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1. Introduction and Preliminaries

In this paper, we consider only simple and finite graphs. Let G = (V(G), E(G)) be a graph with
vertex set V(G) and edge set E(G). We say that two vertices u and v are adjacent if they are joined
by an edge. A mixed graph MG is obtained from a simple graph G by orienting each edge of some
subset E0 ∈ E(G) and we call G the underlying graph of MG. We write an undirected edge as {u, v}
and an arc form u to v as (u, v). For a vertex set V ′ of V(MG), let MG[V ′] be a mixed subgraph of MG

induced on V ′. We say a mixed graph is connected if its underlying graph is connected. The degree
of a vertex in a mixed graph MG is defined to be the degree of this vertex in the underlying graph.
We divide the vertices adjacent to v in MG into three sets: N0

MG
(v) = {u ∈ V(MG) : {u, v} ∈ E(MG)};

N+MG
(v) = {u ∈ V(MG) : (v, u) ∈ E(MG)} and N−MG

(v) = {u ∈ V(MG) : (u, v) ∈ E(MG)}.
Recently, Yu, Geng and Zhou [3] defined a kind of new Hermitian adjacency matrix of a mixed

graph, written by Hk(MG) = (huv), which is as follows:

huv =


e

2πi
k , if (u, v) is an arc from u to v;

e−
2πi
k , if (v, u) is an arc from v to u;

1, if {u, v} is an undirected edge;
0, otherwise,

where i is the imaginary unit and k is a positive integer. Hk(MG) unifies some well known matrices. In
fact, when k = 1, H1(MG) = A(G) is the adjacency matrix of G; when when k = 4, H4(MG) = H(MG)
is the Hermitian adjacency matrix of MG, proposed independently by Guo and Mohar [4], Liu and
Li [5]; When k = 6, H6(MG) is is the Hermitian adjacency matrix of second kind for MG, proposed
by Mohar [1] recently.

The author in [2] gave the following definition of a new weighted adjacency matrix of a graph
weighted by its degrees.
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Definition 1. Let G = (V(G), E(G)) be a graph. Denote by du the degree of a vertex u in G. Let f (x, y)
be a function symmetric in x and y. The weighted adjacency matrix A f (G) = (auv) of G is defined as
follows:

auv =

 f (du, dv), if uv ∈ E(G);
0, otherwise.

A f (G) introduced in [2] unifies many matrices weighted by topological index. When f (x, y) = 1,

A f (G) is the adjacency matrix of G; when f (x, y) =
√

x+y−2
xy , A f (G) is the ABC matrix and was

introduced by Estrada [6] and was studied in [7]; When f (x, y) = 2
x+y , A f (G) is the harmonic matrix

and was introduced in [8]; When f (x, y) = x2+y2

2xy , A f (G) is the AG matrix and was studied in [9], [10]
and [11].

In this paper, inspired by [3], we generalize weighted adjacency matrix to mixed graphs and define
a index weighted Hermitian matrix Hk

f (MG) = (huv) for a mixed graph MG, where

huv =


f (du, dv) · ω, if (u, v) is an arc from u to v;
f (du, dv) · ω̄, if (v, u) is an arc from v to u;
f (du, dv), if {u, v} is an undirected edge;
0, otherwise,

ω = cos( 2π
k ) + isin( 2π

k ) for a positive integer k and f (x, y) > 0 is a symmetric and real function. It
can be seen that when f (x, y) = 1, Hk

f (MG) is the matrix Hk(MG), which is defined in [3]; when
k = 1, Hk

f (MG) is the matrix A f (MG), introduced in [2]. It’s easy to check that if all edges of MG are
undirected edges, then Hk

f (MG) = A f (MG). Note that When k is a positive integer and f (x, y) > 0 is
a symmetric and real function, Hk

f (MG) is Hermitian and the eigenvalues of Hk
f (MG) are real. With

fixed f , k and a mixed graph MG, let λ1(MG) ≥ λ2(MG) ≥ · · · λn(MG) be n eigenvalues of Hk
f (MG)

with |V(MG)| = n. The collection {λ1(MG), λ2(MG), · · · , λn(MG)} is called the Hk
f -spectrum of MG, we

say MG is Hk
f -cospectral to its underlying graph if Hk

f (MG) and Hk
f (G) have the same Hk

f -spectrum.
We call the spectral radius of Hk

f (MG) the Hk
f -spectrum radius of MG, denoted by ρk

f (MG).
In the following paper, we assume that k is a positive integer and f (x, y) > 0 is a symmetric and

real function. We define several particular partitions of V(MG) which will be used in our proof.

