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Abstract: Let G be a finite solvable group and ∆ be the subset of Υ × Υ, where Υ is the set of all
pairs of size two commuting elements in G. If G operates on a transitive G - space by the action
(υ1, υ2)g = (υg

1, υ
g
2); υ1, υ2 ∈ Υ and g ∈ G, then orbits of G are called orbitals. The subset ∆o =

{(υ, υ); υ ∈ Υ, (υ, υ) ∈ Υ × Υ} represents G′s diagonal orbital. The orbital regular graph is a graph on
which G acts regularly on the vertices and the edge set. In this paper, we obtain the orbital regular
graphs for some finite solvable groups using a regular action. Furthermore, the number of edges for
each of a group’s orbitals is obtained.
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1. Introduction

Let G be a group that acts on a finite set Υ. Then the orbit of υ is the subset O(υ) = {gυ | g ∈ G, υ ∈
Υ} [1]. Later on, Omer et al. [2] define orbit as the set of all conjugates of the elements, where G acts
on itself by conjugation. Furthermore, by defining an orbit graph as a graph whose vertices are non-
central orbits under group action on Υ, Omer et al. [2] extended the work on conjugate graphs. Using
various group actions, they constructed orbit graphs for various groups, such as finite non-abelian
groups, finite p-groups, and groups of order pq. They also used a regular action to introduce the orbit
graph for some finite solvable groups.

If G is transitive on Υ then Fang et al. [3] define orbitals of G as the orbits of G′s transitive action
on Υ and the subset ∆o = {(υ, υ); υ ∈ Υ, (υ, υ) ∈ Υ×Υ} form a diagonal orbital of G. Looking forward
to the work, Smith [4] then constructed a new graph on Υ, which he called an orbital graph having
vertex set Υ and an arc set of orbitals. He introduced the concepts of sub orbits and orbitals using
transitive action on a set. He constructed an orbital graph from orbitals, which shows that the orbital
graphs for each orbital are different [4].

In the recent past, several research articles based on orbital graphs have been studied related to
groups. The primitive group with small suborbital of length 3 or 4 and their orbital graph were
introduced by Li et al. [5]. They also constructed vertex primitive half arc-transitive graphs of valency
2k for an infinite number of integers k, with fourteen being the smallest valency. Smith [4] looked
into the diameter of an orbital graph that was linked to a group.
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Sheikh [6] proposed that the orbital diameter must be bounded by a constant c and that the actions
must be bounded by 5. He also determined the infinite families of orbital graphs with a diameter of
2. The action of SL(2, C) on hyperbolic 3-space and orbital graphs was first observed by Besenk [7].
Recently, Nagnibeda et al. [8] published an article where they show interest in orbital graphs for the
action of spinal groups on d- regular rooted trees and on their boundaries. Pogorelov just published a
classification for distance transitive orbital graphs over groups of the Jevons group [9]. Rakvenyi [10]
introduced the concept of the orbital diameter of groups of diagonal type.

Also, orbitals have a wide role in the field of sciences like physics, chemistry, biology and many
more. Hoffmann [11] investigates the orbitals’ interaction through space and bonds. King [12] found
that to form hybrid orbitals of special symmetries, the combination of atomic orbitals can be related
to the individual orbital polynomials. Using this approach, he found the system of atomic orbital
hybridization of coordination polyhedra and the role of f orbitals. Next, Rahaman and Gagliardi [13]
introduced a deep learning-based framework that combines large organic molecules’ total energies
and orbital energies using molecular fingerprints’ hybridisation.

Using the concept of orbitals, Sole [14] constructed an orbital regular graph as a graph, if it is
regular for some G = Aut(Γ) and derived an edge-forwarding index formula for it. According to Fang
et al., [3] almost all orbital regular graphs are Frobenius graphs. However, many groups, such as finite
solvable groups for which the orbital regular graph is yet to be constructed, are regular in their orbits.

