2,2) (5,5) r + 2s − 2
(2,2) (7,4) 1
(3,2) (7,5) 3
(3,2) (8,4) 1
(3,2) (8,5) 2r + 4s − 7
(3,3) (8,7) r + 1
(3,3) (8,8) s − 1
(3,3) (9,7) 5r − 3
(3,3) (9,8) 3r + 6s − 11
(3,3) (9,9) 15rs − 19r − 15s + 19

Table 6. νε-Degree of End Vertices of Each Edge of S iC4-I[r, s]

(i) The Mev index: By making use of εν-degree of edge partitions of S iC4-I[r, s], as shown in Table
5, we calculate the Mev index in the following lines:

Mev(S iC4 − I[r, s]) =
∑

e∈E(S iC4−I[r,s])

(degev(e)2)

= 2 × 32 + (3r − 2) × 42 + (r + 2s − 2) × 42

+ (2r + 4s − 2) × 52 + (15rs − 10r − 8s + 5) × 62

= 540rs − 246r − 156s + 84.

(ii) The Mαve
1 index: By making use of νε-degree of vertices partition of S iC4-I[r, s] for r, s ≥ 2, as

seen in Table 5, we compute the Mαve
1 in the following lines:

Mαve
1 (S iC4 − I[r, s]) =

∑
υ∈V(S iC4−I[r,s])

(degve(υ)2)

= 2 × 22 + (3r − 2) × 32 + 2 × 42

+ (2r + 4s − 4) × 52 + (3r) × 72

+ (2r + 4s − 6) × 82 + (10rs − 10r − 8s + 8) × 92

= 810rs − 458r − 292s + 186.

(iii) The Mβve
1 index: By making use of νε-degree based partition of the end vertices of the edges of

S iC4-I[r, s] for r, s ≥ 2, as shown in Table 6, we compute the Mβve
1 in the following lines:

Mβve
1 (S iC4 − I[r, s]) =

∑
ωυ∈E(S iC4−I[r,s])

(degve(ω) + degve(υ))

= (3r − 2) × 10 + 6 × 2 + (r + 2s − 2) × 10 + 1 × 11
+ 3 × 12 + (2r + 4s − 7) × 13 + 1 × 12
+ (5r − 3) × 16 + (3r + 6s − 11) × 17
+ (r + 1) × 15 + (s − 1) × 16 + (15rs − 19r − 15s + 19) × 18
= 270rs − 130r − 80s + 46.

(iv) The Mve
2 index: Simply availing use of νε-degree based partition of end vertices of the edges of

S iC4-I[r, s] for r, s ≥ 2, using Table 6, we compute the Mve
2 in the following lines:

Mve
2 (S iC4 − I[r, s]) =

∑
ωυ∈E(S iC4−I[r,s])

(degve(ω) × degve(υ))
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= (3s − 2) × 21 + 2 × 8 + (r + 2s − 2) × 25 + 1 × 28
+ 3 × 35 + (2r + 4s − 7) × 40 + 1 × 32
+ (5r − 3) × 63 + (3r + 6s − 11) × 72
+ (r + 1) × 56 + (s − 1) × 64 + (15rs − 19r − 15s + 19) × 81
= 1215rs − 784r − 509s + 359.

(v) The Rve index: By utilizing the νε-degree based partition of end vertices of the edges of S iC4-
I[r, s] for r, s ≥ 2, as given in Table 6, we compute the Rve as follows,

Rve(S iC4 − I[r, s]) =
∑

ωυ∈E(S iC4−I[r,s])

(degve(ω) × degve(υ))
−1
2

= (3r − 2) × (21)
−1
2 + 2 × (8)

−1
2 + (r + 2s − 2) × (25)

−1
2

+ 1 × (28)
−1
2 + 3 × (35)

−1
2 + (2r + 4s − 7) × (40)

−1
2 + 1

× (32)
−1
2 + (5r − 3) × (63)

−1
2 + (3r + 6s − 11) × (72)

−1
2

+ (r + 1) × (56)
−1
2 + (s − 1) × (64)

−1
2 + (15rs − 19r − 15s + 19) × (81)

−1
2

=
5
3

rs +
(

3
√

21
+

1
√

10
+

5

3
√

7
+

1

2
√

2
+

1

2
√

14
−

86
45

)
r

+

(
2
√

10
+

1
√

2
−

137
120

)
s

+

(
−2
√

21
−

1

2
√

7
+

1
√

2
+

3
√

35
−

7

2
√

10
+

1

4
√

2

+
13

12
√

2
−

11

6
√

2
+

1

2
√

14
+

571
360

)
= 1.66rs + 0.176r + 0.197s + 0.082.

