

Article

The Index Weighted Hermitian Adjacency Matrices for Mixed Graphs

Zheng Wang¹, Tao She¹ and Chunxiang Wang^{1,*}

¹ School of Mathematics and Statistics, Central China Normal University, Wuhan, P.R. China

* Correspondence: wcxiang@mail.ccnu.edu.cn

Abstract: Based on the Hermitian adjacency matrices of second kind introduced by Mohar [1] and weighted adjacency matrices introduced in [2], we define a kind of index weighted Hermitian adjacency matrices of mixed graphs. In this paper we characterize the structure of mixed graphs which are cospectral to their underlying graphs, then we determine a upper bound on the spectral radius of mixed graphs with maximum degree Δ , and characterize the corresponding extremal graphs.

Keywords: Mixed graph, Spectral radius, Eigenvalue, Adjacency matrix, Cospectrality **Mathematics Subject Classification:** 05C50, 15A18

1. Introduction and Preliminaries

In this paper, we consider only simple and finite graphs. Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). We say that two vertices u and v are adjacent if they are joined by an edge. A mixed graph M_G is obtained from a simple graph G by orienting each edge of some subset $E_0 \in E(G)$ and we call G the underlying graph of M_G . We write an undirected edge as $\{u, v\}$ and an arc form u to v as (u, v). For a vertex set V' of $V(M_G)$, let $M_G[V']$ be a mixed subgraph of M_G induced on V'. We say a mixed graph is connected if its underlying graph is connected. The degree of a vertex in a mixed graph M_G is defined to be the degree of this vertex in the underlying graph. We divide the vertices adjacent to v in M_G into three sets: $N_{M_G}^0(v) = \{u \in V(M_G) : \{u, v\} \in E(M_G)\};$ $N_{M_G}^+(v) = \{u \in V(M_G) : (v, u) \in E(M_G)\}$ and $N_{M_G}^-(v) = \{u \in V(M_G) : (u, v) \in E(M_G)\}$.

Recently, Yu, Geng and Zhou [3] defined a kind of new Hermitian adjacency matrix of a mixed graph, written by $H_k(M_G) = (h_{uv})$, which is as follows:

$$h_{uv} = \begin{cases} e^{\frac{2\pi i}{k}}, & \text{if } (u, v) \text{ is an arc from } u \text{ to } v; \\ e^{-\frac{2\pi i}{k}}, & \text{if } (v, u) \text{ is an arc from } v \text{ to } u; \\ 1, & \text{if } \{u, v\} \text{ is an undirected edge;} \\ 0, & \text{otherwise,} \end{cases}$$

where **i** is the imaginary unit and *k* is a positive integer. $H_k(M_G)$ unifies some well known matrices. In fact, when k = 1, $H_1(M_G) = A(G)$ is the adjacency matrix of *G*; when when k = 4, $H_4(M_G) = H(M_G)$ is the Hermitian adjacency matrix of M_G , proposed independently by Guo and Mohar [4], Liu and Li [5]; When k = 6, $H_6(M_G)$ is the Hermitian adjacency matrix of second kind for M_G , proposed by Mohar [1] recently.

The author in [2] gave the following definition of a new weighted adjacency matrix of a graph weighted by its degrees.

Definition 1. Let G = (V(G), E(G)) be a graph. Denote by d_u the degree of a vertex u in G. Let f(x, y) be a function symmetric in x and y. The weighted adjacency matrix $A_f(G) = (a_{uv})$ of G is defined as follows:

$$a_{uv} = \begin{cases} f(d_u, d_v), & \text{if } uv \in E(G); \\ 0, & \text{otherwise.} \end{cases}$$

 $A_f(G)$ introduced in [2] unifies many matrices weighted by topological index. When f(x, y) = 1, $A_f(G)$ is the adjacency matrix of G; when $f(x, y) = \sqrt{\frac{x+y-2}{xy}}$, $A_f(G)$ is the *ABC* matrix and was introduced by Estrada [6] and was studied in [7]; When $f(x, y) = \frac{2}{x+y}$, $A_f(G)$ is the *harmonic* matrix and was introduced in [8]; When $f(x, y) = \frac{x^2+y^2}{2xy}$, $A_f(G)$ is the *AG* matrix and was studied in [9], [10] and [11].

