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Abstract: We study the nonzero algebraic real algebras A with no nonzero joint divisor of zero. We
prove that if Z(A) , 0 and A satisfies one of the Moufang identity, then A is isomorphic to R, C, H,
or O. We show also that if A is power-associative flexible and satisfies the identity (a, a, [a, b]) = 0,
then A is isomorphic to R, C, H, or O. Finally, we prove that R, C, H and O are the only algebraic
real algebras with no nonzero divisor of zero satisfying the middle Moufang identity, or the right and
left Moufang identities.
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1. Introduction and Preliminaries

The study of real algebras without divisors of zero started since the discovery of H (Hamilton’s
quaternions) and O (Cayley’s octonions).

Frobenius proves that R, C and H are the only associative, quadratic real algebras without divisors
of zero [1, 2]. Zorn shows that every alternative, quadratic, non associative real algebra without
divisors of zero is isomorphic to the Cayley algebra O [1, 3]. So, every alternative, quadratic real
algebra without divisors of zero is isomorphic to either R, C, H, or O (Frobenius-Zorn theorem).

Many researchers have given minimum conditions for an algebra to be isomorphic to R, C, H, or
O. The Frobenius-Zorn theorem will then be either improved or extended.

By definition an absolute valued real algebra is an algebraA endowed with an absolute value, i.e.
a norm ∥ · ∥ on the vector space ofA satisfying ∥xy∥ = ∥x∥∥y∥ for all x, y ∈ A. Clearly absolute valued
algebras have no nonzero divisor of zero, and hence have no nonzero joint divisor of zero. Albert
shows that R, C, H and O are the only absolute valued real algebraic algebras with unit [4, Theorem
2].

An algebra A is called division algebra, if Lx : A → A a 7→ xa and Rx : A → A a 7→ ax
are bijective for all x ∈ A\{0}. Cuenca proves that R, C, H and O are the only division normed real
algebras satisfying the middle Moufang identity [5, Theorem 2.3] and he also classified the division
normed real algebras satisfying the left or right Moufang identity [5, Theorems 2.1 and 2.2]. In [6],
Cuenca also studied the composition algebras satisfying Moufang identities.

Let A be a normed algebra. Recall that an element x of A is said to be a joint topological divisor
of zero in A if there is a sequence xn of norm-one elements of A satisfying xxn → 0 and xnx → 0.
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If A is a weakly alternative normed real unital algebra with no nonzero joint topological divisor of
zero, thenA is isomorphic to R, C, H or O [7, Theorem III.5.13].

The algebras R, C, H and O are the only normed alternative real algebras with no nonzero joint
topological divisor of zero [8, Theorem 2.5.50].

In [8, Theorem 2.5.29], Cabrera and Rodriguez prove also the following result.

Theorem 1. Let A be a nonzero alternative real algebraic algebra with no nonzero joint divisor of
zero. ThenA is isomorphic to R, C, H, or O.

In this paper, we prove that the Frobenius-Zorn theorem remains if we replace quadratic by al-
gebraic and alternative by weakly alternative, middle Moufang identity, or left and right Moufang
identities.

In this last part of this paragraph, we are going to discuss the assumptions on A in the main
theorems.

We recall that if A is alternative, then A satisfies the three Moufang identity and A is weakly
alternative. We precise also that every quadratic algebra is algebraic.

Let A ∈ {C,H,O}. We recall that
⋆

A is obtained by endowing the normed space A with the product
x · y = x y, where x 7→ x means the standard involution. We note that these algebras are algebraic, but
are not quadratic.

We recall that ∗C and C∗ are obtained by endowing the normed space Cwith the products x ·y = xy,
and x · y = xy, respectively, where x 7→ x means the standard involution. These algebras are algebraic
and it is easy to verify that ∗C satisfies right Moufang identity andC∗ verifies the left Moufang identity.
However, none of the algebras ∗C and C∗ is alternative. This implies that neither of the two identities
of Moufang of the assertion 2 from Theorem 3 can be removed.

2. Notations and Preliminary

In this paper, A is a nonzero algebra over a field K of characteristic zero. We recall that (., ., .), [., .],
A(x1, ..., xn) denote respectively the associator, the commutator, and the subalgebra of A generated by
x1, ..., xn ∈ A.