(vi) The Rev index: By utilizing the εν-degree of edges partition of S iC4-I[r, s] for r, s ≥ 2, as given
in Table 5, we compute the Rev as follows,

Rev(S iC4 − I[r, s]) =
∑

e∈E(S iC4−I[r,s])

(degve(e)
−1
2 )

= 2 × (3)
−1
2 + (3r − 2) × (4)

−1
2 + (r + 2s − 2) × (4)

−1
2

+ (2r + 4s − 2) × (5)
−1
2 + (15rs − 10r − 8s + 5) × (6)

−1
2

=
15
√

6
rs +

(
2
√

5
−

10
√

6
+ 2

)
r +

(
4
√

5
−

8
√

6
+ 1

)
s

+

(
2
√

3
−

2
√

5
+

5
√

6
− 2

)
= 6.12rs − 1.18r − 0.47s + 0.3015.

(vii) The ABCve index: With the help of νε-degree based partition of the end vertices of the edges of
S iC4-I[r, s] for r, s ≥ 2, as shown in Table 6, we compute the ABCve as follows,

ABCve(S iC4 − I[r, s]) =
∑

ωυ∈E(S iC4−I[r,s])

√
degve(ω) + degve(υ) − 2

degve(ω) × degve(υ)

= (3r − 2) ×

√
8
21
+ 2 ×

√
84
8
+ (r + 2s − 2) ×

√
8
25
+ 1 ×

√
9

28
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+ 3 ×

√
10
35
+ (2r + 4s − 7) ×

√
11
40
+

√
10
32

+ (5r − 3) ×

√
14
63
+ (3r + 6s − 11) ×

√
15
72

+ (r + 1) ×

√
13
56
+ (s − 1) ×

√
14
64
+ (15rs − 19r − 15s + 19) ×

√
16
81

=
20
3

rs +
6 √2

21
+ 2

√
2

5
+ 4

√
11
√

10
+ 5

√
2

3
+

3
√

5

2
√

6

+
1
√

13

2
√

7
−

76
9

 r +
4 √2

5
+ 8

√
11
√

10
+ 3

√
5
√

6
+

√
14
√

8
−

20
3

 s

+

 2
√

2
− 4

√
2

21
− 4

√
2

5
+

3

2
√

7
+ 3

√
2
5

−14

√
11
√

10
+

√
5

4
−
√

2 +
1
√

5

2
√

6
+

1
√

14

2
√

7
−

√
14
8
+

76
9


= 667rs + 257r + 6.06s − 4.911.

(viii) The GAve index: By making use of νε-degree based partition of the end vertices of the edges
of S iC4-I[r, s] for r, s ≥ 2, as shown in Table 6, we compute the GAve as follows,

GAve(S iC4 − I[r, s]) =
∑

ωυ∈E(S iC4−I[r,s])

(2

√
degve(ω) × degve(υ)

degve(ω) + degve(υ)
)

= (3r − 2) × 2

√
21

10
+ 4

√
8

6
+ (r + 2s − 2) × 2

√
25

10
+ 2 ×

√
28

11

+ 6 ×

√
35

12
+ (2r + 4s − 7) × 2

√
40

13
+ 2

√
32

12
+ (5r − 3) × 2

√
63

16

+ (3r + 6s − 11) × 2

√
72

17
+ (r + 1) × 2

√
56

15
+ (s − 1) × 2

√
64

16

+ (15rs − 19r − 15s + 19) × 2

√
81

18

= 15rs +
3 √21

5
+ 8

√
10

13
+ 15

√
7

8
+ 36

√
2

17
+ 4

√
14

15
− 18

 r

+

16

√
10

13
+ 72

√
2

17
− 2

 s +
4 √2

3
− 2

√
21
5
+ 4

√
7

11

+4

√
7

11
+

√
35
2
− 28

√
10
3
+ 2

√
2

3
+

9
√

7
8

−132

√
2

17
+ 4

√
14

13
+ 16


= 15rs − 4.35r + 7.88s + 8.213.

