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Abstract: The metric dimension of a graph is the smallest number of vertices such that all vertices
are uniquely determined by their distances to the chosen vertices. The corona product of graphs G
and H is the graph G ⊙ H obtained by taking one copy of G, called the center graph, |V(G)| copies of
H, called the outer graph, and making the jth vertex of G adjacent to every vertex of the jth copy of
H, where 1 ⩽ j ⩽ |V(G)|. The Join graph G + H of two graphs G and H is the graph with vertex set
V(G +H) = V(G)∪ V(H) and edge set E(G +H) = E(G)∪ E(H)∪ {uv : u ∈ V(G), v ∈ V(H)}. In this
paper, we determine the Metric dimension of Corona product and Join graph of zero divisor graphs
of direct product of finite fields.
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1. Introduction and Preliminaries

The concept of graph of a commutative ring R, was introduced by Beck [1] in 1988. Beck consid-
ered all the elements of the ring R as the vertices of the graph and two distinct vertices x and y are
adjacent in the graph if and only if x · y = 0, the additive identity of the ring R. This definition of
graph given by Beck was modified by Anderson and Livingston [2] in 1999. Anderson and Livingston
considered only the non-zero zero divisors of commutative ring R to be the vertex set of the graph
known as zero divisor graph of R denoted by Γ(R) in which two distinct vertices x and y are adjacent
in Γ(R) if and only if x · y = 0. In this paper we consider the zero divisor graph of the reduced ring,
R = F1 ×F2 × · · · ×Fn, of direct product of finite fields. Let Z∗(R) be the set of non-zero zero-divisors
of the ring R = F1 × F2 × · · · × Fn and Γ(R) denote the graph with vertex set as Z∗(R) and edge set as
{rs : r · s = 0, r, s ∈ Z∗(R)}.

The metric dimension of a graph is the smallest number of vertices such that all vertices
are uniquely determined by their distances to the chosen vertices. For an ordered subset W =

{w1,w2, · · · ,wk} of vertices in a connected graph G and a vertex v of G, the metric representation
of v with respect to W is the k − vector

r(v|W) = (d(v,w1), d(v,w2), · · · , d(v,wk)).

The set W is a resolving set for G if r(u|W) = r(v|W) implies that u = v for all pairs u, v of vertices of
G. In other words, a set W ⊂ V(G) is called a resolving set, if for each two distinct vertices u, v ∈ V(G)
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there exists w ∈ W such that d(u,w) , d(v,w), where d(x, y) is the distance between the vertices x and
y. The minimum cardinality of a resolving set for G is called the metric dimension of G, and denoted
by β(G).

The problem of Metric dimension was introduced by Slater [3] and also independently introduced
by Harary and Melter [4]. In [5–7] graphs of order n with metric dimension 1, n − 3, n − 2 and n − 1
have been characterized. In [8], metric dimensions for many particular classes of graphs have been
determined.

The corona product of graphs G and H is the graph G⊙H obtained by taking one copy of G, called
the center graph, |V(G)| copies of H, called the outer graph, and making the jth vertex of G adjacent
to every vertex of the jth copy of H, where 1 ⩽ j ⩽ |V(G)|.

The Join graph G + H of two graphs G and H is the graph with vertex set

V(G + H) = V(G) ∪ V(H)

and edge set

E(G + H) = E(G) ∪ E(H) ∪ {uv : u ∈ V(G), v ∈ V(H)}.

In this paper, we determine the Metric dimension of Corona product and Join graph of zero divisor
graphs of direct product of finite fields.

2. Results on Metric Dimension of Zero Divisor Graph of Direct Product of Finite Fields

In [9, Proposition 6.2], Raja, Pirzada & Redmond, proved that for any k ⩾ 2,
loc(Γ(

∏k
i=1 Z2)) ⩽ k. They also proved that [9, Theorem 6.3], loc(Γ(

∏5
i=1 Z2)) = 5. In [10], it is proved

that if n = 2, 3, 4, and order of each field is two, then β(Γ(R)) = n − 1.

Theorem 1. [10, Theorem 2.4] If R = F1 × · · · × Fn, n ⩾ 2 with |Fi| ⩾ 3, (1 ≤ i ≤ n), then the metric
dimension β(Γ(R)) = |V(Γ(R))| − (2n − 2).

Consider the reduced rings R1 = F1 × · · · × Fn, (n ⩾ 2) and R2 = J1 × · · · × Jm, (m ⩾ 2) where
Fi, (1 ⩽ i ⩽ n), Jk, (1 ⩽ k ⩽ m) are finite fields with |Fi| ⩾ 2, |Jk| ⩾ 2.

In [11], the following result is proved.