In this article, we use regular action on a finite set ∆. With this, we may now define orbitals of G
as the orbits of the regular action of G on ∆. Note that ∆ must be a subset of Υ × Υ. In this work,
we use the concept of [14] and [2], to determine the number of edges for each orbital of a group G
as well as the orbital regular graphs of a finite solvable group whose vertices are adjacent if there are
υ1, υ2 ∈ Υ and g ∈ G such that (υ1, υ2)g = (υg

1, υ
g
2). The graphs examined in this study are undirected.

2. Preliminaries

The orbit graph, orbital regular graph, group actions, and solvable groups are all discussed in this
section, along with some basic concepts, definitions, and current results.

Suppose Γ∗ = (V, E) is a non-trivial, simple, and finite graph with E as the edge set and V as the
vertex set. Let G be a group that acts on a finite set of Υ on a regular basis. Then G takes action on ∆
element-wise. When there is no room for ambiguity, we write Γ∗ instead of Γ and examine ∆ a subset
of the manuscript.

Definition 1. A group G is said to be solvable if it has a normal series such that each normal factor
is abelian.

Theorem 1. [2] The symmetric group S n is a solvable group if n ≤ 4.

Definition 2 (Orbit). [15] Let G be a group that acts on a set Υ and υ ∈ Υ. The orbit of υ, denoted
by O(υ) is the subset O(υ) = {gυ | g ∈ G, υ ∈ Υ}. In this study, the group action is considered as a
conjugation action. Hence, the orbit is given as

O(υ) = {gυg−1 | g ∈ G, υ ∈ Υ}.

Definition 3 (Orbit Graph). [2] Let G ba a group andΥ be a set. Then an orbit graph, ΓΥG is defined as
a graph whose vertices are non central orbits under group action on the setΥ that is |V(ΓΥG)| = |Υ|−|B|,
where Υ is a disjoint union of distinct orbits and B = {υ ∈ Υ|υg = gυ, g ∈ G}. Two vertices υ1, υ2 are
adjacent if υ1, υ2 are conjugate that is υ1 = gυ2 .

Definition 4 (Orbital). [3] Let G be transitive on Υ × Υ then the orbits of G on Υ × Υ are called as
orbitals of G, denoted by O∗.
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Definition 5 (Orbital Graph). [4] Let G be a group acting on Υ and O∗ be its orbital. Then the orbital
graph with respect to O∗ is the graph having Υ as a vertex set and O∗ as its arc set.

Next, we define the finite set on which G acts and its group actions.

Definition 6. [15] Let G be a group and S be a set. G acts on S if there is a function which maps
G × S → S such that it satisfies the following axioms:

1. Identity: e.s = s.e, ∀s ∈ S .
2. Compatibility: (gh)s = g(hs), ∀s ∈ S , g, h ∈ G.

Definition 7. [2] The set Υ is the set of all pairs of commuting elements of G which are in the form
of (α, β) where α, β are the elements of the finite solvable groups and the least common multiple of
the order of the elements is two. Symbolically, it is represented as

Υ = {(a, b) ∈ G ×G|ab = ba, a , b, lcm(|a|, |b|) = 2}.

Definition 8. [4] The action of G on a non empty set Υ is transitive if for each pair υ1, υ2 in Υ there
exist a g in G such that g.υ1 = υ2.

We recall [3] that the group G acts regularly on Υ if it is both transitive and |G| = |Υ|. In this paper,
we defined regular action as follows:

Definition 9. A group G acts regularly on a set Υ if for any pair υ1, υ2 ∈ Υ there exist exactly one
g ∈ G such that (υ1, υ2)g = (υg

1, υ
g
2).

On the basis of group actions, we defined orbital regular graph of a group G.

Definition 10. Let G be a group which act regularly on the set ∆. Then the orbital regular graph is
the undirected graph if G is regular on each of its orbits in V and one of these orbits is exactly E.