In this paper, inspired by [3], we generalize weighted adjacency matrix to mixed graphs and define a index weighted Hermitian matrix $H_f^k(M_G) = (h_{uv})$ for a mixed graph M_G , where

 $h_{uv} = \begin{cases} f(d_u, d_v) \cdot \omega, & \text{if } (u, v) \text{ is an arc from } u \text{ to } v; \\ f(d_u, d_v) \cdot \bar{\omega}, & \text{if } (v, u) \text{ is an arc from } v \text{ to } u; \\ f(d_u, d_v), & \text{if } \{u, v\} \text{ is an undirected edge;} \\ 0, & \text{otherwise,} \end{cases}$

 $\omega = cos(\frac{2\pi}{k}) + isin(\frac{2\pi}{k})$ for a positive integer k and f(x, y) > 0 is a symmetric and real function. It can be seen that when f(x, y) = 1, $H_f^k(M_G)$ is the matrix $H^k(M_G)$, which is defined in [3]; when k = 1, $H_f^k(M_G)$ is the matrix $A_f(M_G)$, introduced in [2]. It's easy to check that if all edges of M_G are undirected edges, then $H_f^k(M_G) = A_f(M_G)$. Note that When k is a positive integer and f(x, y) > 0 is a symmetric and real function, $H_f^k(M_G)$ is Hermitian and the eigenvalues of $H_f^k(M_G)$ are real. With fixed f, k and a mixed graph M_G , let $\lambda_1(M_G) \ge \lambda_2(M_G) \ge \cdots \lambda_n(M_G)$ be n eigenvalues of $H_f^k(M_G)$ with $|V(M_G)| = n$. The collection $\{\lambda_1(M_G), \lambda_2(M_G), \cdots, \lambda_n(M_G)\}$ is called the H_f^k -spectrum of M_G , we say M_G is H_f^k -cospectral to its underlying graph if $H_f^k(M_G)$ and $H_f^k(G)$ have the same H_f^k -spectrum. We call the spectral radius of $H_f^k(M_G)$ the H_f^k -spectrum radius of M_G , denoted by $\rho_f^k(M_G)$.

In the following paper, we assume that k is a positive integer and f(x, y) > 0 is a symmetric and real function. We define several particular participant of $V(M_G)$ which will be used in our proof.

Definition 2. Let M_G be a mixed graph,

- (i) For a partition $V_1 \cup V_2 \cup \cdots \cup V_k$ (possible empty) of $V(M_G)$, we call it a \mathscr{A} -partition of $V(M_G)$ if every undirected edge $\{u, v\}$ with $u \in V_i$ and $v \in V_j$ such that $i - j \equiv 0 \pmod{k}$ and every arc (u, v) with $u \in V_i$ and $v \in V_j$ such that $i - j \equiv 1 \pmod{k}$.
- (ii) When k is even. For a partition $V_1 \cup V_2 \cup \cdots \cup V_k$ (possible empty) of $V(M_G)$, we call it a \mathscr{B} partition of $V(M_G)$ if every undirected edge $\{u, v\}$ with $u \in V_i$ and $v \in V_j$ such that $i j \equiv \frac{k}{2}$ (mod k) and every arc (u, v) with $u \in V_i$ and $v \in V_j$ such that $i j \equiv \frac{k}{2} + 1$ (mod k).
- (iii) When k is odd. For a partition $V_1 \cup \cdots \cup V_k \cup U_1 \cup \cdots \cup U_k$ (possible empty) of $V(M_G)$, we call it a \mathscr{C} -partition of $V(M_G)$ if every undirected edge $\{u, v\}$ is between U_i and V_i for some $i \in \{1, 2, \ldots, k\}$ and every arc (u, v) is between U_i, V_j or V_i, U_j , where $i j \equiv 1 \pmod{k}$.

When k = 6, three partitions can be seen in Figures 1 and 2. By the Definition 2, $V(M_G)$ has a \mathscr{B} -partition only if k is an even positive integer and it's easy to check that a \mathscr{C} -partition of $V(M_G)$ is a \mathscr{A} -partition. The main result of paper is as follows:

Figure 1. \mathscr{A} -partition(left) and \mathscr{B} -partition(right) when k is Equal to 6

Figure 2. C-partition when k is Equal to 6

Theorem 1. Assume that k is a positive integer and f(x, y) > 0 is a symmetric real function, not decreasing in variable x. Then for any connected mixed graph M_G with maximum degree Δ , we have $\rho_f^k(M_G) \leq f(\Delta, \Delta)\Delta$, where equality holds if and only if M_G such that G is Δ -regular and $V(M_G)$ admits a \mathscr{A} -partition or a \mathscr{B} -partition.