Theorem 2. [11] Let R1 = F1 × · · · × Fn, (n ⩾ 2) and R2 = J1 × · · · × Jm, (m ⩾ 2) where
Fi, (1 ⩽ i ⩽ n), Jk, (1 ⩽ k ⩽ m) are finite fields with |Fi| ⩾ 2, |Jk| ⩾ 2. Then,

(i) the diameter of Corona product of Γ(R1) and Γ(R2) is 3 if n = 2, m = 2, |F1| = |F2| = |J1| =

|J2| = 2,
(ii) the diameter of Corona product of Γ(R1) and Γ(R2) is 4 if n = 2, m = 2, |F1| ⩾ 3 or |F2| ⩾ 3 and
|J1| ⩾ 3 or |J2| ⩾ 3,

(iii) the diameter of Corona product of Γ(R1) and Γ(R2) is 5 if n ⩾ 3, m ⩾ 3,
(iv) the girth of Corona product of Γ(R1) and Γ(R2) is 3 if n = 2,m = 2, |F1|, |F2| ⩾ 3, |J1|, |J2| ⩾ 3,
(v) the girth of Corona product of Γ(R1) and Γ(R2) is 3 if n ⩾ 3 or m ⩾ 3.

3. Metric Dimension of Corona Product of Zero Divisor Graphs of Direct Product of Finite
Fields

In this section, we determine the Metric dimension of Corona product of zero divisor graphs of
direct product of finite fields.

Theorem 3. If R1 = F1 × · · · × Fn, (n ⩾ 2) and R2 = J1 × · · · × Jm, (m ⩾ 2) where Fi, (1 ⩽ i ⩽
n), Jk, (1 ⩽ k ⩽ m) are finite fields with |Fi| = 2, |Jk| = 2, then the Metric dimension of Corona
product of Γ(R1) and Γ(R2) is β

(
Γ(R1) ◦ Γ(R2)

)
⩽ n + (2n − 2) · m.
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Proof. According to [9, Proposition 6.2], the metric dimension β(Γ(R1)) ⩽ n and β(Γ(R2)) ⩽ m. Let

W0 =
{
vi ∈ V(Γ(R1)) : vi contains ′0′ in ith position and ′1′ in remaining positions, (1 ⩽ i ⩽ n)

}
.

We first prove that W0 is resolving set for the center graph Γ(R1).
Let x, y ∈ V(Γ(R1)). Let r(x|W0) = r(y|W0). Suppose x contains r1 number of 0′s and y contains r2

number of 0′s, (1 ⩽ r1, r2 ⩽ n − 1).
Case 1. r1 , r2.

Let r1 < r2. Then there exists a position i such that y contains ′0′ in the ith position and x contains
′1′ in the ith position. Then both y and vi ∈ W0 are adjacent to a vertex z with a ′1′ in the ith position
and ′0′ everywhere else. Also y is not adjacent to vi =⇒ d(y, vi) = 2. Suppose x contains ′0′ in the jth

position ( j , i). Then x is adjacent to a vertex w with a ′1′ in the jth position and ′0′ everywhere else.
Also w is adjacent to z and x is not adjacent to z and vi. Therefore, d(x, vi) = 3 =⇒ r(x|W0) , r(y|W0).
This is a contradiction.
Case 2. r1 = r2 but x and y differ in atleast one position of ′0′. Suppose y contains ′0′ in the ith position
and x contains ′1′ in the ith position. Then from case (i), r(x|W0) , r(y|W0). This is a contradiction.
Thus, r(x|W0) = r(y|W0) =⇒ x = y =⇒ W0 is a resolving set for Γ(R1). Let

Wk =
{
vi ∈ V(Γ(R1)) : vi contains ′0′ in ith position and ′1′ in remaining positions, (1 ⩽ i ⩽ m)

}
,

with 1 ⩽ k ⩽ |V(Γ(R1))|. As proved above, similarly we can prove that Wk is resolving set for the outer
graph of kth copy of Γ(R2). Let W = W0 ∪

[
∪
|V(Γ(R1))|
j=1 W j

]
. Then, W is resolving set for the Corona

product of Γ(R1) ◦ Γ(R2) and for x ∈ V
(
Γ(R1) ◦ Γ(R2)

)
, the metric representation of x with respect to

W is the vector of length n+ |V(Γ(R1))| ·m. Since, V(Γ(R1)) = 2n − 2, therefore, the Metric dimension
of Corona product of Γ(R1) and Γ(R2) is β

(
Γ(R1) ◦ Γ(R2)

)
⩽ n + (2n − 2) · m. □

Remark 1. (i) If n = 2, 3, 4 and m = 2, 3, 4 and order of each field is two, then according to [10],
β
(
Γ(R1) ◦ Γ(R2)

)
= (n − 1) + (2n − 2) · (m − 1).