The following corollary shows that a finite solvable group acts regularly on a finite set Υ.

Corollary 1. [2] Let G be a finite solvable groups on a set Υ. If G acts regularly on Υ. Then

|E(Γ)| G Γ |Ω| |V(Γ)|
(2n−2)!

2!(2n−2−2)! + 2n−1 ⟨a, b : a2n = b2 = e, ab = ba2n−1−1⟩ K2
⋃

K2n−2 2n + 2n−2 + 1 2n + 2n−2

β ⟨a, b : a2β = b2 = e, ab = a−1b⟩
⋃β

i=1 K2i 2n + 2 2n + 1
|Ω| − |ω| + 3(|Ω| − |Z|) S n,n > 2, n is even

⋃|Ω|−|ω|
i=1 K2i

⋃|Ω|−|Z|
i=1 K3i - |Ω|

- S n,n is odd empty - -

In Corollary 1, Omer et al. [2] found the orbit graph for some finite solvable groups and general
formula for number of vertices and edges.

Using Corollary 1, we prove our main results.

3. Main result

In this section, we present some results on the calculation of orbitals concerning finite solvable
groups. We use regular action to find the orbital regular graph of a finite solvable group based on the
orbitals of the group. We also get the number of edges for each of a group’s orbitals.

Theorem 2. Let G = ⟨a, b : a2β = b2 = e, ab = a−1b⟩ be a finite solvable group, where β is even. Then
each orbital of G has a disconnected orbital regular graph with connected components, except one
orbital O((e, a2β−1

)(e, anb)), 0 ≤ n ≤ 2β − 1.

Utilitas Mathematica Volume 118, 15–25
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Proof. Consider a finite solvable group G = ⟨a, b : a2β = b2 = e, ab = a−1b⟩, where β is even. Let ∆
be the subset of Υ × Υ and G acts on ∆ by the action (υ1, υ2)g = (υg

1, υ
g
2), where υ1, υ2 ∈ Υ and g ∈ G.

This implies, the number of elements in ∆ is 2(2β)2 + 2β. Based on regular action, we found three
different types of orbitals.

Case I For orbital of the form O((e, amb), (e, anb)), 0 ≤ m ≤ 2β − 1 and 1 ≤ n ≤ 2β − 1. We consider
two subcases.

Subcase I For m ≤ β + 3, the vertices in the form of (e, amb) and
(a2β−1

, a2β−1+ib), 0 ≤ i ≤ 2β − 1 are adjacent to the vertices in the form of (e, anb) and
(a2β−1

, a2β−1+ib), 0 ≤ i ≤ 2β − 1. Thus, we have 2β − (n + 1), 1 ≤ n ≤ 2β−1 + 1 components of⋃2
i=1 Ki

2.
On the other hand, the vertices in the form of (e, amb), (e, anb), (a2β−1

, amb) and (a2β−1
, anb)

are adjacent to one another to form 2β−1 connected component of four vertices.
Thus, it follows that Γ∗

∆

G =
⋃2

i=1 Ki
2
⋃

C4.

Subcase II For m ≥ β+ 4, we found that the O((e, amb), (e, anb)) consist 2β−1 − (n+ 1), 0 ≤ n ≤ 2β−1 − 2
components of

⋃2
i=1 Ki

2.
This implies, Γ∗

∆

G =
⋃2

i=1 Ki
2.

Case II For orbital of the type O((e, amb), (a2β−1
, anb)), 0 ≤ m ≤ 2β − 1 and 1 ≤ n ≤ 2β − 1 there

exist υ1, υ2 ∈ Υ such that υ1 = (e, amb) is adjacent to υ2 = (a2β−1
, amb) to form one component,⋃2

i=1 Ki
2 and one complete component, K2. Hence it follows that Γ∗

∆

G =
⋃2

i=1 Ki
2
⋃

K2.

