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derive conditions for the occurrence of flip and Neimark-Sacker bifurcations using the center manifold
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1. Introduction

Predation is a crucial interaction that occurs between various species in nature, enabling the ex-
istence of most species in our ecosystem and supporting the rich biodiversity of complex ecosys-
tems [1]. Mathematical models and their dynamics provide an apt explanation for the complexities
arising from predator-prey relationships. These models also offer methods to optimally manage re-
newable resources and establish coexistence conditions for predators and prey [2]. The most fun-
damental model proposed for this ecosystem was the Lotka-Volterra model, introduced in the early
20th century [3, 4]. While this model captured the oscillating behavior in populations of predators
and their prey, its simplicity is unable to address most real-world scenarios, leading researchers to
propose many modifications of the Lotka-Volterra type model [5].

An alternative to the Lotka-Volterra model is the Leslie model proposed by Leslie [6]. This model
suggests that the number of prey and the carrying capacity of the predator’s environment are pro-
portional, a factor not included in the Lotka-Volterra model. Leslie’s model addresses the issue of
unbounded growth in both predator and prey populations, and it has been shown to possess glob-
ally asymptotically stable and unique positive equilibrium for any permissible parameters [7]. The
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model’s stability with Holling functional responses was later shown by May [8], and global stability
of the unique interior equilibrium was proved for a Leslie-Gower predator-prey model with feedback
controls by Chen et al. [9]. The uniqueness of limit cycles and Hopf bifurcation for this model were
also discussed in [10, 11].

While predator-prey models are widely used to understand complex interactions between different
species in an ecosystem, the primary limitation of the Leslie-Gower predator-prey model is that the
predator cannot switch to alternative food sources if the prey population is at low densities [12]. To
address this limitation, Aziz-Alaoui and Daher [13] introduced a provisional alternative food source
parameter, leading to the modified Leslie-Gower predator-prey model. This model has been utilized
in various applications, such as modeling the biological control of the prickly-pear cactus by the moth
Cactoblastis cactorum [14] and predator-prey mite outbreak interactions on fruit trees [15, 16]. For
further details on the modified Leslie-Gower model and its applications, see [17,18] and the references
therein. Additionally, the Allee effect, introduced by W.C. Allee in [19], has been incorporated into
the Leslie-Gower type models, and the stability dynamics and bifurcation analysis of predator-prey
systems subject to Allee effects are discussed in [20–23].

Harvesting biological species is a necessary practice for economic development and resource uti-
lization. However, human population growth and natural resource exploitation have resulted in eco-
logical imbalances and species extinction. Although harvesting can minimize damage, it can also
lead to predator species extinction [24]. Therefore, it is essential to reinforce scientific manage-
ment of harvesting practices. Clark [2] discussed the problem of non-selective harvesting of two
ecologically independent populations with the logistic growth law. Multi-species harvesting models
have been studied in detail by Chaudhuri [25, 26], Mesterton-Gibbons [27], and Kar and Chaud-
huri [28, 29]. Non-selective harvesting models of prey-predator fisheries have also been studied in
detail by Chaudhuri and Ray [30] and Kar et al., [31]. Scientific management of harvesting practices
can help minimize the impact on predator-prey dynamics and promote ecological stability.

The Michaelis-Menten-type predator-prey model proposes that the per capita growth rate of preda-
tors is directly affected by the ratio of prey to predator abundance. Experimental and observational
data support this model’s effectiveness, particularly for predators that must compete for prey. For
further details, see [32]- [33]. This model has been extensively studied ( [34]- [35]), revealing rich
dynamics such as stable limit cycles, multiple attractors, and deterministic extinction. Various para-
metric values result in the existence of hyperbolic, parabolic, and elliptic orbits near the origin and
combinations of such orbits.

Continuous predator-prey models have been extensively used to study the interactions between
two species. However, these models have some limitations. Specifically, they assume that the subject
species have continuous and overlapping generations, which is not always the case. For instance,
salmon have an annual spawning season and are born at the same time each year. In such cases,
discrete-time models are more appropriate since they provide a better description of the population dy-
namics. In fact, discrete models often yield richer and more realistic results than continuous models.
Moreover, since many continuous models cannot be solved analytically, using difference equations for
approximation and finding solutions is a practical approach. Discrete-time models are widely used in
population biology and complex ecosystems to examine taxonomic groups of organisms and species
with the passage of time. These models are also well-suited for describing the chaotic behavior of
nonlinear dynamics.

Fractional calculus is a branch of mathematics that studies the generalization of traditional calcu-
lus to include non-integer order derivatives and integrals. The origins of fractional calculus can be
traced back to the seventeenth century, with the work of mathematicians such as Leibniz and Euler.
However, it was not until the nineteenth century that the concept of fractional differentiation and in-
tegration was introduced by Liouville, who investigated the fractional calculus of analytic functions.
In the twentieth century, fractional calculus gained further attention as it proved to be useful in a wide
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range of fields, including physics, engineering, and biology. One of the most significant develop-
ments in the field occurred in the 1960s and 1970s, when mathematicians and scientists realized that
fractional calculus could be used to model many physical systems that exhibit anomalous diffusion,
such as transport in porous media and electrical conduction in disordered systems. Today, fractional
calculus continues to be an active area of research, with applications in various fields such as sig-
nal processing, control theory, and finance. The study of fractional calculus involves understanding
the properties and behaviors of fractional derivatives and integrals, as well as developing techniques
for their computation and application. The history of fractional calculus highlights the importance
of exploring new and unconventional mathematical concepts, as they can often lead to significant
breakthroughs in science and technology. Fractional derivatives and integrals are powerful tools for
modeling non-locality and memory effects, which are not adequately captured by integer-order cal-
culus. In contrast to integer-order calculus, fractional derivatives and integrals possess a non-local
character and represent a suitable approach for modeling phenomena that depend on memory.

In this paper, we explore the fractional modified Leslie-Gower predator-prey model with
Michaelis-Menten type prey harvesting. We utilize the Caputo fractional-order derivative operator
due to its numerous advantages as previously discussed. The updated system, based on the model
proposed in [36], is presented below:

dx
dt
= x[t]

(
1 − x[t] −

ay[t]
m + x[t]

−
k

c + x[t]

)
,

dy
dt
= ry[t]

(
1 −

by[t]
m + x[t]

)
.

In this model, the temporal dynamics with memory can only be captured by the fractional deriva-
tive. The fractional integral of order β ∈ R+ of the function f (t), t > 0, is defined as

Iβ f (t) =
∫

0

t (t − s)β−1

Γ(β)
f (s)ds,

and the fractional derivative of order α ∈ (n − 1, n) of f (t), t > 0, is defined as

CDαt f (t) = In−αDt
n f (t),

where Dt =
d
dt . Therefore,

CDαt f (t) =
1

Γ(n − α)

∫
0

t(t − s)n−α−1 f (n)(s)ds.

Using the caputo derivative, instead of the classical one, we get,CDθt x(t) = x
(
1 − x − ay

m+x −
k

c+x

)
,

CDθt y(t) = ry
(
1 − by

m+x

)
,

(1)

where, CDθt is the fractional order derivative operator of Caputo type of order θ.
The investigation presented in this paper focuses on a modified Leslie-Gower predator-prey model

with fractional discrete-time Michaelis-Menten type prey harvesting. The analysis reveals the occur-
rence of nonnegative interior fixed points and their stability dynamics. Using the center manifold
theorem and bifurcation theory, we derive conditions for flip and Neimark-Sacker bifurcations. The
theoretical findings are consistently demonstrated through numerical simulations conducted with a
computer package. Overall, our study highlights the importance of incorporating fractional calculus
in predator-prey systems with harvesting and sheds light on the complex dynamics that arise in such
models.
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2. Existence and uniqueness of the solution for the fractional system (1)

We will now establish the existence and uniqueness of the solution for the fractional system dis-
cussed earlier. To do this, we consider the initial value problem (IVP):

CDθt x(t) = fx(t, x), ,

with initial condition x(0) = x0.
By utilizing the Volterra-type integral equation for the aforementioned initial value problem (IVP),

we derive:
x(t) = x0 +

1
Γ(θ)

∫
0

t(t − µ)θ−1 fx(µ, x)dµ, .