Definition 2. Let MG be a mixed graph,

(i) For a partition V1 ∪ V2 ∪ · · · ∪ Vk(possible empty) of V(MG), we call it a A -partition of V(MG)
if every undirected edge {u, v} with u ∈ Vi and v ∈ V j such that i − j ≡ 0(mod k) and every arc
(u, v) with u ∈ Vi and v ∈ V j such that i − j ≡ 1(mod k).

(ii) When k is even. For a partition V1 ∪ V2 ∪ · · · ∪ Vk(possible empty) of V(MG), we call it a B-
partition of V(MG) if every undirected edge {u, v} with u ∈ Vi and v ∈ V j such that i− j ≡ k

2 (mod
k) and every arc (u, v) with u ∈ Vi and v ∈ V j such that i − j ≡ k

2 + 1(mod k).

(iii) When k is odd. For a partition V1 ∪ · · · ∪ Vk ∪ U1 ∪ · · · ∪ Uk(possible empty) of V(MG), we
call it a C -partition of V(MG) if every undirected edge {u, v} is between Ui and Vi for some
i ∈ {1, 2, . . . , k} and every arc (u, v) is between Ui,V j or Vi,U j, where i − j ≡ 1(mod k).

When k = 6, three partitions can be seen in Figures 1 and 2. By the Definition 2, V(MG) has a
B-partition only if k is an even positive integer and it’s easy to check that a C -partition of V(MG) is
a A -partition. The main result of paper is as follows:
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Figure 1. A -partition(left) and B-partition(right) when k is Equal to 6

Figure 2. C -partition when k is Equal to 6

Theorem 1. Assume that k is a positive integer and f (x, y) > 0 is a symmetric real function, not
decreasing in variable x. Then for any connected mixed graph MG with maximum degree ∆, we have
ρk

f (MG) ≤ f (∆,∆)∆, where equality holds if and only if MG such that G is ∆-regular and V(MG)
admits a A -partition or a B-partition.

The structure of the paper is as follows. In Section 2 we show a disturbance on E(MG) which
remains the Hk

f -spectrum of MG. In Section 3 we characterize a family of mixed graphs which are
Hk

f -cospectral to their underlying graph and in Section 4 we prove Theorem 1

2. Switching Equivalence for MG

In this section, we focus on some sufficient conditions of Hk
f -cospectrality of mixed graphs.

Supposed that V(MG) can be partitioned into k(possible empty) sets V1 ∪V2 ∪ · · · ∪Vk. We say the
partition is admissible if it such that:

(i) i − j ≡ 0 or 1 or 2(mod k) for every arc (u, v) in MG, where u ∈ Vi and v ∈ V j;

(ii) i − j ≡ 0 or 1(mod k) for every undirected edge {u, v} in MG, where u ∈ Vi and v ∈ V j.

We say a mixed graph MG is admissible if it has an admissible partition.
For a mixed graph MG, a three-way switching for MG with respect to its admissible partition

V1 ∪V2 ∪ · · · ∪Vk is a operation of changing MG into M′G by making the changes in what follows (see
Figure 3):

(i) replacing each undirected edge {u, v} with an arc (u, v), where u ∈ Vi, v ∈ V j and j− i ≡ 1(mod k);

(ii) replacing each arc (u, v) with an undirected edge {u, v}, where u ∈ Vi, v ∈ V j and i − j ≡ 1(mod
k);

(iii) replacing each arc (u, v) with an arc (v, u), where u ∈ Vi, v ∈ V j and i − j ≡ 2(mod k).

Theorem 2. If a mixed graph M
′

G is obtained from an admissible mixed graph MG by a three-way
switching, then M

′

G is Hk
f -cospectral to MG.