Case III (Shows exception) Based on regular action the orbital of the type
O((e, a2β−1

)(e, anb)), 0 ≤ n ≤ 2β − 1 of size two, there is always one common vertex of the form
(e, a2β−1

) adjacent to the two vertices of the type (e, anb) and (a2β−1
, anb). Hence, there are 2β

connected orbital regular graph of three vertices.

□

Example 1. Consider a finite solvable group G = ⟨a, b : a22
= b2 = e, ab = a−1b⟩ of 8 elements

{e, a, a2, a3, b, ab, a2b, a3b} and the elements of order two in G are {e, a2, b, ab, a2b, a3b}. This implies
∆ ⊂ Υ × Υ contains 55 elements.

If we take the orbital O((e, b)(a2, anb)), 1 ≤ n ≤ 3. By applying regular action on the orbital, we
see that only the element a2 ∈ g acts on it.

That is,
O((e, b)(a2, anb))a2 = ((e, amb)(a2, a2b)), 0 ≤ m ≤ 3

and contains two components
⋃2

i=1 Ki
2 and one complete component K2.

This implies that the orbital regular graph for the orbital is disconnected, Γ∗
∆

G =
⋃2

i=1 Ki
2
⋃

K2.
The orbital regular graph for O((e, b)(a2, anb)) is presented in Figure 1

Now, if we take a different orbital of the form O((e, a2)(e, anb)), 0 ≤ n ≤ 3 of size two. we produce
four such orbitals which have connected orbital regular graph of three vertices. The orbital regular
graph O((e, a2)(e, anb)) is presented in Figure 2.

Again, if we take orbital O((e.b)(e, anb)), 1 ≤ n ≤ 3 we have two orbitals of size two and one
orbital of size four.

This implies that there is one component of the type
⋃2

i=1 Ki
2 and one component is connected

graph of four vertices.
Thus, Γ∗

∆

G =
⋃2

i=1 Ki
2
⋃

C4. The orbital regular graph O((e.b)(e, anb)) is presented in Figure 3.
Here, we can find the graph for the other remaining orbitals and see that each orbital have dis-

connected graph except one orbital.
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Figure 1. Orbital Regular Graph for O((e, b)(a2, anb))

Figure 2. Orbital Regular Graph O((e, a2)(e, anb))

Figure 3. Orbital Regular Graph O((e.b)(e, anb))

Theorem 3. Let G = ⟨a, b : a2n
= b2 = e, ab = ba2n−1−1⟩ be a finite solvable group with n even. Then

for each even i and 0 ≤ i ≤ 2n − 1 the orbital

i. O((e, a2n−1
)(e, aib)) have Γ∗

∆

G = C4,
ii. O((e, aib)(aib, ai+2n−1

b)) have connected orbital regular graph of three vertices,
iii. O((e, a2n−1

)(aib, ai+2n−1
b)) have Γ∗

∆

G = K2,
iv. O((ai′b, ai+2n−1

b)(ai′+2b, ai+2n−1+2b)), 0 ≤ i′ ≤ 2n−1 have Γ∗
∆

G = K2,
v. O((e, aib)(a2n−1

, aib)) have disconnected orbital regular graph,
vi. O((e, aib)(e, ai+2b)) have disconnected orbital regular graph.

Proof. Consider a finite solvable group G = ⟨a, b : a2n
= b2 = e, ab = ba2n−1−1⟩, n is even. Let ∆ be

the subset of Υ × Υ and G acts regularly on ∆. If Γ∗ is an orbital graph then each orbital have distinct
orbital graph and two vertices of a graph are linked to each other if υ1, υ2 ∈ Υ there exist g ∈ G such

Utilitas Mathematica Volume 118, 15–25
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that (υ1, υ2)g = (υg
1, υ

g
2). To show orbital regular graph of different orbitals and for i even, we have

four cases:

Case I In the orbital O((e, a2n−1
)(e, aib)), where 0 ≤ i ≤ 2n − 1. If G acts regularly on ∆ then the

vertices of the form (e, a2n−1
) and (e, aib) are adjacent to the vertices of the form (a2n−1

, a2n−1
b) and

(b, a2n−1
b). Thus, we found that the orbital O((e, a2n−1

)(e, aib)) consist of 2m, m ≥ 2 connected
orbital regular graph of four vertices.