To ensure the existence of a solution for this IVP, we refer to a lemma proposed by Katugampola
[6]:

Lemma 1. [Existence of Solution of IVP-Katugampola] For the model described earlier and under
the hypotheses of Theorem 1, the function x(t) ∈ [0,T ] is a solution of the initial value problem (IVP)

CDθt x(t) = fx(t, x), ,

subject to x(0) = x0, if and only if it is a solution of the nonlinear Volterra integral equation given by

x(t) = x0 +
1
Γ(θ)

∫
0

t(t − µ)θ−1 fx(µ, x)dµ .

2.1. Existence

We will now examine the existence of a solution for the IVP based on the theorem presented
by [36, 37]:

Theorem 1. [Existence] Let 0 < θ ≤ 1, x0 ∈ R, K > 0, and T ∗ > 0. Consider the
function fx : [0,T ] × [x0 − K , x0 + K] → R, which is continuous on the compact set P :=
(t, x) : t ∈ [0,T ], x ∈ [x0 − K , x0 +K]. Set Mx := sup(t,x)∈P | fx(t, x)| and

T =

T ∗ if Mx = 0,
min(T ∗, (KΓ(θ + 1)/Mx)1/θ) otherwise.

(2)

Then, there exists a function x ∈ C[0,T ] that solves the IVP CDθt x = fx(t, x), x(0) = x0.

Note that P is a compact set since it is closed and bounded in R2. The function fx is continuous on
P and Mx is well-defined since P is compact. Hence, the conditions of the theorem are satisfied and a
solution x exists for the IVP.

2.2. Uniqueness

Katugampola [6] discusses the uniqueness of solutions for the fractional system, and we state the
following theorem:

Theorem 2. [Uniqueness] Let x(0) ∈ R, K > 0, and T ∗ > 0. Consider a continuous function
fx : P→ R that satisfies a Lipschitz condition with respect to the second variable, i.e.,

| fx(t, x1) − fx(t, x2)| ≤ L|x1 − x2|,

for some constant L > 0 that is independent of t, x1, and x2, and let 0 < θ ≤ 1 with m = ⌈θ⌉. Then, the
initial value problem (IVP) ,C Dθt x = fx(t, x), x(0) = x0 and T as defined in Theorem 1 has a unique
solution x ∈ C[0,T ].
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2.3. Process of discretization

Let us discuss the process of discretization, which has been previously introduced in the literature
[5, 6, 37, 38], for differential equations involving fractional orders. In this study, we will employ this
technique for modeling the fractional glycolysis. We will discretize the system using a method that
involves arguments with piecewise constants.

To begin, we consider t satisfying the condition 0 ≤ t < h, which implies that 0 ≤ t
h < 1. This

allows us to express the discretization of the system with the following equations:

CDθt x(t) = x
([ t

h

]
h
) 1 − x

([ t
h

]
h
)
−

ay
([

t
h

]
h
)

mx
([

t
h

]
h
) − k

c + x
([

t
h

]
h
) ,

CDθt y(t) = ry
([ t

h

]
h
) 1 − by

([
t
h

]
h
)

m + x
([

t
h

]
h
) ,

where [·] denotes the integer part function. Using the above equations and the condition on t, we can
simplify the solution to obtain:

x1 = x0 +
hθ

Γ(1 + θ)
x0

(
1 − x0 −

ay0

m + x0
−

k
c + x0

)
,

y1 = y0 +
hθ

Γ(1 + θ)
ry0

(
1 −

by0

m + x0

)
.

Next, we consider h ≤ t < 2h, which means 1 ≤ t
h < 2. Using this, we get:

x2 = x1 +
(t − h)θ

Γ(1 + θ)
x1

(
1 − x1 −

ay1

m + x1
−

k
c + x1

)
,

y2 = y1 +
hθ

Γ(1 + θ)
ry1

(
1 −

by1

m + x1

)
.

Repeating this process n times yields:

xn+1 = xn +
(t − nh)θ

Γ(1 + θ)
xn

(
1 − xn −

ayn

m + xn
−

k
c + xn

)
,

yn+1 = yn +
(t − nh)θ

Γ(1 + θ)
ryn

(
1 −

byn

m + xn

)
,

where, nh ≤ t < (n + 1)h. For t → (n + 1)h, system is reduced toxn+1 = xn +
hθ
Γ(1+θ) xn

(
1 − xn −

ayn
m+xn
− k

c+xn

)
,

yn+1 = yn +
hθ
Γ(1+θ)ryn

(
1 − byn

m+xn

)
.

(3)

Remark 1. If the fractional parameter θ approaches one in the above equation, the forward Euler
discretization of our system is obtained.

2.4. Stability of Fixed Points

In order to find the fixed points, we solve the following system.

x = x +
hθ

Γ(1 + θ)
x
(
1 − x −

ay
m + x

−
k

c + x

)
,
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y = y +
hθ

Γ[1 + θ]
ry

(
1 −

by
m + x

)
.

The fixed points are

{
E0, E1, E2, E3, Em, Ep

}
=

{
{0, 0},

{
1
2

(
1 − c −

√
(1 + c)2 − 4h

)
, 0

}
,

{
1
2

(
1 − c +

√
(1 + c)2 − 4h

)
, 0

}
,

{
0,

m
β

}
, {xm, ym} ,

{
xp, yp

}}
,

where

xm =
1 − a

b − c −
√(

a
b − 1 − c

)2
− 4k

2
,

xp =
1 − a

b − c +
√(

a
b − 1 − c

)2
− 4k

2
,

ym =
m + xm

b
,

yp =
m + xp

b
.

The Jacobian matrix of the system is:

J =

 1 +
hθx

(
−1+ k

(c+x)2
+

ay
(m+x)2

)
Γ[1+θ] +

hθ(1−x− k
c+x−

ay
m+x )

Γ[1+θ] − ahθx
(m+x)Γ[1+θ]

bhθry2

(m+x)2Γ[1+θ] 1 − bhθry
(m+x)Γ[1+θ] +

hθr
(
1− by

m+x

)
Γ[1+θ]

 .
To determine the properties and topology of the fixed points mentioned earlier, we will utilize the
following lemma, which can be found in textbooks on discrete dynamical systems.

Lemma 2. [Stability Lemma 1] Let τ = Tr(J), ∆ = Det(J), and p(λ) = λ2 − τλ + ∆, where λ1 and λ2

are the roots of p(λ). Then:

i)
∣∣∣λ1,2

∣∣∣ < 1 if and only if p(−1) > 0 and ∆ < 1.
ii)

∣∣∣λ1,2

∣∣∣ > 1 if and only if p(−1) > 0 and ∆ > 1.
iii) |λ1| < 1 and |λ2| > 1 (or vice versa) if and only if p(−1) < 0.
iv) λ1 = −1 and |λ2| , 1 if and only if p(−1) = 0 and τ , −2, 0.
v) λ1,2 ∈ C and

∣∣∣λ1,2

∣∣∣ = 1 if and only if 4∆ − τ2 > 0 and ∆ = 1.

It should be noted that if λ1,2 are the eigenvalues of the 2 by 2 Jacobian matrix, the following
lemma holds:

Lemma 3. [Stability Lemma 2] A fixed point is referred to as:

i) a sink if
∣∣∣λ1,2

∣∣∣ < 1, indicating local asymptotic stability.
ii) a source if

∣∣∣λ1,2

∣∣∣ > 1, indicating local instability.
iii) a saddle if |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1).
iv) non-hyperbolic if either |λ1| = 1 or |λ2| = 1, but not both.

To determine the stability of the fixed points, we will evaluate J at each of the boundary fixed
points E0, E1, E2, and E3, as well as the positive interior fixed points Em and Ep.