The structure of the paper is as follows. In Section 2 we show a disturbance on $E(M_G)$ which remains the H_f^k -spectrum of M_G . In Section 3 we characterize a family of mixed graphs which are H_f^k -cospectral to their underlying graph and in Section 4 we prove Theorem 1

2. Switching Equivalence for M_G

In this section, we focus on some sufficient conditions of H_f^k -cospectrality of mixed graphs.

Supposed that $V(M_G)$ can be partitioned into k(possible empty) sets $V_1 \cup V_2 \cup \cdots \cup V_k$. We say the partition is admissible if it such that:

- (i) $i j \equiv 0$ or 1 or 2(mod k) for every arc (u, v) in M_G , where $u \in V_i$ and $v \in V_j$;
- (ii) $i j \equiv 0$ or $1 \pmod{k}$ for every undirected edge $\{u, v\}$ in M_G , where $u \in V_i$ and $v \in V_j$.

We say a mixed graph M_G is admissible if it has an admissible partition.

For a mixed graph M_G , a *three-way switching* for M_G with respect to its admissible partition $V_1 \cup V_2 \cup \cdots \cup V_k$ is a operation of changing M_G into M'_G by making the changes in what follows (see Figure 3):

- (i) replacing each undirected edge $\{u, v\}$ with an arc (u, v), where $u \in V_i$, $v \in V_j$ and $j i \equiv 1 \pmod{k}$;
- (ii) replacing each arc (u, v) with an undirected edge $\{u, v\}$, where $u \in V_i, v \in V_j$ and $i j \equiv 1 \pmod{k}$;
- (iii) replacing each arc (u, v) with an arc (v, u), where $u \in V_i$, $v \in V_i$ and $i j \equiv 2 \pmod{k}$.

Theorem 2. If a mixed graph M'_G is obtained from an admissible mixed graph M_G by a three-way switching, then M'_G is H^k_f -cospectral to M_G .

Proof. Let $V_1 \cup V_2 \cup \cdots \cup V_k$ be an admissible partition of $V(M_G)$, Let $n_i = |V_i|$ for $i = \{1, 2, \dots, k\}$ and $D = diag\{\omega I_{n_1}, \omega^2 I_{n_2}, \dots, \omega^k I_{n_k}\}$, let $H_f^k(M_G) = (h_{ij})_{n \times n}$ and $H_f^k(M_G') = (h'_{ij})_{n \times n}$. In order to prove the Theorem, it suffices to prove that $H_f^k(M_G') = D^{-1}H_f^k(M_G)D$.

Figure 3. Three Way Switching for an Admissible Partition

It's easy to check that for every vertices pair u, v with $u \in V_i$ and $v \in V_j$, where $i \ge j$, $(D^{-1}H_f^k(M_G)D)_{u,v} = \omega^{k+j-i}h_{uv}$. If u is not adjacent to v in M_G , then $\omega^{k+j-i}h_{uv} = 0 = h'_{uv}$ since M_G and M'_G have the same underlying graph.

When u,v are adjacent, we consider following cases.

- Case 1. $i j \equiv 0 \pmod{k}$, in this case we have $h'_{uv} = h_{uv}$ since the switching doesn't change the edges in $[M_G(V_i)]$.
- Case 2. $i j \equiv 1 \pmod{k}$, note that in this case, the edge between u, v in M_G is a undirected edge $\{u, v\}$ or a arc (u, v) from u to v. If $\{u, v\}$ is a undirected edge, then by by the switching, it follows that (v, u) is a arc from v to u in M'_G and $h'_{u,v} = f(d_u, d_v)\omega^{-1} = \omega^{k+j-i}h_{uv}$. If (u, v) is a arc from u to v, then by the switching it follows that $\{u, v\}$ is a undirected edge in M'_G and $h'_{u,v} = \omega^{-1}f(d_u, d_v)\omega = \omega^{k+j-i}h_{uv}$.
- Case 3. $i j \equiv 2 \pmod{k}$, note that in this case, the edge between u, v in M_G must be a arc (u, v) from u to v. Then by the switching it follows that (v, u) is a arc from v to u in M'_G and $h'_{u,v} = f(d_u, d_v)\omega^{-1} = \omega^{-2}f(d_u, d_v)\omega^1 = \omega^{k+j-i}h_{uv}$.

Together with Case 1, 2 and 3, we complete the proof of Theorem.

Note that V_i can be empty for a admissible partition $V_1 \cup V_2 \cup \cdots \cup V_k$ of M_G , so the *three-way switching* can induces some particular equivalent switchings for M_G .