This implies, Γ∗
∆

G = C4.

On the other hand, for orbital O((e, aib)(aib, ai+2n−1
b)), 0 ≤ i ≤ 2n − 1, the vertex υ1 =

(aib, ai+2n−1
b) is adjacent to the vertices υ2 = (e, aib) and υ3 = (a2n−1

, aib), 0 ≤ i ≤ 2n − 1.
Hence, we have 2n−2 connected orbital regular graph of three vertices.

Case II Consider the orbital of the form O((e, a2n−1
), (aib, ai+2n−1

b)) and
O((ai′b, ai+2n−1

b), (ai′+2b, ai+2+2n−1
b)), 0 ≤ i ≤ 2n − 1, 0 ≤ i′ ≤ 2n−1.

If G acts regularly on ∆, we found that both the orbitals are central orbitals and each having two
adjacent vertices of the type (e, a2n−1

), (aib, ai+2n−1
b) and (aib, ai+2n−1

b), (ai+2b, ai+2+2n−1
b). Hence,

for both the orbitals we have Γ∗
∆

G = K2.

Case III For orbital of the form O((e, aib), (e, ai+2b)) where 0 ≤ i ≤ 2n − 1, the orbital regular graph
of a particular orbitals are;

(e, aib) (e, ai+2b) No of orbitals (n ∈ 2l),l ∈ Z Γ∗
∆

G
i = 0 i = 0, 2, ..., 2n−1 2n − 1 (2n − 2) connected component of

⋃2
i=1 Ki

2 and one connected component of C4

i = 2 i = 4, 6, ..., 2n−1 2n − 2 (2n − 3) connected component of
⋃2

i=1 Ki
2 and one connected component of C4

. . . .

. . . .

. . . .
i = 2n − 4 i = 2n − 2 1 one connected component of

⋃2
i=1 Ki

2

Hence, we found that each orbital have Γ∗
∆

G =
⋃2

i=1 Ki
2
⋃

C4 and also there exist one orbital which
always have Γ∗

∆

G =
⋃2

i=1 Ki
2.

Thus, we can say that the orbital O((e, aib), (e, ai+2b)) have disconnected orbital regular graph.

Case IV For Orbital O((e, aib), (a2n−1
, aib)) where 0 ≤ i ≤ 2n − 1, we have;

(e, aib) (a2n−1
, aib) No of orbitals (n ∈ 2l),l ∈ Z Γ∗

∆

G
i = 0 i = 2, ..., 2n−1 2n − 1 (2n − 2) connected component of

⋃2
i=1 Ki

2 and one connected component of K2

i = 2 i = 4, 6, ..., 2n−1 2n − 2 (2n − 3) connected component of
⋃2

i=1 Ki
2 and one connected component of K2

. . . .

. . . .

. . . .
i = 2n − 4 i = 2n − 2 1 one connected component of K2

From above table, we see that each orbital have disconnected orbital regular graph, Γ∗
∆

G =⋃2
i=1 Ki

2
⋃

K2 except last orbital, Γ∗
∆

G = K2.

□

Example 2. Consider a finite solvable group G = ⟨a, b : a24
= b2 = e, ab = ba7⟩ of 32 elements

{e, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, b, ab, a2b, a3b, a4b, a5b, a6b,
a7b, a8b, a9b, a10b, a11b, a12b, a13b, a14b, a15b} and order two elements are {e, a8, b, ab, a2b, a3b,
a4b, a5b, a6b, a7b, a8b, a9b, a10b, a11b, a12b, a13b, a14b, a15b}. Hence, ∆ ⊂ Υ×Υ contains 222 elements.