(ix) The Hve index: By making use of νε-degree based partition of the end vertices of the edges of
S iC4-I[r, s] for r, s ≥ 2, as shown in Table 6, we compute the Hve as follows,

Hve(S iC4 − I[r, s]) =
∑

ωυ∈E(S iC4−I[r,s])

2
degve(ω) + degve(υ)

= 2 ×
(3r − 2)

10
+ ×

4
6
+ 2 ×

(r + 2s − 2)
10

+
2
11
+

6
12
+ 2 ×

(2r + 4s − 7)
13

Utilitas Mathematica Volume 119, 25–35



On Ve-Degree and Ev-Degree Based Topological Invariants of Chemical Structures 33

+
2
12
+ 2 ×

(5r − 3)
16

+ 2 ×
(3r − 6s − 11)

17
+ 2 ×

(r + 1)
15

+ 2 ×
(s − 1)

16

=
5
3

rs +
8581

79560
r +

5263
26520

s −
1472
1989

= 1.667rs + 0.107r + 0.198s + 0.74.

(x) The Xve index: By making use of νε-degree based partition of the end vertices of the edges of
S iC4-I[r, s] for r, s ≥ 2, as shown in Table 6, we compute the Xve as follows,

Xve(S iC4 − I[r, s]) =
∑

ωυ∈E(S iC4−I[r,s])

(degve(ω) + degve(υ))
−1
2

=
3r − 2
√

10
+

2
√

6
+

r + 2s − 2
√

10
+

1
√

11
+

3
√

12
+

2r + 4s − 7
√

13

+
1
√

12
+

3r − 3
√

16
+

3r + 6s − 11
√

17
+

r + 1
√

15
+

s − 1
√

16

+
15rs − 19r − 15s + 19

√
18

=
5
√

2
rs +

(
5
√

10
+

3
√

17
+

1
√

15
−

19

3
√

2
+

5
3

)
r

+

(
6
√

10
+

6
√

17
−

5
√

2
+

1
4

)
s +

(
2
√

6
−

11
√

10
+

1
√

11

+
2
√

3
−

11
√

17
+

1
√

15
+

19

3
√

2
− 1

)
= 3.53rs − 0.244r + 0.067s − 0.137.

7. Applications

The topological indices provide an easy way to convert chemical composition into numerical val-
ues that can be correlated with physical characteristics in QSPR research. The ev and ve-related
indices give more effective results as compared to classical indices in various cases. For instance,
the correlation coefficient between the acentric factor of 18 isomers of octane and the classical first
Zagreb index is moderate (r = −0.7889), but the ev-degree Zagreb index shows excellent values of
correlation as R = −0.9808. Similarly, the correlation between properties of octane (acentric factor,
boiling point, and entropy) and classical R-index is very low, as r(AF) = 0.40484, r(S ) = 0.3506,
and r(BP) = 0.0737, but ev-degree-related Randić indices give amazing values of coefficients like
R(AF) = 0.8475, R(S ) = 0.8441, and R(BP) = 0.7807. The H-index also shows moderate correlation
values with the characteristics of 18 isomers of octane: r(AF) = 0.7998, r(entropy) = 0.7594, and
r(BP) = 0.801. This ev-degree type approach is also effective in discussing the structural features of
the alkane family and SiC isomers.

8. Conclusion

Application of silicone carbide in physical perspective, deoxidizer used in steel making, one of
the most widely used refractory materials with the best economic benefits, high-quality abrasive for
sandblasting. Furthermore, because of small amounts of iron or different contaminating influences
from the current generation, this is typically discovered as a somewhat blue dark, brilliant crystalline
strong. In this study, we defined topological invariants of silicon carbide S iC4-I[r, s] based on εν-
degree and νε-degree. The findings are extremely valuable and beneficial from both a chemical and
pharmacological standpoint. In future, we can find εν-degree and νε-degree topological indices of
some nanostar dendrimers.
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25. Randić, M., 1975. On characterization of molecular branching. Journal of the American Chemical
Society, 97(1975), pp.6609-6615.

26. Xu, K., Das, K. C. and Balachandran, S., 2014. Maximizing the Zagreb indices of (n, m)-graphs.
MATCH Communications in Mathematical and in Computer Chemistry, 72, pp.641-654.
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