Corollary 1. If $V(M_G)$ has a partition $V_1 \cup V_2$ such that there exists no arc from V_1 to V_2 , then the graph obtained from M_G by replacing all undirected edges $\{u, v\}$ with $u \in V_1$ and $v \in V_2$ by (u, v) and replacing all arcs (u, v) with $u \in V_2$ and $v \in V_1$ by $\{u, v\}$ is H_f^k -cospectral with M_G .

Corollary 2. If $V(M_G)$ has a partition $V_1 \cup V_2$ such that $[V_1, V_2]$ only contains arcs from V_2 to V_1 , then the graph obtained from M_G by replacing all arcs (u, v) with $u \in V_2$ and $v \in V_1$ by (v, u) is H_f^k -cospectral with M_G .

Corollary 3. If k = 3 and M_G has a partition $V_1 \cup V_2$, then the graph obtained from M_G by following changes is H_f^k -cospectral with M_G :

- (*i*) replacing all arcs (u, v) with $u \in V_2$ and $v \in V_1$ by $\{u, v\}$;
- (ii) replacing all undirected edges $\{u, v\}$ with $u \in V_2$ and $V \in v_1$ by (v, u);
- (iii) replacing all arcs (u, v) with $u \in V_1$ and $V \in v_2$ by (v, u).

3. H^k_f-cospectrality with Underlying Graph

In this section, we focus on the H_f^k -cospectrality of M_G and its underlying graph G.

Theorem 3. Let M_G be a connected mixed graph. Then the following statements are equivalent:

(i) G and M_G are H_f^k -cospectral. (ii) $\lambda_1(G) = \lambda_1(M_G)$. (iii) M_G admits a \mathscr{A} -partition.

Proof. It's obvious that (i) implies (ii). Note that M_G could be changed into G by a *three-way* switching if it admits a \mathscr{A} -partition. So (iii) implies (i) by Theorem 2. In order to complete the proof, it suffices to prove that (ii) implies (iii). Assume that (ii) holds. Let $H_f^k(M_G) = (h_{uv})_{n \times n}$ and $H_f^k(G) = A_f(G) = (a_{uv})_{n \times n}$, let $Y = (y_1, y_2, \dots, y_n)^T \in C^n$ be a normalized eigenvector of $H_f^k(M_G)$ corresponding to $\lambda_1(M_G)$. Note that $|h_{u,v}| = a_{u,v}$ for every $u, v \in |V(M_G)|$. Then we have

$$\lambda_{1}(M_{G}) = \overline{Y^{T}} \cdot H_{f}^{k}(M_{G}) \cdot Y$$

$$= \sum_{u \in V(M_{G})} \sum_{v \in V(M_{G})} \overline{y_{u}} h_{u,v} y_{v}$$

$$\leq \sum_{u \in V(M_{G})} \sum_{v \in V(M_{G})} |\overline{y_{u}}y_{v}| \cdot |h_{u,v}|$$

$$= \sum_{u \in V(M_{G})} \sum_{v \in V(M_{G})} |y_{u}||y_{v}| \cdot a_{u,v} \leq \lambda_{1}(G).$$
(1)

The equality in (1) must holds since $\lambda_1(M_G) = \lambda_1(G)$, which require that

$$h_{u,v}\bar{y}_{u}y_{v} = |h_{u,v}\bar{y}_{u}y_{v}| \tag{2}$$

for all edges uv in G. Without loss of generality, we can assume that a vertex $v_0 \in V(M_G)$ such that $y_{v_0} \in R^+$, then $\frac{|\bar{y}_{v_0}|}{\bar{y}_{v_0}} = 1$ and $h_{v_0,v}y_v = |h_{v_0,v}y_v|$ for all $y \in N_G(v_0)$ by (4), it follows that $\frac{y_v}{|y_v|} = \omega^{-1}$ if $v \in N_{M_G}^+(v_0)$; $\frac{y_v}{|y_v|} = 1$ if $v \in N_{M_G}^0(v_0)$ and $\frac{y_v}{|y_v|} = \omega$ if $v \in N_{M_G}^-(v_0)$.

Note that *G* is connected, by repeating the above steps, it follows that $\frac{y_v}{|y_v|} = \omega^t$ with $t \in Z$ for all $v \in V(M_G)$. Let $V_i = \{v \in V(M_G) : \frac{y_v}{|y_v|} = \omega^t$, where $t \equiv i \pmod{k}\}$, where $i \in \{1, 2, \dots, k\}$. it's easy to check that V_1, V_2, \dots, V_k form a \mathscr{A} -partition of M_G , which complete the proof.

With Theorem 3, we have following corollary.

Corollary 4. A mixed tree M_T is H_f^k -cospectral to its underlying graph.