If we take the orbital O((e, a8)(e, aib)), 0 ≤ i ≤ 15 and i is even. By applying regular action on the
orbital we see that only the element a8 ∈ g acts on it, that is

O((e, a8)(e, aib))a8 = ((e, a8)(a8, aib)), 0 ≤ i ≤ 15.
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Therefore, the orbital of size four contains connected orbital regular graph of four vertices, C4.
Figure 4 shows the orbital regular graph for O((e, a8)(e, aib)) and Figure 5 shows the orbital regular
graph for O((e, b)(b, a8b)). Figure 6 shows the orbital regular graph for O((e, b)(e, ai+2b)).

Figure 4. Orbital Regular Graph for O((e, a8)(e, aib))

Next if we take different orbital O((e, b)(b, a8b)), we produce the connected orbital regular graph
of three vertices.

Figure 5. Orbital regular graph for O((e, b)(b, a8b))

Again, if we have orbital O((e, b)(e, ai+2b)), 0 ≤ i ≤ 15 and i is even. We get three orbitals where
two orbitals have size two and one orbital have size four. This implies, Γ∗

∆

G =
⋃2

i=1 Ki
2
⋃

C4.

Figure 6. Orbital Regular Graph for O((e, b)(e, ai+2b))

Here, we can produce the orbital regular graph for the rest of the orbitals and found that different
orbitals of group G have different graph.

Theorem 4. For a symmetric group S n,n > 2 and n is even, each orbital of a group G have connected
orbital regular graph except some orbitals which have disconnected graph with complete components.

Proof. For n = 2, there is diagonal orbital of group G. This implies that the graph is empty.

Utilitas Mathematica Volume 118, 15–25
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For n = 4, If G acts regularly on ∆ then υ1, υ2 ∈ Υ there exist g ∈ G such that (υ1, υ2)g = (υg
1, υ

g
2).

The vertex υ1 joined the vertex υ2 whenever (υ1, υ2)g = (υg
1, υ

g
2). According to [2] the elements of ∆

are in the form

((e, (ab)), (e, (cd))), ((e, (ab)), ((ab), (cd))), ((e, (ab)), (e, (ab)(cd))),
(((e, (ab)), ((ab)(cd), (ac)(bd))), ((ab)(cd), (e, (ab)(cd))), (((ab)(cd)), ((ab), (ab)(cd))),
(((ab)(cd)), ((ab)(cd), (ac)(bd))), ((e, (ab)(cd)), ((ab), (ab)(cd))),
((e, (ab)), ((ab), (ab)(cd))), ((e, (ab)(cd)), ((ab)(cd), (ac)(bd))),
((ab), ((ab)(cd)), ((ab)(cd)), ((ac)(bd))).

Based on regular action, there are 26 orbitals of size one, five orbitals of size two and four orbitals
of size four. Therefor, in the orbital of the form ((e, (ab)), (e, (ac))), the vertices of the form (e, ab)
are adjacent to the vertices of the form (e, ac). Hence,we found that the orbital regular graph for the
orbital is connected graph of two vertices, K2. Similarly, for the remaining 25 orbitals of size one, we
have Γ∗

∆

G = K2. However, for the orbitals ((e, (ab))(e, (ab)(cd))), ((e, (ab)(cd))(e, (ac)(bd))) and
((e, (ab)(cd))(e, (ad)(bc))) there are four vertices in each orbital and each vertex is adjacent to their
next vertex to form a closed path, that is

(e, ab)→ (e, (ab)(cd))→ ((ab)(cd), (cd))→ ((ab)(cd))→ (e, ab).