J0 = J|(0,0) =

 1 + hθ
Γ[1+θ]

(
1 − k

c

)
0

0 1 + hθr
Γ[1+θ]


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and the corresponding eigenvalues are
{
1 + hθ

Γ[1+θ]r, 1 +
hθ
Γ[1+θ]

(
c−k

c

)}
. Thus the fixed point is saddle if

k > c, unstable if k < c and non- hyperbolic if k = c.

J1,2 = J|E1,E2 =

 1 + hθ
Γ[1+θ] x1,2

(
−1 + k

(c+x1,2)2

)
− hθ
Γ[1+θ]

x1,2a
m+x1,2

0 1 + hθr
Γ[1+θ]


and the corresponding eigenvalues are

{
1 + hθ

Γ[1+θ]r, 1 +
hθ
Γ[1+θ] x1,2

(
k

(c+x1,2)2 − 1
)}
. Thus, for both bound-

ary fixed points E1 and E2, if k <
(
c + x1,2

)2, i-e, if 0 < c < 1&&c < k ≤ (1+c)2

4 , then the fixed point

is saddle. If k >
(
c + x1,2

)2 , i-e, (0 < c ≤ 1&&0 < k < c)
∥∥∥∥(c > 1&&0 < k ≤ (1+c)2

4

)
, then the fixed

point is unstable. If k =
(
c + x1,2

)2 , the the fixed point may undergo transcritical or fold bifurcation
and if k =

(
1 − 2Γ[1+θ]

hθx1,2

) (
c + x1,2

)2 , then the fixed point undergoes period- douling bifurcation. The
possibility of Neimark-Sacker bifurcation is mute for these fixed points.

J3 = J|(0,mβ ) =
 1 + hθ

Γ[1+θ]

(
1 − k

c −
a
b

)
0

hθ
Γ[1+θ]

r
b 1 − hθ

Γ[1+θ]r


and the corresponding eigenvalues are

{
1 + hθ

Γ[1+θ]

(
1 − k

c −
a
b

)
, 1 − hθ

Γ[1+θ]r
}
. Therefore if k < c

(
1 − a

b

)
the the fixed point is saddle, if k > c

(
1 − a

b

)
the fixed point is stable, if k = c

(
1 − a

b

)
the fixed point

may undergo transcritical or fold bifurcation and if k = c
(
1 − a

b +
2Γ[1+θ]

hθ

)
, the fixed point undergoes

period-douling bifurcation. The possibility of Neimark-Sacker bifurcation is mute for this fixed point
also.

2.5. Interior Fixed Points

For the interior fixed points the analysis of stability is the same and we will perform it under the
generic variable name xm,p = x and ym,p = y. Let the Jacobian matrix of the system evaluated at Em,p

be

J̄ =

 1 + hθ
Γ[1+θ] x

(
−1 + k

(c+x)2 +
ay

(m+x)2

)
− hθ
Γ[1+θ]

ax
(m+x)

hθ
Γ[1+θ]

ry
(m+x) 1 − hθ

Γ[1+θ]r

 .
Theorem 3. [Stability of Positive Interior Fixed Points] p(λ) = λ2 − τλ + ∆ be the characteristic
polynomial for the jacobian matrix J̄ in (), τ = tr

(
J̄
)

and ∆ = Det
(
J̄
)
. If

h1 = Γ[1 + θ]
1
θ

r + x − kx
(c+x)2 −

axy
(m+x)2 −

√(
r + x − kx

(c+x)2 −
axy

(m+x)2

)2
− 4rx

(
k

(c+x)2 − 1
)

rx
(

k
(c+x)2 − 1

)


1
θ

,

h2 = Γ[1 + θ]
1
θ

r + x − kx
(c+x)2 −

axy
(m+x)2 +

√(
r + x − kx

(c+x)2 −
axy

(m+x)2

)2
− 4rx

(
k

(c+x)2 − 1
)

rx
(

k
(c+x)2 − 1

)


1
θ

and

h∆ = e−
iπ
θ Γ[1 + θ]

1
θ

 x
(
−1 + ay

(m+x)2 +
k

(c+x)2

)
− r

rx
(

k
(c+x)2 − 1

) 
1
θ

then,

1) If k is greater than (c + x)2, then the interior fixed point is locally asymptotically stable if h
belongs to the interval ((0, h1) ∪ (h2,∞)) ∩ (0, h∆); otherwise, it is locally asymptotically stable
if h belongs to the interval (h1, h2) ∩ (0, h∆).
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2) The interior fixed point is locally unstable if h belongs to the interval ((0, h1) ∪ (h2,∞))∩(h∆,∞).
3) The interior fixed point is a saddle if h belongs to the interval (h1, h2).
4) The interior fixed point is non-hyperbolic and has eigenvalues with λ1 = −1 and |λ2| , 1 if and

only if h = h1 or h2 and h does not belong to the set


(

2Γ(1+θ)
r+x− axy

(m+x)2

) 1
θ

,

(
4Γ(1+θ)

r+x− axy
(m+x)2

) 1
θ

.

5) The interior fixed point is non-hyperbolic and has complex conjugate eigenvalues with |λ1| =

|λ2| = 1 if and only if h = h∆ and h belongs to the interval

0, ( 4Γ(1+θ)
r+x− axy

(m+x)2

) 1
θ

.
Proof. Let p(λ) = λ2 − τλ + ∆ be the characteristic polynomial for the jacobian matrix J̄, where

τ = 2 +
hθ

Γ[1 + θ]

(
x
(
−1 +

k
(c + x)2 +

ay
(m + x)2

)
− r

)
and

∆ = 1 +
hθ

Γ[1 + θ]

(
x
(
−1 +

ay
(m + x)2 +

k
(c + x)2

)
− r

)
+ rx

(
k

(c + x)2 − 1
)

h2θ

Γ[1 + θ]2 .

Then by definition of h1 and h2, if k > (c+x)2 then h1,2 ∈ R if
(
r + x − kx

(c+x)2 −
axy

(m+x)2

)2
≥ 4rx

(
k

(c+x)2 − 1
)

and p(−1) = 0 if and only if h = h1 or h2; p(−1) < 0 if and only if h ∈ (h1, h2); p(−1) > 0 if and only
if h ∈ (0, h1) ∪ (h2,∞). On the other hand, if k < (c + x)2 then h1,2 ∈ R and p(−1) = 0 if and only
if h = h1 or h2; p(−1) > 0 if and only if h ∈ (h1, h2); p(−1) < 0 if and only if h ∈ (0, h1) ∪ (h2,∞)

and τ , −2, 0 if and only if h <


 2Γ(1+θ)

r−x
(
−1+ k

(c+x)2
+

ay
(m+x)2

)
 1
θ

,

 4Γ(1+θ)

r−x
(
−1+ k

(c+x)2
+

ay
(m+x)2

)
 1
θ

 . Finally, −2 < τ < 2 if

0 < h <
 4Γ(1+θ)

r−x
(

ay
(m+x)2

+ k
(c+x)2

−1
)
 1
θ

and ∆ = 1 if h = h∆; ∆ > 1 if h > h∆; ∆ < 1 if h < h∆. Thus,

1) If the value of k is greater than (c + x)2, then the interior fixed point is locally asymptotically
stable if h belongs to the interval (0, h∆) and is either in the interval (0, h1) or (h2,∞), otherwise
it is locally asymptotically stable if h belongs to the interval (h1, h2) ∩ (0, h∆).

2) The interior fixed point is locally unstable if h belongs to the interval (h∆,∞) ∩ (0, h1) ∪ (h2,∞).
3) The interior fixed point is a saddle point if h belongs to the interval (h1, h2).
4) The interior fixed point is non-hyperbolic and has eigenvalues such that λ1 = −1 and |λ2| , 1, if

and only if h equals h1 or h2 and is not equal to either
(

2Γ(1+θ)
r+x− axy

(m+x)2

) 1
θ

or
(

4Γ(1+θ)
r+x− axy

(m+x)2

) 1
θ

.

5) The interior fixed point is non-hyperbolic and has complex conjugate eigenvalues such that |λ1| =

|λ2| = 1, if and only if h equals h∆ and belongs to the interval (0,
(

4Γ(1+θ)
r+x− axy

(m+x)2

) 1
θ

).