(ii) If n = 5 and m = 5, and order of each field is two, then according to [9, Theorem 6.3], β
(
Γ(R1) ◦

Γ(R2)
)
= 5 + (25 − 2) · 5.

Theorem 4. If R1 = F1 × · · · × Fn, (n ⩾ 2) and R2 = J1 × · · · × Jm, (m ⩾ 2) where Fi, (1 ⩽ i ⩽
n), Jk, (1 ⩽ k ⩽ m) are finite fields with |Fi| ⩾ 3, |Jk| ⩾ 3, then the Metric dimension of Corona
product of Γ(R1) and Γ(R2) is

β
(
Γ(R1) ◦ Γ(R2)

)
=
(
|V(Γ(R1))| − (2n − 2)

)
+ |V(Γ(R1))| ·

(
|V(Γ(R2))| − (2m − 2)

)
.

Proof. Consider the reduced rings R1 = F1 × · · · × Fn, (n ⩾ 2) and R2 = J1 × · · · × Jr, (r ⩾ 2) where
Fi, (1 ⩽ i ⩽ n), Jr, (1 ⩽ r ⩽ m) are finite fields with |Fi| ⩾ 3, |Jr| ⩾ 3. Let

S 0 =
{
(a1, · · · , an) ∈ V(Γ(R1)) : ai ∈ {0, 1} with not all ai = 0 and not all ai = 1, 1 ⩽ i ⩽ n

}
.

Then |S 0| = 2n − 2. Let W0 = V(Γ(R1)) \ S 0. According to [10, Theorem 2.4], W0 is minimum
resolving set for Γ(R1) and |W0| = |V(Γ(R))| − (2n − 2). Now consider the Corona product of Γ(R1)
and Γ(R2). There are |V(Γ(R1))| copies of Γ(R2) in the Corona product graph Γ(R1) ◦ Γ(R2) and the kth

vertex of Γ(R1) is adjacent to each and every vertex of kth copy of Γ(R2). Let

S j =
{
(a1, · · · , am) ∈ V(Γ(R2)) : ai ∈ {0, 1} with not all ai = 0 and not all ai = 1, 1 ⩽ i ⩽ m

}
and 1 ⩽ j ⩽ |V(Γ(R1))|. Then |S j| = 2m − 2. Let W j = V(Γ(R2)) \ S j. According to [10, Theorem 2.4],
W j is minimum resolving set for Γ(R2) and |W j| = |V(Γ(R2))| − (2m − 2). Let

W = W0 ∪
[
∪
|V(Γ(R1))|
j=1 W j

]
,
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and

S = S 0 ∪
[
∪
|V(Γ(R1))|
j=1 S j

]
.

Then W = V
(
Γ(R1) ◦ Γ(R2)

)
\ S and |W | =

(
|V(Γ(R1))| − (2n − 2)

)
+ |V(Γ(R1))| ·

(
|V(Γ(R2))| − (2m − 2)

)
and |S | = (2n − 2) + |V(Γ(R1))| · (2m − 2). We claim that W is minimum resolving set for the corona
product graph Γ(R1) ◦ Γ(R2).

For x ∈ V
(
Γ(R1) ◦ Γ(R2)

)
, the metric representation of x with respect to W is the vector of length(

|V(Γ(R1))| − (2n − 2)
)
+ |V(Γ(R1))| ·

(
|V(Γ(R2))| − (2m − 2)

)
.

Clearly, r(x|W) is distinct for each x ∈ W, as the vector r(x|W) contains exactly one ′0′ entry with
the position of ′0′ in distinct co-ordinate for each metric representation of x ∈ W. It is enough to show
that for each y ∈ S , the metric representation r(y|W) is distinct.

For y1, y2 ∈ S = S 0 ∪
[
∪
|V(Γ(R1))|
j=1 S j

]
, if y1 ∈ S j1 , y2 ∈ S j2 , j1 , j2, then clearly d(y1,w) ,

d(y2,w), ∀ w ∈ W j, since W j1 is in the jth
1 copy of Γ(R2) and W j2 is in the jth

2 copy of Γ(R2) in corona
product Γ(R1) ◦ Γ(R2). Now suppose there exists distinct y1, y2 ∈ S j (0 ⩽ j ⩽ |V(Γ(R1))|) such that
r(y1|W) = r(y2|W). In other words, d(y1,w) = d(y2,w), ∀ w ∈ W = W0 ∪

[
∪
|V(Γ(R1))|
j=1 W j

]
.