This implies, Γ∗
∆

G = C4.
Next, for the orbital of the form ((e, ab)((ab)(cd), (ad)(bc))), ((e, (ab)(cd))((ac)(bd))) and

((e, (ab)(cd))((ad)(bc))), we found that each orbitals contain connected graph of three vertices;

Orbitals Vertices Adjacent Vertices Γ∗
∆

G
((e, ab)((ab)(cd), (ad)(bc))) (e, ab) ((ab)(cd), (ad)(bc)), ((ab)(cd), (cd)) connected graph of three vertices

((e, (ab)(cd))((ac)(bd))) (e, (ab)(cd)) ((ac)(bd)), ((ac)(bd), (ad)(bc)) connected graph of three vertices
((e, (ab)(cd))((ad)(bc))) ((ad)(bc)) (e, (ab)(cd)), ((ab)(cd), (ad)(bc)) connected graph of three vertices

Exception

Consider an orbitals of the type ((e, ab)(e, (ac)(bd))) and ((e, ab)((ab)(cd), (ac)(bd))) of size two,
we found that there are four vertices in each orbitals. If G acts regularly on the set ∆ then each orbital
form two pairs (P1, P2) of connected graph but there is no edge between two pairs which shows that
both the pairs are disconnected. This implies, Γ∗

∆

G =
⋃4

i=1 K2.
□

The Orbital regular graph for ((e, ab)(e, (ac)(bd))) and ((e, ab)((ab)(cd), (ac)(bd))) is presented in
Figure 7.

Figure 7. Orbital regular graph for ((e, ab)(e, (ac)(bd))) and ((e, ab)((ab)(cd), (ac)(bd)))
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Theorem 5. For a Symmetric group G = S n, n is odd, each orbital have Γ∗
∆

G = K2.

Proof. Since n is odd, the number of elements in ∆ are in the form ((e, (ab)), (e, (ac))),
((e, (ab)), (e, (bc))), ((e, (ac)), (e, (bc))). Based on regular action on ∆ there are three central orbitals
of size one, that is

∆1 =((e, (ab)), (e, (ac))),
∆2 =((e, (ab)), (e, (bc))),
∆3 =((e, (ac)), (e, (bc))).

This implies that each orbital have two adjacent vertices which follows that each orbital have
Γ∗
∆

G = K2. □

Theorem 6. Let G = ⟨a, b : a2β = b2 = e, ab = a−1b⟩, β is even. Let ∆ ⊂ Υ×Υ. If G acts regularly on
∆. Then

Orbitals E(Γ∗
∆

G )
O((e, amb), (e, anb)), m ≤ β + 3, 1 ≤ n ≤ 2β − 1 2β+2 − 2(n + 1), 1 ≤ n ≤ 2β−1 + 1
O((e, amb), (e, anb)), m ≤ β + 4, 1 ≤ n ≤ 2β − 1 2β − 2(n + 1), 0 ≤ n ≤ 2β−1 − 2

O((e, amb), (a2β−1
, anb)), 0 ≤ m ≤ 2β − 1 and 1 ≤ n ≤ 2β − 1 3

O((e, a2β−1
)(e, anb)), 0 ≤ n ≤ 2β − 1 2β+1

Proof. Based on Theorem 2, for orbital O((e, amb), (e, anb)), m ≤ β + 3 and 1 ≤ n ≤ 2β − 1 there are
2β − (n+ 1), 1 ≤ n ≤ 2β−1 + 1 complete components of

⋃2
i=1 K2 and 2β−1 connected component of four

vertices then the number of edges can be computed as follows:

|E(Γ∗
∆

G )| = 2(2β − (n + 1)) + 2β−1
(
4
2

)
− 2

= 2(2β − (n + 1)) + 2β−1(22)
= 2(2β − (n + 1)) + 2β+1

= 2β+2 − 2(n + 1).

Next, for m ≤ β + 4 there are 2β−1 − (n + 1) complete component of
⋃2

i=1 K2, then

|E(Γ∗
∆

G )| = 2(2β−1 − (n + 1))
= 2β − 2(n + 1).