□

3. Bifurcations

Bifurcation is a fundamental concept in dynamical systems theory that describes the qualitative
changes that occur in a system as a parameter is varied. The basic idea is that the behavior of the
system can change abruptly as the parameter crosses a certain threshold value. There are several types
of bifurcations that can occur, including saddle-node bifurcation, pitchfork bifurcation, transcritical
bifurcation, Hopf bifurcation, and period-doubling bifurcation. Each type of bifurcation has its own
characteristic behavior and can lead to different types of dynamical behavior, such as limit cycles,
chaos, and multistability. Understanding bifurcations is crucial for analyzing the behavior of complex
systems and predicting how they will respond to changes in their environment or parameters [39,40].
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3.1. Period - Doubling Bifurcation

Let MPD =

(a, b, c, h, k,m, r, θ) ∈ R7
+ : h ∈ {h1, h2} , h <


(

2Γ(1+θ)
r+x− axy

(m+x)2

) 1
θ

,

(
4Γ(1+θ)

r+x− axy
(m+x)2

) 1
θ


. Let h be the

bifurcation parameter. Then, variation of parameters in small neighborhood of MPD gives emergence
of period doubling bifurcation. Let k ∈ MPD and let H be the perturbation of h where |H| <<< 1. The
system can be written as (

x
y

)
→

 x + (h+H)θ

Γ[1+θ] x
(
1 − x − ay

m+x −
k

c+x

)
y + (h+H)θ

Γ[1+θ] ry
(
1 − by

m+x

)  .
Translate the fixed point to (0, 0). Define X = x − x̄ and Y = y − ȳ. Then, the above system can be
written as (

X
Y

)
→

 X +
(h+H)θ(X+x̄)

(
1−X−x̄− k

c+X+x̄−
a(Y+ȳ)
m+X+x̄

)
Γ[1+θ]

Y +
(h+H)θr(Y+ȳ)

(
1− b(Y+ȳ)

m+X+x̄

)
Γ[1+θ]

 .
If we define,
a11 = 1 + hθ

Γ[1+θ] x̄
(
−1 + k

(c+x̄)2 +
aȳ

(m+x̄)2

)
;

a12 = −
hθ
Γ[1+θ]

ax̄
(m+x̄) ;

b1 =
hθ
Γ[1+θ]

(
−1 + k

(c+x̄)2 +
aȳ

(m+x̄)2 + x̄
(
− k

(c+x̄)3 −
aȳ

(m+x̄)3

))
;

b2 = −
hθ
Γ[1+θ]

am
(m+x̄)2 ;

b3 =
h−2+θ(−1+θ)θ

(
x̄
(
−1+ k

(c+x̄)2
+

aȳ
(m+x̄)2

))
2Γ[1+θ] ;

b4 = −
ah−1+θθx̄

(m+x̄)Γ[1+θ] ;
b5 = 0;
b6 =

hθ
Γ[1+θ]

(
− k

(c+x̄)3 −
aȳ

(m+x̄)3 + x̄
(

k
(c+x̄)4 +

aȳ
(m+x̄)4

))
;

b7 =
hθ
Γ[1+θ]

am
(m+x̄)3 ;

b8 =
h−1+θθ

(
−1+ k

(c+x̄)2
+

aȳ
(m+x̄)2

+x̄
(
− k

(c+x̄)3
−

aȳ
(m+x̄)3

))
Γ[1+θ] ;

b9 = −
hθ
Γ[1+θ]

ah−1mθ
(m+x̄)2 ;

b10 =
h−2+θ(−1+θ)θ

(
x̄
(
−1+ k

(c+x̄)2
+

aȳ
(m+x̄)2

))
2Γ[1+θ] ;

b11 = −
ah−2+θ(−1+θ)θx̄
2(m+x̄)Γ[1+θ] ;

b12 = 0;
b13 = 0;
b14 = 0;
Then,

f 1
PD(X,Y,H) = b1X2 + b2XY + b3HX + b4HY + b5Y2 + b6X3 + b7X2Y + b8HX2 + b9HXY

+b10H2X + b11H2Y + b12XY2 + b13HY2 + b14Y3 + O
(∣∣∣H + X + Y |4

)
,

and
X → a11X + a12Y + f 1

PD(X,Y,H).

Similarly, we can write Y → a21X + a22Y + f 2
PD(X,Y,H) by defining

a21 =
hθ
Γ[1+θ]

brȳ2

(m+x̄)2 ;

a22 = 1 − hθ
Γ[1+θ]r;

b15 = −
hθ
Γ[1+θ]

brȳ2

(m+x̄)3 ;
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b16 =
hθ
Γ[1+θ]

2brȳ
(m+x̄)2 ;

b17 =
h−1+θ

Γ[1+θ]
brθȳ2

(m+x̄)2 ;

b18 = −
h−1+θ

Γ[1+θ]rθ;

b19 = −
bhθr

(m+x̄)Γ[1+θ] ;

b20 =
hθ
Γ[1+θ]

brȳ2

(m+x̄)4 ;

b21 = −
hθ
Γ[1+θ]

2brȳ
(m+x̄)3 ;

b22 = −
h−1+θ

Γ[1+θ]
brθȳ2

(m+x̄)3 ;

b23 =
h−1+θ

Γ[1+θ]
2brθȳ

(m+x̄)2 ;

b24 =
h−2+θ

Γ[1+θ]
br(−1+θ)θȳ2

2(m+x̄)2 ;

b25 = −
h−2+θ

2Γ[1+θ]r(−1 + θ)θ;

b26 =
hθ
Γ[1+θ]

br
(m+x̄)2 ;

b27 = −
bh−1+θrθ

(m+x̄)Γ[1+θ] ;

b28 = 0;

and

f 2
PD(X,Y,H) = b15X2 + b16XY + b17HX + b18HY + b19Y2 + b20X3 + b21X2Y + b22HX2 + b23HXY

+b24H2X + b25H2Y + b26XY2 + b27HY2 + b28Y3 + O
(∣∣∣H + X + Y |4

)
.

Thus, the system can be written as(
X
Y

)
→

(
a11 a12

a21 a22

) (
X
Y

)
+

(
f 1
PD(X,Y,H)

f 2
PD(X,Y,H)

)
.

Let T =
(

a12 a12

−1 − a11 λ2 − a22

)
be an invertable transformation matrix such that

(
X
Y

)
→ T

(
µ

η

)
The transformed system is given by(

µ

η

)
→

(
−1 0
0 λ2

) (
µ

η

)
+

(
g1

PD(X,Y,H)
g2

PD(X,Y,H)

)
where

g1
PD(µ, η,H) =d1µ

2 + d2µη + d3Hµ + d4Hη + d5H2 + d6η
2 + d7µ

3 + d8µ
2η + d9Hµ2 + d10Hµη

+ d11H2µ + d12H2η + d13µη
2 + d14Hη2 + d15η

3 + O
(∣∣∣H + µ + η|4 )

g2
PD(µ, η,H) =d16µ

2 + d17µη + d18Hµ + d19Hη + d20H2 + d21η
2 + d22µ

3 + d23µ
2η + d24Hµ2

+ d25Hµη + d26H2µ + d27H2η + d28µη
2 + d29Hη2 + d30η

3 + O
(∣∣∣H + µ + η|4 )

and

d1 =a2
12c1 (−b15 + b1c2) + (−1 − a11) a12c1 (−b16 + b2c2) + (−1 − a11) 2c1 (−b19 + b5c2) ;

d2 =2a2
12c1 (−b15 + b1c2) + (−1 − a11) a12c1 (−b16 + b2c2) + a12c1 (−b16 + b2c2) (−a22 + λ2)
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+ 2 (−1 − a11) c1 (−b19 + b5c2) (−a22 + λ2) ;
d3 =a12c1 (−b17 + b3c2) + (−1 − a11) c1 (−b18 + b4c2) ;
d4 =a12c1 (−b17 + b3c2) + c1 (−b18 + b4c2) (−a22 + λ2) ;
d5 =0;
d6 =a2