Proof. We construct a \mathscr{A} -partition of $V(M_T)$ to prove this corollary. Choose a vertex $v_0 \in V(M_T)$ and denote by P(u) the unique (v_0, u) -path in T for all $u \in V(M_T)$, then we define a function f on V(G), where the value of f(u) equals to the number of arcs toward v_0 in P(u) minus the number of arcs toward u in P(u).

Let $V_i = \{u \in V(M_T) : f(u) \equiv i \pmod{k}\}$, where $i \in \{1, 2, ..., k\}$. Obviously $V(M_T) = V_1 \cup V_2 \cup \cdots \cup V_k$ and it's easy to check that for every undirected edge $\{u, v\}$ with $u \in V_i$ and $v \in V_j$, f(u) - f(v) = 0 so i = j; for every arc (u, v) with $u \in V_i$ and $v \in V_j$, f(u) - f(v) = 1 so $i - j \equiv 1 \pmod{k}$. It implies that $V_1 \cup V_2 \cup \cdots \cup V_k$ forms a \mathscr{A} -partition of $V(M_T)$ and complete the proof.

Then the main Theorem in [12] can be directly generalized to mixed trees.

Corollary 5. Assume that f(x, y) is increasing and convex in variable x, Then the mixed trees in n vertices owns largest H_f^k -spectral radius if and only if its underlying graph is S_n or a double star $S_{d,n-d}$ for some $d \in \{2, ..., n-2\}$.

Corollary 6. Assume that f(x, y) has the form P(x, y) or $\sqrt{P(x, y)}$, where P(x, y) is a symmetric polynomial with nonnegative coefficients and zero constant term. Then the mixed tree on $n(n \ge 9)$ vertices owns the smallest H_f^k -spectral radius if and only if its underlying graph is P_n .

4. Proof of Theorem 1

Lemma 1. Let M_G be a mixed graph. Then $|\lambda_i(M_G)| \leq \lambda_1(G)$ for all $i \in \{1, 2, ..., n\}$.

Proof. Let $Y = (y_1, y_2, ..., y_n)^T \in C^n$ be a normalized eigenvector of $H_f^k(M_G)$ corresponding to $\lambda_i(M_G)$. Then we have

$$\begin{split} |\lambda_i(M_G)| &= |\bar{Y}^T \cdot H_f^k(M_G) \cdot Y| \\ &= |\sum_{u \in V(M_G)} \sum_{v \in V(M_G)} \bar{y}_u h_{u,v} y_v| \\ &\leq \sum_{u \in V(M_G)} \sum_{v \in V(M_G)} |\bar{y}_u y_v| \cdot |h_{u,v}| \\ &= \sum_{u \in V(M_G)} \sum_{v \in V(M_G)} |y_u| |y_v| \cdot a_{u,v} \leq \lambda_1(G). \end{split}$$

Which completes the proof.

Note that $|\lambda_n(M_G)| > |\lambda_1(M_G)|$ is possible for a mixed graph M_G . By Lemma 1, it follows that $\rho_f^k(G) = \rho_f^k(M_G)$ if and only if $\lambda_1(M_G) = \lambda_1(G)$ or $-\lambda_n(M_G) = \lambda_1(G)$. In the following two lemmas we focus on the condition of the second equality.

Lemma 2. Let k be an odd positive integer and M_G be a connected mixed graph, then $-\lambda_n(M_G) = \lambda_1(G)$ if and only if $V(M_G)$ admits a C-partition.

Proof. If $V(M_G)$ admits a \mathscr{C} -partition, say $V_1 \cup \cdots \cup V_k \cup U_1 \cup \cdots \cup U_k$. Then *G* is a bipartite graph and $(V_1 \cup U_1)$, $(V_1 \cup U_1)$, \ldots , $(V_k \cup U_k)$ form a \mathscr{A} -partition of $V(M_G)$, by Perron-Frobinius Theorem and Theorem 3 it follows that $\lambda_n(M_G) = \lambda_n(G) = -\lambda_1(G)$.