Now, for orbital O((e, amb), (a2β−1
, anb)), 0 ≤ m ≤ 2β − 1 and 1 ≤ n ≤ 2β − 1 there are one complete

component of
⋃2

i=1 K2 and one complete component of K2. Hence it follows that

|E(Γ∗
∆

G )| = 3

and for orbital O((e, a2β−1
)(e, anb)), 0 ≤ n ≤ 2β−1 there are 2β connected graph of three vertices. Thus

|E(Γ∗
∆

G )| = 2β
(
3
2

)
− 1

= 2β+1.

□

Theorem 7. Let G = ⟨a, b : a2n
= b2 = e, ab = ba2n−1−1⟩, n is even. Let ∆ ⊂ Υ ×Υ. If G acts regularly

on ∆. Then
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Orbitals E(Γ∗
∆

G )
O((e, a2n−1

)(e, aib)), 0 ≤ i ≤ 2n − 1 2m+2, m ≥ 2
O((e, aib)(aib, ai+2n−1

b)), 0 ≤ i ≤ 2n − 1 3(2n−2)
O((e, a2n−1

)(aib, ai+2n−1
b)), 0 ≤ i ≤ 2n − 1 1

O((ai′b, ai+2n−1
b)(ai′+2b, ai+2n−1+2b)), 0 ≤ i ≤ 2n − 1, 0 ≤ i′ ≤ 2n−1 1
O((e, aib)(e, ai+2b)), 0 ≤ i ≤ 2n − 1 2(2n − (k + 1) + 4), k ≥ 1
(exception)O((e, a2n−2

b)(e, a2n−2+2b) 2
O((e, aib)(a2n−1

, aib)), 0 ≤ i ≤ 2n − 1 2(2n − (k + 1)) + 1, k ≥ 1
(exception)O((e, a2n−2

)(a2n−1
, a2n−1

b)) 1

Proof. Based on Theorem 3, we consider each case to compute number of edges of each orbital.

Case I We found that for the orbital O((e, a2n−1
)(e, aib)), there are 2m, m ≥ 2 connected graph of four

vertices. This implies that

|E(Γ∗
∆

G )| = 2m

(
4
2

)
− 2

= 2m+2,m ≥ 2.

Also, for O((e, aib)(aib, ai+2n−1
b)) there are 2n−2 connected graph of three vertices. Thus,

|E(Γ∗
∆

G )| = 3(2n−2).

Case II Consider O((e, a2n−1
)(aib, ai+2n−1

b)) and O((ai′b, ai+2n−1
b)(ai′+2b, ai+2n−1+2b)), then Γ∗

∆

G = K2.
This implies

|E(Γ∗
∆

G )| = 1.

Case III For O((e, aib)(e, ai+2b)), we found that each orbital have (2n − (k + 1)), k ≥ 1 component of⋃2
i=1 K2 and one connected component of four vertices. Thus, we have

|E(Γ∗
∆

G )| = 2(2n − (k + 1)) + 4.

This case follows the exception, i.e., there exist one orbital of the type ((e, a2n−2
b)(e, a2n−2+2b)

which always have one component of
⋃2

i=1 K2, then

|E(Γ∗
∆

G )| = 2.

Case IV For orbital O((e, aib)(a2n−1
, aib)), we find

|E(Γ∗
∆

G )| = 2(2n − (k + 1)) + 1,

and (exception) O((e, a2n−2
)(a2n−1

, a2n−1
b)), we have

|E(Γ∗
∆

G )| = 1.

□

4. Conclusion

In this research, we computed the orbitals of a group using a regular action to derive the orbital
regular graph of some finite solvable groups. The cartesian product of the set of all pairs of commuting
elements of size two in G with itself is used to obtain the orbitals of a group. We found the number of
orbital edges for each orbital of a finite solvable group. We also observed that each group G orbital
does have a different orbital regular graph.
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