An element x of A is said to be a divisor of zero in A if there exists y ∈ A \ {0} such that xy = 0 or
yx = 0, and that x is said to be a joint divisor of zero in A if there is y ∈ A \ {0} such that xy = 0 and
yx = 0.

An element a of an algebra is said to be isotropic whenever a , 0 = a2. We note that isotropic
elements are nonzero joint divisors of zero.

Let A be an algebra over K. The centre of A is defined as the subset of A consisting of those
elements a ∈ A such that

[a, A] = (a, A, A) = (A, a, A) = (A, A, a) = 0

and is denoted by Z(A). Elements of Z(A) are called central elements of A. We note that Z(A) becomes
an associative and commutative subalgebra of A.

An algebra A is called alternative (resp. flexible) if x2y = x(xy) and yx2 = (yx)x (resp. (x, y, x) = 0)
for all x, y ∈ A.

An algebra A is called power-associative (resp. algebraic) if A(x) is associative (resp. A(x) is finite
dimensional) for all x ∈ A.

We also remember that an algebra A satisfies:
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(i) the middle Moufang identity, if (ab)(ca) = [a(bc)]a, for all a, b, c ∈ A,

(ii) the right Moufang identity, if b[(ac)a] = [(ba)c]a, for all a, b, c ∈ A,

(iii) the left Moufang identity, if [a(ba)]c = a[b(ac)], for all a, b, c ∈ A.

An algebra A is called non-commutative Jordan, if A is flexible and satisfies (x2, y, x) = 0 for all
x, y ∈ A. A non commutative Jordan K-algebra A is said to be weakly alternative if it satisfies the
identity (x, x, [x, y]) = 0 for all x, y ∈ A [7].

An algebra A is called quadratic algebra, if A contains a unit element 1 and 1, x, x2 are linearly
dependent for all x ∈ A.

Let A be a quadratic algebra over K. By definition, for each a ∈ A, there are t(a) and n(a) of K
such that

a2 − t(a)a + n(a)1 = 0. (1)

If a belongs to A \ (K1), the scalars t(a) and n(a) in (1) are uniquely determined. Otherwise, we have
a = α1 for a unique α ∈ K, and we set t(a) := 2α and n(a) := α2, so that (1) is fulfilled. The mappings
a→ t(a) and a→ n(a), from A toK, defined in this way are called the trace function and the algebraic
norm function on A, respectively.

It follows from [8, Proposition 2.5.12] that A = K1 ⊕ V , where V := ker(t). So, for every a ∈ A,
we have unique writing a = λ1 + x for λ ∈ K and x ∈ V . We recall that λ is called the scalar part of
a, and x is called the vector part of a. If for x, y ∈ V , we denote by −(x, y) and x × y the scalar and
vector parts of xy, respectively, that is to say, if we write

xy = −(x, y)1 + x × y, with (x, y) ∈ K and x × y ∈ V,

then we are provided with a bilinear form (., .) : V × V → K and a bilinear mapping × : V × V → V .
We note that, for x ∈ V , we have x2 ∈ K1

(
by (2.5.9) in [8]

)
and also x2 = −(x, x)1 + x × x, so that,

since x × x lies in V , we get x × x = 0. Therefore (V,×) is an anticommutative algebra.

Every right alternative algebra is power-associative [9, Lemma 1]. The Mikheev’s theorem proves
that if A is right alternative algebra, then (x, x, y)4 = 0 [10]. By switching to the opposite algebra, we
deduce the following corollary:

Corollary 1. Let A be an algebra over K without isotropic elements. Then the following assertions
are equivalent:

1. A is a right alternative algebra,

2. A is a left alternative algebra,

3. A is an alternative algebra.

3. Main Results

Proposition 1. Let A be a nonzero algebraic real algebra with no nonzero joint divisor of zero, and
with nonzero centre. If A satisfies one of the Moufang identities, then A is a quadratic alternative
algebra.

Proof. Since the centre of A is nonzero, it follows from [8, Proposition 2.5.33] that A is unital.

We now study each one of the Moufang identities separately.