Proof. Let V1 ∪ V2 ∪ · · · ∪ Vk be an admissible partition of V(MG), Let ni = |Vi| for i = {1, 2, . . . , k}
and D = diag{ωIn1 , ω

2In2 , . . . , , ω
kInk}, let Hk

f (MG) = (hi j)n×n and Hk
f (M′G) = (h′i j)n×n. In order to prove

the Theorem, it suffices to prove that Hk
f (M′G) = D−1Hk

f (MG)D.
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Figure 3. Three Way Switching for an Admissible Partition

It’s easy to check that for every vertices pair u, v with u ∈ Vi and v ∈ V j, where i ≥ j,
(D−1Hk

f (MG)D)u,v = ω
k+ j−ihuv. If u is not adjacent to v in MG, then ωk+ j−ihuv = 0 = h′uv since MG

and M′G have the same underlying graph.
When u,v are adjacent, we consider following cases.

Case 1. i − j ≡ 0 (mod k), in this case we have h′uv = huv since the switching doesn’t change the edges in
[MG(Vi)].

Case 2. i − j ≡ 1 (mod k), note that in this case, the edge between u,v in MG is a undirected edge
{u, v} or a arc (u, v) from u to v. If {u, v} is a undirected edge, then by by the switching, it
follows that (v, u) is a arc from v to u in M′G and h′u,v = f (du, dv)ω−1 = ωk+ j−ihuv. If (u, v) is
a arc from u to v, then by the switching it follows that {u, v} is a undirected edge in M′G and
h′u,v = ω

−1 f (du, dv)ω = ωk+ j−ihuv.
Case 3. i− j ≡ 2 (mod k), note that in this case, the edge between u,v in MG must be a arc (u, v) from u to

v. Then by the switching it follows that (v, u) is a arc from v to u in M′G and h′u,v = f (du, dv)ω−1 =

ω−2 f (du, dv)ω1 = ωk+ j−ihuv.

Together with Case 1, 2 and 3, we complete the proof of Theorem. □

Note that Vi can be empty for a admissible partition V1 ∪ V2 ∪ · · · ∪ Vk of MG, so the three-way
switching can induces some particular equivalent switchings for MG.

Corollary 1. If V(MG) has a partition V1 ∪ V2 such that there exists no arc from V1 to V2, then the
graph obtained from MG by replacing all undirected edges {u, v} with u ∈ V1 and v ∈ V2 by (u, v) and
replacing all arcs (u, v) with u ∈ V2 and v ∈ V1 by {u, v} is Hk

f -cospectral with MG.

Corollary 2. If V(MG) has a partition V1 ∪ V2 such that [V1,V2] only contains arcs from V2 to V1,
then the graph obtained from MG by replacing all arcs (u, v) with u ∈ V2 and v ∈ V1 by (v, u) is
Hk

f -cospectral with MG.

Corollary 3. If k = 3 and MG has a partition V1 ∪ V2,then the graph obtained from MG by following
changes is Hk

f -cospectral with MG:

(i) replacing all arcs (u, v) with u ∈ V2 and v ∈ V1 by {u, v};
(ii) replacing all undirected edges {u, v} with u ∈ V2 and V ∈ v1 by (v, u);

(iii) replacing all arcs (u, v) with u ∈ V1 and V ∈ v2 by (v, u).

3. Hk
f -cospectrality with Underlying Graph

In this section, we focus on the Hk
f -cospectrality of MG and its underlying graph G.

Theorem 3. Let MG be a connected mixed graph. Then the following statements are equivalent:

(i) G and MG are Hk
f -cospectral.

(ii) λ1(G) = λ1(MG).
(iii) MG admits a A -partition.
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Proof. It’s obvious that (i) implies (ii). Note that MG could be changed into G by a three-way
switching if it admits a A -partition. So (iii) implies (i) by Theorem 2. In order to complete the
proof, it suffices to prove that (ii) implies (iii). Assume that (ii) holds. Let Hk

f (MG) = (huv)n×n and
Hk

f (G) = A f (G) = (auv)n×n, let Y = (y1, y2, . . . , yn)T ∈ Cn be a normalized eigenvector of Hk
f (MG)

corresponding to λ1(MG). Note that |hu,v| = au,v for every u, v ∈ |V(MG)|. Then we have

λ1(MG) =ȲT · Hk
f (MG) · Y

=
∑

u∈V(MG)

∑
v∈V(MG)

ȳuhu,vyv

≤
∑

u∈V(MG)

∑
v∈V(MG)

|ȳuyv| · |hu,v|

=
∑

u∈V(MG)

∑
v∈V(MG)

|yu||yv| · au,v ≤ λ1(G). (1)