If $-\lambda_n(M_G) = \lambda_1(G)$ holds, Let $H_f^k(M_G) = (h_{uv})_{n \times n}$ and $H_f^k(G) = A_f(G) = (a_{uv})_{n \times n}$, let $Y = (y_1, y_2, \dots, y_n)^T \in C^n$ be a normalized eigenvector of $H_f^k(M_G)$ corresponding to $\lambda_n(M_G)$. Then we have

$$-\lambda_{n}(M_{G}) = -Y^{I} \cdot H_{f}^{\kappa}(M_{G}) \cdot Y$$

$$= -\sum_{u \in V(M_{G})} \sum_{v \in V(M_{G})} y_{u}h_{uv}y_{v}$$

$$\leq \sum_{u \in V(M_{G})} \sum_{v \in V(M_{G})} |y_{u}y_{v}| \cdot |h_{uv}|$$

$$= \sum_{u \in V(M_{G})} \sum_{v \in V(M_{G})} |y_{u}||y_{v}| \cdot a_{uv} \leq \lambda_{1}(G).$$
(3)

The equality in (3) must holds because $-\lambda_n(M_G) = \lambda_1(G)$, which requires that

$$h_{u,v}\bar{y}_{u}y_{v} = -|h_{u,v}\bar{y}_{u}y_{v}|,\tag{4}$$

for all edges uv in G. Without loss of generality, we can assume that a vertex $v_0 \in V(M_G)$ such that $y_{v_0} \in R^+$, then $\frac{|\bar{y}_{v_0}|}{\bar{y}_{v_0}} = 1$ and $h_{v_0,v}y_v = |h_{v_0,v}y_v|$ for all $y \in N_G(v_0)$ by (4), it follows that $\frac{y_v}{|y_v|} = -\omega^{-1}$ if $v \in N^+_{M_G}(v_0)$; $\frac{y_v}{|y_v|} = -1$ if $v \in N^0_{M_G}(v_0)$ and $\frac{y_v}{|y_v|} = -\omega$ if $v \in N^-_{M_G}(v_0)$.

Note that G is connected, by repeating the above steps, it follows that $\frac{y_v}{|y_v|} \in \{\pm \omega^t, t \in Z\}$ for all $v \in V(M_G)$. Let $V_i = \{v \in V(M_G) : \frac{y_v}{|y_v|} = \omega^t, where t \equiv i(mod k)\}$ and $U_i = \{v \in V(M_G) : \frac{y_v}{|y_v|} = -\omega^t, where t \equiv i(mod k)\}$ where $i \in \{1, 2, ..., k\}$. it's easy to check that $V_1 \cup \cdots \cup V_k \cup U_1 \cup \cdots \cup U_k$ form a \mathscr{C} -partition of $V(M_G)$, which complete the proof.

Note that a \mathscr{C} -partition $V_1, \ldots, V_k, U_1, \ldots, U_k$ of V(G) forms into a \mathscr{A} -partition $(V_1 \cup U_1), (V_1 \cup U_1), \ldots, (V_k \cup U_k)$. So we have following corollary.

Corollary 7. Let k be an odd positive integer and M_G be a connected mixed graph, then $\rho(G) = \rho(M_G)$ if and only if $V(M_G)$ admits a \mathscr{A} -partition.

Lemma 3. Let k be an even positive integer and G be a connected, regular graph, then a mixed graph M_G with underlying graph G such that $-\lambda_n(M_G) = \lambda_1(G)$ if and only if M_G admits a \mathscr{B} -partition.

Proof. Assume that G is Δ -regular, let $H_f^k(M_G) = (h_{uv})_{n \times n}$ and $H_f^k(G) = A_f(G) = (a_{uv})_{n \times n}$, let $X = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$ be a normalized eigenvector of $A_f(G)$ corresponding to $\lambda_1(G)$ and $Y = (y_1, y_2, \dots, y_n)^T \in \mathbb{C}^n$ be a normalized eigenvector of $H_f^k(M_G)$ corresponding to $\lambda_n(M_G)$. Assume that $-\lambda_n(M_G) = \lambda_1(G)$, then by the similar proof it follows that

$$h_{u,v}\bar{y}_{u}y_{v} = -|h_{u,v}\bar{y}_{u}y_{v}|,\tag{5}$$

for all edges uv in G. Without loss of generality, we can assume that a vertex $v_0 \in V(M_G)$ such that $y_{v_0} \in R^+$, then $\frac{|\bar{y}_{v_0}|}{\bar{y}_{v_0}} = 1$ and $h_{v_0,v}y_v = |h_{v_0,v}y_v|$ for all $y \in N_G(v_0)$ by (5), it follows that $\frac{y_v}{|y_v|} = -\omega^{-1} = \omega^{\frac{k}{2}-1}$ if $v \in N_{M_G}^+(v_0)$; $\frac{y_v}{|y_v|} = -1 = \omega^{\frac{k}{2}}$ if $v \in N_{M_G}^0(v_0)$ and $\frac{y_v}{|y_v|} = -\omega = \omega^{\frac{k}{2}+1}$ if $v \in N_{M_G}^-(v_0)$.