Case (m): A is a middle Moufang algebra.
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Taking b = 1 in the middle Moufang identity (ab)(ca) = [a(bc)]a we get a(ca) = (ac)a, that is,
A is a flexible algebra, and consequently, taking c = a we obtain that [a2, a] = 0. Moreover, taking
c = b = a in the middle Moufang identity we see that a2a2 = (aa2)a. Since

(a2a)a − (aa2)a = [a2, a]a = 0,

it follows that a2a2 = (a2a)a, that is, (a2, a, a) = 0. Thus A is a power-associative algebra [11], and
hence, by [8, Proposition 2.5.10(ii)], A is quadratic.

Let us write A = A
(
V,×, (., .)

)
. Keeping in mind that A is flexible, by [8, Proposition 2.5.18(ii)]

we know that

(, ., ) is symmetric and (x × y, z) = (x, y × z) for all x, y, z ∈ V (2)

For any x, y ∈ V , we have that

xy = −(x, y)1 + x × y and yx = −(y, x)1 + y × x,

and hence
(xy)(yx) =

(
(x, y)(y, x) − (x × y, y × x)

)
1

− (x, y)y × x − (y, x)x × y + (x × y) × (y × x)
=
(
(x, y)2 + (x × y, x × y)

)
1,

(3)

where in the last equality we have used the symmetry of (, ., ), and the anticommutativity of ×. On the
other hand,

xy2 = x
(
− (y, y)1 + y × y

)
= x
(
− (y, y)1

)
= −(y, y)x,

where in the second equality we have used the anticommutativity of ×. Therefore,

(xy2)x = −(y, y)x2 = (y, y)(x, x)1 − (y, y)x × x = (y, y)(x, x)1, (4)

where in the last equality we have used the anticommutativity of ×.
Since (xy)(yx) = (xy2)x (by the middle Moufang identity), it follows from (3) and (4) that

(x × y, x × y) = (x, x)(y, y) − (x, y)2.

Therefore, by [8, Proposition 2.5.18(iii)], the algebraic norm fonction n on A admits composition.
Moreover n is nondegenerate because of [8, Lemma 2.5.15 and Proposition 2.5.18(i)]. Finally, by [8,
Corollary 2.5.19(ii)], we conclude that A is alternative.

Case (r): A is a right Moufang algebra.
Taking c = 1 in the right Moufang identity b[(ac)a] = [(ba)c]a we get ba2 = (ba)a, that is, A is

a right alternative algebra. Therefore, by Corollary 1, A is alternative. Moreover, by [8, Proposition
2.5.10(ii)], we conclude that A is quadratic.

Case (l): A is a left Moufang algebra.
This case follows from Case (r) by passing to the opposite algebra. □

Combining the above proposition with Theorem 1 we obtain the following.

Theorem 2. Let A be a nonzero algebraic real algebra with no nonzero joint divisor of zero and with
nonzero centre. If A satisfies one of the Moufang identities, then A is isomorphic to R, C, H, or O.

The following result provides us with sufficient conditions for an algebra satisfying one of the
Moufang identities to have a nonzero centre.

Proposition 2. Let A be an algebra over K with no nonzero divisor of zero. We have:
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(i) If A satisfies the middle or right Moufang identity, and if A has a right unit, then A is unital.

(ii) If A satisfies the middle or left Moufang identity, and if A has a left unit, then A is unital.

Proof. (i) Suppose that A has a right unit e.
If A satisfies the middle Moufang identity, then, taking a = b = e in that identity, we get ec = e(ec),

hence e(c − ec) = 0, so c = ec, and as a result e is the unit of A.
If A satisfies the right Moufang identity, then, taking a = b = e in that identity, we get e(ec) = ec,

hence e(ec − c) = 0, so ec = c, and as a result e is the unit of A.
The proof of (ii) is similar. □

Proposition 2 yields the next consequence of Theorem 2.

Corollary 2. Let A be a nonzero algebraic real algebra with no nonzero divisor of zero. Suppose that
A satisfies one of the following conditions:

(i) A is a middle or right Moufang algebra, and A has a right unit.

(ii) A is a middle or left Moufang algebra, and A has a left unit.

Then A is isomorphic to R, C, H, or O.

Theorem 3. Let A be a nonzero algebraic real algebra with no nonzero divisor of zero. Then the
following assertions are equivalent:

(i) A is a middle Moufang algebra,

(ii) A is a right and left Moufang algebra,

(iii) A is alternative,

(iv) A is isomorphic to R, C, H, or O.