The equality in (1) must holds since λ1(MG) = λ1(G), which require that

hu,vȳuyv = |hu,vȳuyv| (2)

for all edges uv in G. Without loss of generality, we can assume that a vertex v0 ∈ V(MG) such that
yv0 ∈ R+, then

|ȳv0 |

ȳv0
= 1 and hv0,vyv = |hv0,vyv| for all y ∈ NG(v0) by (4), it follows that yv

|yv |
= ω−1 if

v ∈ N+MG
(v0); yv

|yv |
= 1 if v ∈ N0

MG
(v0) and yv

|yv |
= ω if v ∈ N−MG

(v0).
Note that G is connected, by repeating the above steps, it follows that yv

|yv |
= ωt with t ∈ Z for all

v ∈ V(MG). Let Vi = {v ∈ V(MG) : yv
|yv |
= ωt, where t ≡ i(mod k)}, where i ∈ {1, 2, . . . , k}. it’s easy to

check that V1,V2, . . . ,Vk form a A -partition of MG, which complete the proof. □

With Theorem 3, we have following corollary.

Corollary 4. A mixed tree MT is Hk
f -cospectral to its underlying graph.

Proof. We construct a A -partition of V(MT ) to prove this corollary. Choose a vertex v0 ∈ V(MT )
and denote by P(u) the unique (v0, u)-path in T for all u ∈ V(MT ), then we define a function f on
V(G), where the value of f (u) equals to the number of arcs toward v0 in P(u) minus the number of
arcs toward u in P(u).

Let Vi = {u ∈ V(MT ) : f (u) ≡ i(mod k)}, where i ∈ {1, 2, . . . , k}. Obviously V(MT ) = V1∪V2∪· · ·∪

Vk and it’s easy to check that for every undirected edge {u, v} with u ∈ Vi and v ∈ V j, f (u) − f (v) = 0
so i = j; for every arc (u, v) with u ∈ Vi and v ∈ V j, f (u) − f (v) = 1 so i − j ≡ 1(mod k). It implies
that V1 ∪ V2 ∪ · · · ∪ Vk forms a A -partition of V(MT ) and complete the proof. □

Then the main Theorem in [12] can be directly generalized to mixed trees.

Corollary 5. Assume that f (x, y) is increasing and convex in variable x, Then the mixed trees in n
vertices owns largest Hk

f -spectral radius if and only if its underlying graph is S n or a double star
S d,n−d for some d ∈ {2, . . . , n − 2}.

Corollary 6. Assume that f (x, y) has the form P(x, y) or
√

P(x, y), where P(x, y) is a symmetric
polynomial with nonnegative coefficients and zero constant term. Then the mixed tree on n(n ≥ 9)
vertices owns the smallest Hk

f -spectral radius if and only if its underlying graph is Pn.

4. Proof of Theorem 1

Lemma 1. Let MG be a mixed graph. Then |λi(MG)| ≤ λ1(G) for all i ∈ {1, 2 . . . , n}.
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Proof. Let Y = (y1, y2, . . . , yn)T ∈ Cn be a normalized eigenvector of Hk
f (MG) corresponding to

λi(MG). Then we have

|λi(MG)| =|ȲT · Hk
f (MG) · Y |

=|
∑

u∈V(MG)

∑
v∈V(MG)

ȳuhu,vyv|

≤
∑

u∈V(MG)

∑
v∈V(MG)

|ȳuyv| · |hu,v|

=
∑

u∈V(MG)

∑
v∈V(MG)

|yu||yv| · au,v ≤ λ1(G).

Which completes the proof. □

Note that |λn(MG)| > |λ1(MG)| is possible for a mixed graph MG. By Lemma 1, it follows that
ρk

f (G) = ρk
f (MG) if and only if λ1(MG) = λ1(G) or −λn(MG) = λ1(G). In the following two lemmas

we focus on the condition of the second equality.

Lemma 2. Let k be an odd positive integer and MG be a connected mixed graph, then −λn(MG) =
λ1(G) if and only if V(MG) admits a C -partition.

Proof. If V(MG) admits a C -partition, say V1 ∪ · · · ∪ Vk ∪U1 ∪ · · · ∪Uk. Then G is a bipartite graph
and (V1∪U1), (V1∪U1), . . . , (Vk ∪Uk) form a A -partition of V(MG), by Perron-Frobinius Theorem
and Theorem 3 it follows that λn(MG) = λn(G) = −λ1(G).