Note that *G* is connected, by repeating the above steps, it follows that $\frac{y_v}{|y_v|} \in \{\omega^t, t \in Z\}$ for all $v \in V(M_G)$. Let $V_i = \{v \in V(M_G) : \frac{y_v}{|y_v|} = \omega^t$, where $t \equiv i \pmod{k}\}$, where $i \in \{1, 2, \dots, k\}$. it's easy to check that $V_1 \cup \dots \cup V_k$ forms a \mathscr{B} -partition of $V(M_G)$.

Assume that M_G admits a \mathscr{B} -partition $V_1 \cup V_2 \cup \cdots \cup V_k$, we construct a vector $Z \in C^n$ with $z_u = x_u \cdot w^i$, where $u \in V_i$. Then for any $u \in V(M_G)$ with $u \in V_i$,

$$\begin{split} (H_{f}^{k}(G) \cdot Z)_{u} &= f(\Delta, \Delta) (\sum_{v \in N_{M_{G}}^{0}(u)} z_{v} + \sum_{v \in N_{M_{G}}^{+}(u)} \omega z_{v} + \sum_{v \in N_{M_{G}}^{-}(u)} \omega^{-1} z_{v}) \\ &= f(\Delta, \Delta) (\sum_{v \in N_{M_{G}}^{0}(u)} x_{v} \omega^{i + \frac{k}{2}} + \sum_{v \in N_{M_{G}}^{+}(u)} \omega x_{v} \omega^{i + \frac{k}{2} - 1} \\ &+ \sum_{v \in N_{M_{G}}^{-}(u)} \omega^{-1} x_{v} \omega^{i + \frac{k}{2} + 1}) \\ &= -f(\Delta, \Delta) \omega^{i} \sum_{v \in N_{G}(u)} x_{v} \\ &= -\lambda_{1}(G) \omega^{i} x_{u} = -\lambda_{1} z_{u}. \end{split}$$

It follows that $H_f^k(G) \cdot Z = -\lambda_1(G)Z$, so $-\lambda_n(M_G) = \lambda_1(G)$.

Combined with Theorem 3 we have following corollary.

Corollary 8. Let k be a even integer positive and G be a connected, regular graph, then a mixed graph M_G such that $\rho_f^k(M_G) = \rho_f^k(G)$ if and only if V(G) admits a \mathscr{A} -partition or a \mathscr{B} -partition.

Lemma 4. Let k be a positive integer and f(x, y) > 0 be a symmetric real function, not decreasing in variable x, then for any proper subgraph H of G, we have $\rho_f^k(H) < \rho_f^k(G)$.

Proof. We have following two claims.

Claim 1. For any proper, spanning and connected subgraph H of G, $\rho_f^k(H) < \rho_f^k(G)$.

Let $y_1 > 0$, $y_2 > 0$ be the Perron vector of $\rho(G)$ and $\rho(H)$, respectively. Note that $A_f(G) - A_f(G') \ge 0$ and $A_f(G) - A_f(G') \ne 0$ since f(x, y) is symmetric, not decreasing in x and H is a proper subgraph of G. Then

$$(\rho_f^k(G) - \rho_f^k(H))y_1'y_2 = y_1'(A_f(G) - A_f(H))y_2 > 0.$$

It follows that $\rho_f^k(G) > \rho_f^k(H)$.

Claim 2. For any proper, induced subgraph H of G, $\rho_f^k(H) < \rho_f^k(G)$.

69

 \Box

Let y > 0, $y_1 > 0$ be the Perron vector of $\rho_f^k(G)$ and $\rho_f^k(H)$, respectively. We can assume that

$$A_f(G) = \begin{pmatrix} A_f(H) + K & L \\ L' & M \end{pmatrix}$$

where $K \ge 0$ is symmetric. Then

$$A_f(G)\begin{pmatrix} y_1\\ 0 \end{pmatrix} = \begin{pmatrix} (A_f(H) + K)y_1\\ L'y_1 \end{pmatrix} = \begin{pmatrix} \rho_f^k(H)y_1 + Ky_1\\ L'y_1 \end{pmatrix} \ge \rho_f^k(H)\begin{pmatrix} y_1\\ 0 \end{pmatrix}.$$

If

$$A_f(G)\begin{pmatrix} y_1\\ 0 \end{pmatrix} = \rho_f^k(H)\begin{pmatrix} y_1\\ 0 \end{pmatrix},$$

then $\binom{y_1}{0} \ge 0$ is a eigenvector of $A_f(G)$ corresponding to $\rho_f^k(G)$, which is contradict to Perron-