12c1 (−b15 + b1c2) + a12c1 (−b16 + b2c2) (−a22 + λ2) + c1 (−b19 + b5c2) (−a22 + λ2)2 ;
d7 =a3

12c1 (−b20 + b6c2) + (−1 − a11) a2
12c1 (−b21 + b7c2) + (−1 − a11) 2a12c1 (−b26 + b12c2)

+ (−1 − a11) 3c1 (−b28 + b14c2) ;
d8 =3a3

12c1 (−b20 + b6c2) + 2 (−1 − a11) a2
12c1 (−b21 + b7c2) + (−1 − a11)2 a12c1 (−b26 + b12c2)

+ a2
12c1 (−b21 + b7c2) (−a22 + λ2) + 2 (−1 − a11) a12c1 (−b26 + b12c2) (−a22 + λ2)

+ 3 (−1 − a11)2 c1 (−b28 + b14c2) (−a22 + λ2) ;
d9 =a2

12c1 (−b22 + b8c2) + (−1 − a11) a12c1 (−b23 + b9c2) + (−1 − a11) 2c1 (−b27 + b13c2) ;
d10 =2a2

12c1 (−b22 + b8c2) + (−1 − a11) a12c1 (−b23 + b9c2) + a12c1 (−b23 + b9c2) (−a22 + λ2)

+ 2 (−1 − a11) c1 (−b27 + b13c2) (−a22 + λ2) ;
d11 =a12c1 (−b24 + b10c2) + (−1 − a11) c1 (−b25 + b11c2) ;
d12 =a12c1 (−b24 + b10c2) + c1 (−b25 + b11c2) (−a22 + λ2) ;
d13 =3a3

12c1 (−b20 + b6c2) + (−1 − a11) a2
12c1 (−b21 + b7c2) + 2a2

12c1 (−b21 + b7c2) (−a22 + λ2)

+ 2 (−1 − a11) a12c1 (−b26 + b12c2) (−a22 + λ2) + a12c1 (−b26 + b12c2) (−a22 + λ2)2

+ 3 (−1 − a11) c1 (−b28 + b14c2) (−a22 + λ2)2 ;
d14 =a2

12c1 (−b22 + b8c2) + a12c1 (−b23 + b9c2) (−a22 + λ2) + c1 (−b27 + b13c2) (−a22 + λ2) 2;
d15 =a3

12c1 (−b20 + b6c2) + a2
12c1 (−b21 + b7c2) (−a22 + λ2) + a12c1 (−b26 + b12c2) (−a22 + λ2) 2

+ c1 (−b28 + b14c2) (−a22 + λ2) 3;
d16 =a2

12c1 (−b15 + b1c3) + (−1 − a11) a12c1 (−b16 + b2c3) + (−1 − a11) 2c1 (−b19 + b5c3) ;
d17 =2a2

12c1 (−b15 + b1c3) + (−1 − a11) a12c1 (−b16 + b2c3) + a12c1 (−b16 + b2c3) (−a22 + λ2)

+ 2 (−1 − a11) c1 (−b19 + b5c3) (−a22 + λ2) ;
d18 =a12c1 (−b17 + b3c3) + (−1 − a11) c1 (−b18 + b4c3) ;
d19 =a12c1 (−b17 + b3c3) + c1 (−b18 + b4c3) (−a22 + λ2) ;
d20 =0;
d21 =a2

12c1 (−b15 + b1c3) + a12c1 (−b16 + b2c3) (−a22 + λ2) + c1 (−b19 + b5c3) (−a22 + λ2) 2;
d22 =a3

12c1 (−b20 + b6c3) + (−1 − a11) a2
12c1 (−b21 + b7c3)

+ (−1 − a11) 2a12c1 (−b26 + b12c3) + (−1 − a11) 3c1 (−b28 + b14c3) ;
d23 =3a3

12c1 (−b20 + b6c3) + 2 (−1 − a11) a2
12c1 (−b21 + b7c3) + (−1 − a11) 2a12c1 (−b26 + b12c3)

+ a2
12c1 (−b21 + b7c3) (−a22 + λ2) + 2 (−1 − a11) a12c1 (−b26 + b12c3) (−a22 + λ2)

+ 3 (−1 − a11) 2c1 (−b28 + b14c3) (−a22 + λ2) ;
d24 =a2

12c1 (−b22 + b8c3) + (−1 − a11) a12c1 (−b23 + b9c3) + (−1 − a11) 2c1 (−b27 + b13c3) ;
d25 =2a2

12c1 (−b22 + b8c3) + (−1 − a11) a12c1 (−b23 + b9c3) + a12c1 (−b23 + b9c3) (−a22 + λ2)

+ 2 (−1 − a11) c1 (−b27 + b13c3) (−a22 + λ2) ;
d26 =a12c1 (−b24 + b10c3) + (−1 − a11) c1 (−b25 + b11c3) ;
d27 =a12c1 (−b24 + b10c3) + c1 (−b25 + b11c3) (−a22 + λ2) ;
d28 =3a3

12c1 (−b20 + b6c3) + (−1 − a11) a2
12c1 (−b21 + b7c3) + 2a2

12c1 (−b21 + b7c3) (−a22 + λ2)

+ 2 (−1 − a11) a12c1 (−b26 + b12c3) (−a22 + λ2) + a12c1 (−b26 + b12c3) (−a22 + λ2)2

+ 3 (−1 − a11) c1 (−b28 + b14c3) (−a22 + λ2) 2;
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d29 =a2
12c1 (−b22 + b8c3) + a12c1 (−b23 + b9c3) (−a22 + λ2) + c1 (−b27 + b13c3) (−a22 + λ2) 2;

d30 =a3
12c1 (−b20 + b6c3) + a2

12c1 (−b21 + b7c3) (−a22 + λ2) + a12c1 (−b26 + b12c3) (−a22 + λ2) 2

+ c1 (−b28 + b14c3) (−a22 + λ2) 3,

and
X = a12(µ + η),Y = − (1 + a11) µ + (λ2 − a22) η.

Define MC = {(µ, η,H)|η = G(µ,H)}, |µ| < δ1, |H| < δ2, fc(0, 0) = 0, D fc(0, 0) = 0 and

F (G(µ,H),H) = G
(
−µ + g1

PD(µ,G(µ,H),H),H
)
− λ2G(µ,H) − g2

PD(µ,G(µ,H),H)

Assume fc(µ,H) = m1µ
2 +m2Hµ +m3H2 +O

(∣∣∣µ + H|3
)
. By solving and comparing coefficients, we

get

m1 =
d16

1 − λ2
; m2 = −

d18

1 + λ2
; m3 = 0.

Thus, fc(µ,H) = d16
1−λ2
µ2 −

d18
1+λ2

Hµ + O
(∣∣∣µ + H|3

)
. The dynamics restricted to Mc are given locally

by the map

Fc :µ→ −µ + d1µ
2 + d3Hµ +

(
d7 +

d2d16

1 − λ2

)
µ3 +

(
d9 +

d4d16

1 − λ2
−

d2d18

1 + λ2

)
Hµ2

+ H2µ

(
d11 −

d4d18

1 + λ2

)
+ O

(∣∣∣µ + H|4
)
. (4)

Define

l1 =

(
∂2Fc

∂µ∂H
+

1
2
∂Fc

∂H
∂2Fc

∂µ2

)
(0,0)
= d3 , 0,

l2 =

(
1
6
∂3Fc

∂µ3 +

(
1
2
∂2Fc

∂µ2

)
2
)

(0,0) = d1
2 + d7 +

d2d16

1 − λ2
, 0.

Theorem 4. [Period - Doubling Bifurcation] If 11 , 0 and 12 , 2, then system undergoes period -
doubling bifurcation at the unique positive equilibrium point when parameters vary in small neigh-
borhood of ΨPD. Moreover, the period - two orbits that bifurcate from positive equilibrium are stable
if l2 > 0 and unstable if l2 < 0.