If −λn(MG) = λ1(G) holds, Let Hk
f (MG) = (huv)n×n and Hk

f (G) = A f (G) = (auv)n×n, let Y =
(y1, y2, . . . , yn)T ∈ Cn be a normalized eigenvector of Hk

f (MG) corresponding to λn(MG). Then we
have

−λn(MG) = − ȲT · Hk
f (MG) · Y

= −
∑

u∈V(MG)

∑
v∈V(MG)

ȳuhuvyv

≤
∑

u∈V(MG)

∑
v∈V(MG)

|ȳuyv| · |huv|

=
∑

u∈V(MG)

∑
v∈V(MG)

|yu||yv| · auv ≤ λ1(G). (3)

The equality in (3) must holds because −λn(MG) = λ1(G), which requires that

hu,vȳuyv = −|hu,vȳuyv|, (4)

for all edges uv in G. Without loss of generality, we can assume that a vertex v0 ∈ V(MG) such that
yv0 ∈ R+, then

|ȳv0 |

ȳv0
= 1 and hv0,vyv = |hv0,vyv| for all y ∈ NG(v0) by (4), it follows that yv

|yv |
= −ω−1 if

v ∈ N+MG
(v0); yv

|yv |
= −1 if v ∈ N0

MG
(v0) and yv

|yv |
= −ω if v ∈ N−MG

(v0).
Note that G is connected, by repeating the above steps, it follows that yv

|yv |
∈ {± ωt, t ∈ Z} for all

v ∈ V(MG). Let Vi = {v ∈ V(MG) : yv
|yv |
= ωt, where t ≡ i(mod k)} and Ui = {v ∈ V(MG) : yv

|yv |
=

−ωt, where t ≡ i(mod k)} where i ∈ {1, 2, . . . , k}. it’s easy to check that V1 ∪ · · · ∪ Vk ∪ U1 ∪ · · · ∪ Uk

form a C -partition of V(MG), which complete the proof. □

Note that a C -partition V1, . . . ,Vk,U1, . . . ,Uk of V(G) forms into a A -partition (V1 ∪U1), (V1 ∪

U1), . . . , (Vk ∪ Uk). So we have following corollary.

Corollary 7. Let k be an odd positive integer and MG be a connected mixed graph, then ρ(G) = ρ(MG)
if and only if V(MG) admits a A -partition.
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Lemma 3. Let k be an even positive integer and G be a connected, regular graph, then a mixed graph
MG with underlying graph G such that −λn(MG) = λ1(G) if and only if MG admits a B-partition.

Proof. Assume that G is ∆-regular, let Hk
f (MG) = (huv)n×n and Hk

f (G) = A f (G) = (auv)n×n, let
X = (x1, x2, . . . , xn)T ∈ Rn be a normalized eigenvector of A f (G) corresponding to λ1(G) and
Y = (y1, y2, . . . , yn)T ∈ Cn be a normalized eigenvector of Hk

f (MG) corresponding to λn(MG).
Assume that −λn(MG) = λ1(G), then by the similar proof it follows that

hu,vȳuyv = −|hu,vȳuyv|, (5)

for all edges uv in G. Without loss of generality, we can assume that a vertex v0 ∈ V(MG) such that
yv0 ∈ R+, then

|ȳv0 |

ȳv0
= 1 and hv0,vyv = |hv0,vyv| for all y ∈ NG(v0) by (5), it follows that yv

|yv |
= −ω−1 = ω

k
2−1

if v ∈ N+MG
(v0); yv

|yv |
= −1 = ω

k
2 if v ∈ N0

MG
(v0) and yv

|yv |
= −ω = ω

k
2+1 if v ∈ N−MG

(v0).
Note that G is connected, by repeating the above steps, it follows that yv

|yv |
∈ {ωt, t ∈ Z} for all

v ∈ V(MG). Let Vi = {v ∈ V(MG) : yv
|yv |
= ωt, where t ≡ i(mod k)}, where i ∈ {1, 2, . . . , k}. it’s easy to

check that V1 ∪ · · · ∪ Vk forms a B-partition of V(MG).
Assume that MG admits a B-partition V1 ∪ V2 ∪ · · · ∪ Vk, we construct a vector Z ∈ Cn with

zu = xu · wi, where u ∈ Vi. Then for any u ∈ V(MG) with u ∈ Vi,

(Hk
f (G) · Z)u = f (∆,∆)(

∑
v∈N0

MG
(u)

zv +
∑

v∈N+MG
(u)