Proof. The implications (iii) ⇒ (i), (iii) ⇒ (ii), and (iv) ⇒ (iii) are clear, whereas the
implication(iii)⇒ (iv) follows from Theorem 1.

(i) ⇒ (iii). Let x ∈ A \ {0}. Then the subalgebra A(x) is a finite-dimensional division real algebra.
Since every finite-dimensional real algebra can be provided with an algebra norm [8, Proposition
1.1.7], it follows from [5, Theorem 2.3] that A(x) is isomorphic to R, C, H, or O, hence A(x) is power-
associative, and so A(x) is associative. Now, it follows from the arbitrariness of x in A \ {0} that A is
power-associative. Therefore, by [8, Proposition 2.5.10(ii)], A is quadratic, and hence A has a unit.
Finally, A is alternative because of Proposition 1.

(ii) ⇒ (iii). Argue as in the above paragraph, with [5, Theorems 2.1 and 2.2] instead of [5,
Theorem 2.3]. □

Proposition 3. Let A be a nonzero flexible quadratic algebra over K with no nonzero joint divisor of
zero. If A satisfies the identity (a, a, [a, b]) = 0, then A is alternative.

Proof. Let us write A = A
(
V,×, (., .)

)
. Since A is flexible it follows from [8, Proposition 2.5.18(ii)]

that
(., .) is symmetric and (x × y, z) = (x, y × z) for all x, y, z ∈ V. (5)

For any x, y ∈ V , we have that

xy = −(x, y)1 + x × y and yx = −(y, x)1 + y × x,
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and hence the symmetry of (., .) and the anticommutativity of ×, yield [x, y] = 2x × y. Moreover,
keeping in mind the second assertion in (5) and the anticommutativity of ×, we see that

(x, x × y) = (x × x, y) = 0 and
(
x, x × (x × y)

)
= (x × x, x × y) = 0.

Therefore
x2[x, y] =

(
− (x, x)1

)
(2x × y) = −2(x, x)x × y,

x[x, y] = x(2x × y) = −2(x, x × y)1 + 2x × (x × y) = 2x × (x × y)

and

x
(
x[x, y]

)
= x
(
2x × (x × y)

)
= −2

(
x, x × (x × y)

)
1 + 2x ×

(
x × (x × y)

)
= 2x ×

(
x × (x × y)

)
.

Hence

0 =
(
x, x, [x, y]

)
= x2[x, y] − x

(
x[x, y]

)
= −2(x, x)x × y − 2x ×

(
x × (x × y)

)
,

and consequently
x ×
(
x × (x × y)

)
= −(x, x)x × y. (6)

For the sake of comfortability, let us set mx,y := x × (x × y) − (x, y)x + (x, x)y. Note that

(x,mx,y) = (x, x × (x × y)) − (x, y)(x, x) + (x, x)(x, y) = 0

and that, keeping in mind (6), also

x × mx,y = x × (x × (x × y)) − (x, y)x × x + (x, x)x × y = 0.

Therefore

xmx,y = −(x,mx,y)1 + x × mx,y = 0

and

mx,yx = −(mx,y, x)1 + mx,y × x = −(x,mx,y)1 − x × mx,y = 0.

Thus mx,y is a joint divisor of zero of A, and consequently mx,y = 0. Finally, looking at [8, Proposition
2.5.18(iv)], we conclude that A is alternative. □

Theorem 4. Let A be a nonzero power-associative flexible algebraic real algebra with no nonzero
joint divisor of zero. If A satisfies the identity (a, a, [a, b]) = 0, then A is isomorphic to R, C, H, or O.

Proof. By [8, Proposition 2.5.10(ii)], A is quadratic. Suppose that A satisfies the identity
(a, a, [a, b]) = 0. Then, by Proposition 3, A is alternative, and hence A is isomorphic to R, C, H,
or O because of Theorem 1. □

Recall the definition of a weakly alternative algebra, as well as the fact that non-commutative
Jordan algebras are power-associative [8, Proposition 2.4.19], we have the following corollary.

Corollary 3. Every nonzero weakly alternative algebraic real algebra with no nonzero joint divisor
of zero is isomorphic to R, C, H or O.
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