Frobinius Theorem. So we have $A_f(G)\begin{pmatrix} y_1\\0 \end{pmatrix} \ge \rho_f^k(H)\begin{pmatrix} y_1\\0 \end{pmatrix}$ and $A_f(G)\begin{pmatrix} y_1\\0 \end{pmatrix} \ne \rho_f^k(H)\begin{pmatrix} y_1\\0 \end{pmatrix}$. It follows that $(\rho_f^k(G) - \rho_f^k(H))y'\begin{pmatrix} y_1\\0 \end{pmatrix} = y'(A_f(G)\begin{pmatrix} y_1\\0 \end{pmatrix} - \rho_f^k(H)\begin{pmatrix} y_1\\0 \end{pmatrix}) \ge 0$, so $\rho_f^k(G) > \rho_f^k(H)$.

For any proper subgraph *H* of *G*, we can assume that *H* is connected. Then *H* must be a spanning subgraph of some induced subgraph *H'* of *G*. If H' = G, then by Claim 1 it follows that $\rho_f^k(H) < \rho_f^k(H') = \rho_f^k(G)$. If $H' \neq G$, then by Claim 2 it follows that $\rho_f^k(H) \le \rho_f^k(H') < \rho_f^k(G)$. It completes the proof.

Proof of Theorem 1. Note that if G is a Δ -regular graph, then $A_f(G) = f(\Delta, \Delta)A(G)$ and $\rho_f^k(G) = f(\Delta, \Delta)\Delta(G)$. Since every graph with maximum degree Δ must be a subgraph of a Δ -regular graph, by Lemma 4 it follows that $\rho_f^k(G) \leq f(\Delta, \Delta)\Delta(G)$ for all graphs G with maximum degree Δ , where equality holds if and only if G is Δ -regular.

For a mixed graph M_G with maximum degree Δ , by Lemma 1 it follows that $\rho_f^k(M_G) \leq f(\Delta, \Delta)\Delta(G)$, by Corollary 7, 8 it follows that equality holds if and only if underlying graph G is $\Delta(G)$ -regular and M_G admits a \mathscr{A} -partition or M_G admits a \mathscr{B} -partition when k is even.

Acknowledgments

The work was partially supported by the National Natural Science Foundation of China under Grants 11771172, 12061039.

Conflict of Interest

The authors declare no conflict of interest.

References

- 1. Mohar, B., 2020. A new kind of Hermitian matrices for digraphs. *Linear Algebra and its Applications*, 584, pp.343-352.
- 2. Das, K.C., Gutman, I., Milovanović, I., Milovanović, E. and Furtula, B., 2018. Degree-based energies of graphs. *Linear Algebra and its Applications*, 554, pp.185-204.
- 3. Yu, Y., Geng, X. and Zhou, Z., 2023. The k-generalized Hermitian adjacency matrices for mixed graphs. *Discrete Mathematics*, *346*(2), p.113254.

- 4. Guo, K. and Mohar, B., 2017. Hermitian adjacency matrix of digraphs and mixed graphs. *Journal of Graph Theory*, 85(1), pp.217-248.
- 5. Liu, J. and Li, X., 2015. Hermitian-adjacency matrices and Hermitian energies of mixed graphs. *Linear Algebra and its Applications, 466*, pp.182-207.
- 6. Estrada, E., 2017. The ABC matrix. Journal of Mathematical Chemistry, 55, pp.1021-1033.
- 7. Chen, X., 2019. On extremality of ABC spectral radius of a tree. *Linear Algebra and Its Applications*, 564, pp.159-169.
- 8. Hosamani, S.M., Kulkarni, B.B., Boli, R.G. and Gadag, V.M., 2017. QSPR analysis of certain graph theocratical matrices and their corresponding energy. *Applied Mathematics and Nonlinear Sciences*, 2(1), pp.131-150.
- 9. Ghorbani, M., Li, X., Zangi, S. and Amraei, N., 2021. On the eigenvalue and energy of extended adjacency matrix. *Applied Mathematics and Computation*, *397*, p.125939.
- 10. Guo, X. and Gao, Y., 2020. Arithmetic-geometric spectral radius and energy of graphs. *MACTH Commun. Math. Comput. Chem*, 83, pp.651-660.
- 11. Zheng, L., Tian, G.X. and Cui, S.Y., 2020. On spectral radius and energy of arithmetic-geometric matrix of graphs. *MATCH Commun. Math. Comput. Chem, 83*, pp.635-650.
- Li, X. and Wang, Z., 2021. Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by degree-based indices. *Linear Algebra and Its Applications*, 620, pp.61-75.

 \bigcirc 2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)