3.2. Neimark-Sacker Bifurcation

Let MNS =

(a, b, c, h, k,m, r, θ) ∈ R7
+ : h = h∆ ∈

0, ( 4Γ(1+θ)
r+x− axy

(m+x)2

) 1
θ


 and h be the bifurcation pa-

rameter. Then variation of parameters in small neighborhood of ΨNS gives emergence of Neimarck-
Sacker bifurcation. Let h ∈ ΨNS and let H be the perturbation of h, where |H| <<< 1. The system can
be written as (

x
y

)
→

 x + (h+H)θ

Γ[1+θ] x
(
1 − x − ay

m+x −
k

c+x

)
y + (h+H)θ

Γ[1+θ] ry
(
1 − by

m+x

)  .
As is done in the period- doubling subsection, the system’s fixed point will be translated to (0,0) and
we will get (

X
Y

)
→

 X +
(h+H)θ(X+x̄)

(
1−X−x̄− k

c+X+x̄−
a(Y+ȳ)
m+X+x̄

)
Γ[1+θ]

Y +
(h+H)θr(Y+ȳ)

(
1− b(Y+ȳ)

m+X+x̄

)
Γ[1+θ]

 .
If we define,
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A1 = x̄
(
−1 + k

(c+x̄)2 +
aȳ

(m+x̄)2

)
;

A2 = −
ax̄

(m+x̄) ;

A3 =
brȳ2

(m+x̄)2 ;

A4 = r
(

2bȳ
m+x̄ − 1

)
;

b1 = −1 + k
(c+x̄)2 +

aȳ
(m+x̄)2 + x̄

(
− k

(c+x̄)3 −
aȳ

(m+x̄)3

)
;

b2 = −
am

(m+x̄)2 ;

b3 = 0;

b4 = −
k

(c+x̄)3 −
aȳ

(m+x̄)3 + x̄
(

k
(c+x̄)4 +

aȳ
(m+x̄)4

)
;

b5 =
am

(m+x̄)3 ;

b6 = 0;

b7 = 0;

b8 = −
yr

(m+x)2 ;

b9 =
2r

m+x ;

b10 = −
br

m+x ;

b11 =
ry

(m+x)3 ;

b12 = −
2r

(m+x)2 ;

b13 =
br

(m+x)2 ;

b14 = 0. Then we can write our system as(
X
Y

)
→

 1 + (h+H)θ

Γ[1+θ] A1 −
(h+H)θ

Γ[1+θ] A2
(h+H)θ

Γ[1+θ] A3 1 − (h+H)θ

Γ[1+θ] A4

 ( X
Y

)
+

(
fNS (X,Y)
gNS (X,Y)

)
where,

fNS (X,Y) =
(h + H)θ

Γ[1 + θ]
b1X2 +

(h + H)θ

Γ[1 + θ]
b2XY +

(h + H)θ

Γ[1 + θ]
b3Y2 +

(h + H)θ

Γ[1 + θ]
b4X3 +

(h + H)θ

Γ[1 + θ]
b5X2Y+

(h + H)θ

Γ[1 + θ]
b6XY2 +

(h + H)θ

Γ[1 + θ]
b7Y3 + O

(∣∣∣X + Y |4
)

and

gNS (X,Y) =
(h + H)θ

Γ[1 + θ]
b8X2 +

(h + H)θ

Γ[1 + θ]
b9XY +

(h + H)θ

Γ[1 + θ]
b10Y2 +

(h + H)θ

Γ[1 + θ]
b11X3 +

(h + H)θ

Γ[1 + θ]
b12X2Y

+
(h + H)θ

Γ[1 + θ]
b13XY2 +

(h + H)θ

Γ[1 + θ]
b14Y3 + O

(∣∣∣X + Y |4
)
.

Let the characteristic polynomial of the above matrix at (0, 0) be pNS (λ) = λ2 − P(H)λ + Q(H).
Thus,

P(H) = (c11 + c22) = 2 +
(h + H)θ

Γ[1 + θ]
(A1 − A4)

and

Q(H) =c11c22 − c21c12 =
(h + H)2θ

Γ[1 + θ]2 (A3A2 − A1A4) +
(h + H)θ

Γ[1 + θ]
(A1 − A4) + 1,
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Q(0) =
h2θ

Γ[1 + θ]2 (A3A2 − A1A4) +
hθ

Γ[1 + θ]
(A1 − A4) + 1.

Since, parameters (a, b, c, h, k,m, r, θ) ∈ MNS , therefore the roots of pNS (λ) are complex num-
bers λ1 and λ2 with λ2 = λ̄1 and |λ1| = |λ2| = 1. It follows that, λ1, λ2 =

P(H)
2 ±

i
2

√
4Q(H) − P(H)2 and Q(H) = 1 for any H > 0. Also, P(H) ∈ (−2, 2) and

(
d|λ1 |

dH

)
H=0

=(
d|λ2 |

dH

)
H=0
= hθ−1

Γ[1+θ]θ
(

hθ
Γ[1+θ] (A2A3 − A1A4) + A1−A4

2

)
Thus,

(
d|λ1 |

dH

)
H=0
=

(
d|λ2 |

dH

)
H=0
, 0 if r

(
2bȳ
m+x̄ − 1

)
−

x̄
(
−1 + k

(c+x̄)2 +
aȳ

(m+x̄)2

)
, 0.

In order to ensure that the roots of the charatceristic polynomial do not lie in the intersection of
unit circle of co- ordinate axis when H = 0, we need to check thatλn

1 and λn
2 , 1, for all n = 1, 2, 3, 4 at

H = 0. This is equivalent to checking τ(0) , −2, 0, 1, 2. Since, parameters (a, b, c, h, k,m, r, θ) ∈ MNS ,

we already know that P(0) , −2, 0, 2. Also if h ,
(
Γ[1+θ]
A4−A1

) 1
θ , then P(0) , 1. To convert the above

system to the normal form of Neimark- Sacker, when H = 0, let R = P(0)
2 and S = 1

2

√
4Q(0) − P(0)2

We use the following transformation,(
X
Y

)
= T

(
µ

η

)
=

(
0 1
S R

) (
µ

η

)

where T =
(

0 1
S R

)
, whcih is an invertible matrix. Using T we can write

(
µ

η

)
=

(
R −S
S R

) (
µ

η

)
+

(
f̃NS (u, v)
g̃NS (u, v)

)
where,

f̃NS (u, v) = e1u2 + e2uv + e3v2 + e4u3 + e5u2v + e6uv2 + e7v3 + O
(∣∣∣u + v|4

)
and,

g̃NS (u, v) = fNS (u, v) = e8u2 + e9uv + e10v2 + e11u3 + e12u2v + e13uv2 + e14v3 + O
(∣∣∣u + v|4

)
and,

e1 =
(h+H)θ

Γ[1+θ]
1
S (b8 + S (b9 + S b10) − R (b1 + S (b2 + S b3))) ;

e2 =
(h+H)θ

Γ[1+θ]
R
S (b9 + 2S b10 − R (b2 + 2S b3)) ;

e3 =
(h+H)θ

Γ[1+θ]
R2

S (b10 − Rb3) ;

e4 =
(h+H)θ

Γ[1+θ]
1
S (b11 + S (b12 + S (b13 + S b14)) − R (b4 + S (b5 + S (b6 + S b7)))) ;

e5 =
(h+H)θ

Γ[1+θ]
R
S ((b12 + S (2b13 + 3S b14)) − R (b5 + S (2b6 + 3S b7))) ;

e6 =
(h+H)θ

Γ[1+θ]
R2

S (b13 + 3S b14 − R (b6 + 3S b7)) ;

e7 =
(h+H)θ

Γ[1+θ]
R3

S (b14 − Rb7) ;

e8 =
(h+H)θ

Γ[1+θ] (b1 + S (b2 + S b3)) ;

e9 =
(h+H)θ

Γ[1+θ] Rb2;

e10 =
(h+H)θ

Γ[1+θ] R2b3;

e11 =
(h+H)θ

Γ[1+θ] (b4 + S (b5 + S (b6 + S b7))) ;

e12 =
(h+H)θ

Γ[1+θ] R (b5 + S (2b6 + 3S b7)) ; e13 = 0; e14 = 0.
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Let,
ϖ20 =