ωzv +
∑

v∈N−MG
(u)

ω−1zv)

= f (∆,∆)(
∑

v∈N0
MG

(u)

xvω
i+ k

2 +
∑

v∈N+MG
(u)

ωxvω
i+ k

2−1

+
∑

v∈N−MG
(u)

ω−1xvω
i+ k

2+1)

= − f (∆,∆)ωi
∑

v∈NG(u)

xv

= − λ1(G)ωixu = −λ1zu.

It follows that Hk
f (G) · Z = −λ1(G)Z, so −λn(MG) = λ1(G). □

Combined with Theorem 3 we have following corollary.

Corollary 8. Let k be a even integer positive and G be a connected, regular graph, then a mixed
graph MG such that ρk

f (MG) = ρk
f (G) if and only if V(G) admits a A -partition or a B-partition.

Lemma 4. Let k be a positive integer and f (x, y) > 0 be a symmetric real function, not decreasing in
variable x, then for any proper subgraph H of G, we have ρk

f (H) < ρk
f (G).

Proof. We have following two claims.

Claim 1. For any proper, spanning and connected subgraph H of G, ρk
f (H) < ρk

f (G).

Let y1 > 0, y2 > 0 be the Perron vector of ρ(G) and ρ(H), respectively. Note that A f (G)−A f (G′) ≥ 0
and A f (G) − A f (G′) , 0 since f (x, y) is symmetric, not decreasing in x and H is a proper subgraph of
G. Then

(ρk
f (G) − ρk

f (H))y1
′y2 = y1

′(A f (G) − A f (H))y2 > 0.

It follows that ρk
f (G) > ρk

f (H).

Claim 2. For any proper, induced subgraph H of G, ρk
f (H) < ρk

f (G).
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Let y > 0, y1 > 0 be the Perron vector of ρk
f (G) and ρk

f (H), respectively. We can assume that

A f (G) =
(
A f (H) + K L

L′ M

)
where K ≥ 0 is symmetric. Then

A f (G)
(
y1

0

)
=

(
(A f (H) + K)y1

L′y1

)
=

(
ρk

f (H)y1 + Ky1

L′y1

)
≥ ρk

f (H)
(
y1

0

)
.

If

A f (G)
(
y1

0

)
= ρk

f (H)
(
y1

0

)
,

then
(
y1

0

)
≥ 0 is a eigenvector of A f (G) corresponding to ρk

f (G), which is contradict to Perron-

Frobinius Theorem. So we have A f (G)
(
y1

0

)
≥ ρk

f (H)
(
y1

0

)
and A f (G)

(
y1

0

)
, ρk

f (H)
(
y1

0

)
. It follows

that (ρk
f (G) − ρk

f (H))y′
(
y1

0

)
= y′(A f (G)

(
y1

0

)
− ρk

f (H)
(
y1

0

)
) ≥ 0, so ρk

f (G) > ρk
f (H).

For any proper subgraph H of G, we can assume that H is connected. Then H must be a spanning
subgraph of some induced subgraph H′ of G. If H′ = G, then by Claim 1 it follows that ρk

f (H) <
ρk

f (H
′) = ρk

f (G). If H′ , G, then by Claim 2 it follows that ρk
f (H) ≤ ρk

f (H
′) < ρk

f (G). It completes the
proof. □

Proof of Theorem 1. Note that if G is a ∆-regular graph, then A f (G) = f (∆,∆)A(G) and ρk
f (G) =

f (∆,∆)∆(G). Since every graph with maximum degree ∆ must be a subgraph of a ∆-regular graph,
by Lemma 4 it follows that ρk

f (G) ≤ f (∆,∆)∆(G) for all graphs G with maximum degree ∆, where
equality holds if and only if G is ∆-regular.

For a mixed graph MG with maximum degree ∆, by Lemma 1 it follows that ρk
f (MG) ≤

f (∆,∆)∆(G), by Corollary 7, 8 it follows that equality holds if and only if underlying graph G is
∆(G)-regular and MG admits a A -partition or MG admits a B-partition when k is even. □
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