1
8

(
∂2

∂u2

(
f̃NS

)
− ∂2

∂v2

(
f̃NS

)
+ 2 ∂2

∂u∂v (g̃NS ) + ι
(
∂2

∂u2 (g̃NS ) − ∂2

∂v2 (g̃NS ) − 2 ∂2

∂u∂v

(
f̃NS

)))
;

ϖ11 =
1
4

(
∂2

∂u2

(
f̃NS

)
− ∂2

∂v2

(
f̃NS

)
+ ι

(
∂2

∂u2 (g̃NS ) − ∂2

∂v2 (g̃NS )
))

;

ϖ02 =
1
8

(
∂2

∂u2

(
f̃NS

)
− ∂2

∂v2

(
f̃NS

)
− 2 ∂2

∂u∂v (g̃NS ) + ι
(
∂2

∂u2 (g̃NS ) − ∂2

∂v2 (g̃NS ) + 2 ∂2

∂u∂v

(
f̃NS

)))
;

ϖ21 =
1
16

(
∂3

∂u3

(
f̃NS

)
+ ∂3

∂u∂v2

(
f̃NS

)
+ ∂3

∂u2∂v (g̃NS ) + ∂3

∂v3 (g̃NS ) + ι
(
∂3

∂u3 (g̃NS ) + ∂3

∂u∂v2 (g̃NS )

− ∂3

∂u2∂v

(
f̃NS

)
− ∂3

∂v3

(
f̃NS

)))
.

In order to undergo Neimark-Sacker bifurcation for (48), we require that the following discriminatory
quantity is not zero.

℧ =

(
−Re

[
ϖ20ϖ11

(1 − 2λ1) λ2
2

1 − λ1

]
−

1
2
|ϖ11|

2 −
∣∣∣ϖ02|

2 + Re [ϖ21λ2]
)

H=0
, 0.

Theorem 5. [Neimark-Sacker Bifurcation] Suppose (a, b, c, h, k,m, r, θ) ∈ MNS , r
(

2bȳ
m+x̄ − 1

)
−

x̄
(
−1 + k

(c+x̄)2 +
aȳ

(m+x̄)2

)
, 0, h ,

(
Γ[1+θ]
A4−A1

) 1
θ and ℧ , 0. Then the model (1) undergoes Neimark-Sacker

bifurcation at the equilibrium point (x̄, ȳ) provided that parameter h changes in the small neighbor-
hood of h∆. Moreover, if ℧ < 0(resp.,℧ > 0), then an attracting ( resp., repelling) invariant closed
curve bifurcate from the fixed point (x̄, ȳ) for h > h∆ (resp., h < h∆).

4. Numerical Simulations

In this section, we utilize Mathematica to perform numerical simulations that validate the analyti-
cal results presented in sections §2.5, §3.1, and §3.2. The simulations not only confirm the analytical
findings but also provide further insights into the local stability of the positive interior fixed point.

It is well-known that slight variations in the parameter values can result in significant changes
in the system’s trajectories, making its dynamics more intricate. To demonstrate this phenomenon,
we select specific parameter values (α, β, θ, h) and present multiple numerical examples that illustrate
the occurrence of period-doubling and Neimark-Sacker bifurcations in the system described by (1).
Additionally, we provide an example that demonstrates the occurrence of only the Neimark-Sacker
bifurcation in the same system.

To visualize the bifurcations, we utilize phase portraits and bifurcation diagrams. These numerical
examples serve to confirm the validity of Theorems 4 and 5.

In summary, the numerical simulations presented in this section provide further evidence of the
complex dynamics exhibited by the discrete fractional modified Leslie-Gower predator-prey model
with Michaelis-Menten type prey harvesting. These results complement the analytical findings and
enhance our understanding of the behavior of real-world predator-prey systems.

Example 1. We consider the system (1) with the parameters (a, b, k,m, c, r, h, θ) =
(0.01, 0.6, 0.2, 0.4, 0.1, 1.9, 0.8843446, 0.5) and initial values (x0, y0) = (0.3, 0.4). The local
stability of the interior fixed point is analyzed by investigating the eigenvalues of the Jacobian matrix
evaluated at the fixed point. The Jacobian matrix is,(

0.439471 −0.00691164
3.36022 −1.01613

)
.

The eigenvalues of the Jacobian matrix corresponding to the fixed point (0.747285, 1.91214) are
λ1 = −1 and λ2 = 0.423337. Figure 1(a) displays the phase portraits of map (4) for h = 0.83,
which reveals that the fixed point is stable for h < h0. A period-doubling bifurcation occurs around
h0, as evidenced by the appearance of another stable period-doubling bifurcation at approximately
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h = 0.85. At approximately h = 1.955, there are eight paths of the system. These observations are
further corroborated by the bifurcation diagrams in Figure 1(b). The maximum Lyapunov Exponent
for the system with initial conditions (x0, y0) = (0.3, 0.4) and h ∈ [0.85, 1.58] is shown in Figure 1(c).

(a) Phase portraits of the system with parameter values (a, b, k,m, c, r, h, θ) = (0.01, 0.6, 0.2, 0.4, 0.1, 1.9, 0.8843446, 0.5),
illustrating the behavior of trajectories in the phase space.

(b) Period-doubling bifurcation diagrams showing the system’s behavior for initial conditions (x0, y0) = (0.3, 0.4) and
h values ranging from 0.85 to 1.58, with parameters (a, b, k,m, c, r, h, θ) = (0.01, 0.6, 0.2, 0.4, 0.1, 1.9, 0.8843446, 0.5) at
(x̄, ȳ) = (0.747285, 1.91214). The diagrams illustrate the occurrence of period-doubling bifurcations and the corresponding
changes in the system’s dynamics.

(c) Maximum Lyapunov Exponent for the system with initial conditions (x0, y0) = (0.3, 0.4) and h ∈ [0.85, 1.58].

Figure 1

Example 2. Let (a, b, k,m, c, r, h, θ) = (0.01, 0.6, 0.2, 0.4, 0.1, 1.9, 0.8497418, 0.3), h be in the inter-
val [0.8, 2.01], and consider the initial values (x0, y0) = (0.3, 0.4). The interior fixed point ex-
hibits different stability behaviors depending on the value of h. Specifically, it is locally asymp-
totically stable for h ∈ (0, 0.8497418), locally unstable for h ∈ (53.65958,∞), and a saddle for
h ∈ (0.8497418, 53.65958). The corresponding Jacobian matrix is given by,(

0.439471 −0.00691164
3.36022 −1.01613

)
.

The eigenvalues corresponding to the system are λ1 = −1 and λ2 = 0.423337. The phase portrait
displayed in Figure 2(a) indicates that the fixed point (0.747285, 1.91214) of map (4) is stable for
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values of h less than h0, where h0 ≈ 0.887, and the system undergoes a period-doubling bifurcation
around h0. Additionally, another stable period-doubling bifurcation is observed at approximately
h = 0.887, leading to the emergence of 8 system paths around h = 1.46. These observations are
consistent with the bifurcation diagrams depicted in Figure 2(a).

The aforementioned results illustrate the sensitivity of the system’s behavior to slight variations in
the parameter values, leading to the occurrence of period-doubling and bifurcations. By employing
phase portraits and bifurcation diagrams, we can visualize these complex dynamical behaviors and
verify the validity of Theorems 4 and 5. Overall, these numerical simulations serve to further our
understanding of the discrete fractional modified Leslie-Gower predator-prey model with Michaelis-
Menten type prey harvesting and its behavior in real-world predator-prey systems.

(a) Phase portraits of the system with parameter values (a, b, k,m, c, r, h, θ) = (0.01, 0.6, 0.2, 0.4, 0.1, 1.9, 0.8497418, 0.3)

and fixed point coordinates (x̄, ȳ) = (0.747285, 1.91214).

(b) Bifurcation diagrams depicting period-doubling behavior of the system with initial conditions (x0, y0) = (0.3, 0.4) and
h ∈ [0.8, 2.01], and parameter values (a, b, k,m, c, r, h, θ) = (0.01, 0.6, 0.2, 0.4, 0.1, 1.9, 0.8497418, 0.3) at the fixed point
(x̄, ȳ) = (0.747285, 1.91214).

(c) Computing the Maximum Lyapunov Exponent for the system with initial conditions (x0, y0) = (0.3, 0.4)
and h ∈ [0.8, 2.01] with parameters (a, b, k,m, c, r, h, θ) = (0.01, 0.6, 0.2, 0.4, 0.1, 1.9, 0.8497418, 0.3) at (x̄, ȳ) =
(0.747285, 1.91214).

Figure 2

Example 3. Consider the values of the parameters (a, b, k,m, c, r, h, θ) =

(0.05, 2.3, 0.001, 0.05, 0.5, 1.275, 2.5196, 0.5), the initial value (x0, y0) = (0.9, 0.35), and h in
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the interval [2.47, 3.22]. At the value h0 = 2.5196, the Jacobian matrix is given by:(
−0.713118 −0.085198
0.992899 −1.28367

)
.

The system with (a, b, k,m, c, r, h, θ) = (0.05, 2.3, 0.001, 0.05, 0.5, 1.275, 2.5196, 0.5) and ini-
tial value (x0, y0) = (0.9, 0.35) undergoes a Neimark-Sacker bifurcation at (x̄, ȳ) =
(0.9775840891319717, 0.44677569092694425) when h is increased beyond the threshold value of
2.5196. At the bifurcation point, both eigenvalues are on the unit circle, with λ1 = −0.99839308 +
0.05666797ι and λ2 = −0.99839308 − 0.05666797ι. Additionally, tr (J) = −1.99679 and |J| = 1 at
h = h0. The fixed point exhibits an attracting invariant closed curve with rough edges as can be seen
in Figure 3(a). The parameters

(
d|λ1 |

dH

)
H = 0 =

(
d|λ2|
dH

)
H=0
= 2.23145 , 0 and℧ = −1.88841×1018 , 0

confirm the occurrence of the Neimark-Sacker bifurcation.
As shown in Figure 3(b), as h increases from 2.4, the stable fixed point changes from a stable spiral

point to an attracting invariant closed curve with rough edges. At h = 2.54, the spiral and edges can
be seen, and as h is further increased, the rough edges disappear, leaving only the attracting invariant
closed curve.

(a) At (x̄, ȳ) = (1.61, 0.346826), the phase portraits were generated for the parameter values (α, β, θ, h) =(
2.05, 1.61, 2

3 , 0.480103
)
.

(b) The system’s Period-Doubling bifurcation diagrams were generated using initial conditions (x0, y0) =

(0.3, 0.4) and varying parameter h in the range [0.8, 2.01], with fixed parameter values (a, b, k,m, c, r, h, θ) =
(0.01, 0.6, 0.2, 0.4, 0.1, 1.9, 0.8497418, 0.3), and with the fixed point located at (x̄, ȳ) = (0.747285, 1.91214).

(c) The Maximum Lyapunov Exponent is computed for the system with the initial conditions (x0, y0) = (0.3, 0.4) and
parameter values (a, b, k,m, c, r, h, θ) = (0.01, 0.6, 0.2, 0.4, 0.1, 1.9, 0.8497418, 0.3), with h varying in the range [0.8, 2.01],
at the fixed point (x̄, ȳ) = (0.747285, 1.91214).

Figure 3

Example 4. Take (a, b, k,m, c, r, h, θ) = (0.05, 2.3, 0.001, 0.05, 0.5, 1.275, 1.895895, 0.8), h ranging
from 1.85 to 2.1, and the initial condition (x0, y0) = (0.9, 0.35). In Figure 4, it can be observed that
for h > 1.895895, an attracting invariant closed curve emerges from the fixed point.
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As shown in Figure 4(a), the stable fixed point becomes unstable beyond the threshold value
1.895895 due to the Neimark-Sacker bifurcation. At h = 1.85, the fixed point can be identified as
a stable spiral point. With increasing h, the stable spiral grows in size. As h approaches the threshold
value h0 = 1.895895, the spiral transforms into an attracting invariant closed curve with rough edges
because of the Neimark-Sacker bifurcation. For h = 1.91, the spiral and edges are plotted. When h
surpasses h0, all the rough edges disappear, leaving behind only the attracting invariant closed curve.

(a) The phase portraits were generated using the parameter values (α, β, θ, h) =
(
2.05, 1.61, 2

3 , 0.480103
)
, with the fixed

point located at (x̄, ȳ) = (1.61, 0.346826).

(b) Period-doubling bifurcation diagram for the discrete fractional modified Leslie-Gower predator-prey model with
Michaelis-Menten type prey harvesting. The initial conditions are (x0, y0) = (0.3, 0.4), and the bifurcation parameter
h ranges from 0.8 to 2.01. The system parameters are a = 0.01, b = 0.6, k = 0.2, m = 0.4, c = 0.1, r = 1.9, θ = 0.3. The
diagram is plotted at the fixed point x̄ = 0.747285, ȳ = 1.91214.

(c)

(d) The Maximum Lyapunov Exponent is being calculated for a system initialized with (x0, y0) = (0.3, 0.4) and h varying
between 0.8 and 2.01. The system is described by the parameters a, b, k, m, c, r, h, and θ, which take the values
0.01, 0.6, 0.2, 0.4, 0.1, 1.9, 0.8497418, and 0.3, respectively. The calculation is being performed at the point (x̄, ȳ) =
(0.747285, 1.91214).

Figure 4
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5. Conclusion

In this paper, we have investigated the dynamics of the discrete fractional modified Leslie-Gower
predator-prey model with Michaelis-Menten type prey harvesting with a piece-wise constant argu-
ment. Our study has resulted in several significant findings that can be extended and applied to
real-world predator-prey systems.

Firstly, we have shown that the system has a unique solution, and the stability of fixed points
and their topological properties have been discussed. Furthermore, we have demonstrated that the
system exhibits period-doubling and Neimark-Sacker bifurcations for certain values of the chosen
bifurcation parameter. We have discussed and proved the bifurcation scenarios for the unique interior
fixed point using the center limit theorem. Additionally, our numerical examples have depicted the
period-doubling bifurcation for different fractional orders, highlighting the importance of considering
fractional order models in predator-prey studies.

Our results have important implications for the understanding and management of real-world
predator-prey systems. By providing insight into the dynamics of the modified Leslie-Gower predator-
prey model, our findings can inform the development of management strategies for these systems.
Moreover, our study highlights the need to consider fractional order models, as they can exhibit com-
plex dynamics not seen in integer-order models.

Overall, our study contributes to the body of knowledge on predator-prey dynamics and provides
a foundation for further research in this area. By continuing to investigate the dynamics of predator-
prey systems, we can gain a better understanding of these complex ecological interactions and develop
more effective management strategies to ensure their sustainability.

6. Future Directions

some potential future directions related to the paper are; 1) Investigating the effect of different
forms of prey harvesting on the behavior of the modified Leslie-Gower predator-prey model, such
as continuous or time-dependent harvesting. 2) Studying the impact of different forms of functional
response, such as Holling type II or III, on the dynamics of the model. 3) Exploring the behavior
of the model in a spatially explicit setting, where the predators and prey can move and interact in a
heterogeneous environment. 4) Extending the model to include additional trophic levels and studying
the effects of top-down and bottom-up regulation on the ecosystem dynamics. 5) Investigating the
effects of stochasticity on the model, such as incorporating random fluctuations in population sizes
or environmental parameters. 6) Developing control strategies to manage or mitigate the negative
impacts of predator-prey interactions on natural ecosystems or agricultural systems. 7) Examining
the impact of external factors such as climate change or habitat destruction on the predator-prey
dynamics and exploring ways to mitigate their negative effects.
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