Since the entries in y1 and y2 are only 0′s and 1′s and y1, y2 ∈ S j, this implies y1 and y2 will differ
in at least one position containing ′0′. Suppose y1 contains ′0′ in the rth co-ordinate position and y2

contains ′1′ in the rth co-ordinate position. Then y1 is adjacent to a vertex w1 ∈ W j, with a non-zero
entry other than ′1′ in the rth position and ′0′ in the remaining positions (as each field contains at least
three elements). This implies d(y1,w1) = 1 = d(y2,w1) as r(y1|W) = r(y2|W). But since y2 and w1

both contain non-zero entry in the kth position, this implies d(y2,w1) = 2 or 3. This is a contradiction
to d(y1,w2) = 1 = d(y2,w1). Therefore, the metric representation r(y|W) is distinct for each y ∈ S .
Thus, W is a resolving set for the corona product graph Γ(R1) ◦ Γ(R2).

Now consider W ′ = W \ {x}, x ∈ W. Suppose x contains r, 0′s in positions i1, i2, · · · , ir and non-
zero entries in remaining positions with at least one non-zero entry other than 1, and let y ∈ S = S 0 ∪[
∪
|V(Γ(R1))|
j=1 S j

]
with r, 0′s in positions i1, i2, · · · , ir and ′1′ in remaining positions. This implies x , y and

x, y contains r, 0′s in same co-ordinate positions i1, i2, · · · , ir. This implies the vertices adjacent(non-
adjacent) to x are also adjacent(non-adjacent) to y, implies d(x, u) = d(y, u),∀u ∈ V(Γ(R1) ◦ Γ(R2)) \
{x, y} implies d(x,w) = d(y,w),∀w ∈ W ′ implies r(x|W ′) = r(y|W ′). Thus, W ′ = W \ {x} is not a
resolving set for each x ∈ W. This implies W is a minimal resolving set. Thus, the metric dimension,
β
(
Γ(R1) ◦ Γ(R2)

)
⩽ |W | =

(
|V(Γ(R1))| − (2n − 2)

)
+ |V(Γ(R1))| ·

(
|V(Γ(R2))| − (2m − 2)

)
.

Now there are exactly C(n, r) vertices in S j (0 ⩽ j ⩽ |V(Γ(R1))|), such that any two vertices with
r zero entries will differ in at least one position containing ′0′. Since |S j| = 2n − 2 if j = 0 and
|S j| = 2m − 2 if (1 ⩽ j ⩽ |V(Γ(R1))|), any two vertices in S j will either differ in the number of ′0′

entries or if the two vertices contain same number of 0′s, then the two vertices will differ in at least one
position containing ′0′. Thus, if S ′j ⊂ V(Γ(R1)) with |S ′j| = (2n − 2) + 1 when j = 0 or S ′j ⊂ V(Γ(R2))
with |S ′j| = (2m − 2) + 1 where 1 ⩽ j ⩽ |V(Γ(R1))|, then there exists at least two vertices, say, x, y ∈ S ′j
such that both x, y contains same number of 0′s and position of 0′s is also same in both x and y.
This implies positions of non-zero entries is also same, but since x and y are distinct, they will differ
in at least one position containing non-zero entry. Since x, y both contains 0′s in same co-ordinate
positions, by a similar argument above, we get, d(x, u) = d(y, u), ∀ u ∈ V

(
Γ(R1) ◦ Γ(R2)

)
\ {x, y}.

Let S ′ be the set obtained from S = S 0 ∪
[
∪
|V(Γ(R1))|
j=1 S j

]
, by replacing the set S j with S ′j. Then

|S ′| = |S | + 1. Therefore, if T = V
(
Γ(R1) ◦ Γ(R2)

)
\ S ′ with

|T | =
(
|V(Γ(R1))| − (2n − 2)

)
+ |V(Γ(R1))| ·

(
|V(Γ(R2))| − (2m − 2)

)
− 1,

then there exists at least two vertices, say,

x, y ∈ V
(
Γ(R1) ◦ Γ(R2)

)
\ T,

Utilitas Mathematica Volume 120, 3–9



Metric Dimension of Corona Product and Join Graph of Zero Divisor Graphs 7

such that, d(x, v) = d(y, v), ∀ v ∈ T, implies r(z|T ) = r(w|T ). This implies T cannot be a resolving set
with |T | =

(
|V(Γ(R1))| − (2n−2)

)
+ |V(Γ(R1))| ·

(
|V(Γ(R2))| − (2m−2)

)
−1 implies β

(
Γ(R1)◦Γ(R2)

)
> |T |

implies β
(
Γ(R1) ◦ Γ(R2)

)
>
(
|V(Γ(R1))| − (2n − 2)

)
+ |V(Γ(R1))| ·

(
|V(Γ(R2))| − (2m − 2)

)
− 1 implies

β
(
Γ(R1) ◦ Γ(R2)

)
⩾
(
|V(Γ(R1))| − (2n − 2)

)
+ |V(Γ(R1))| ·

(
|V(Γ(R2))| − (2m − 2)

)
.

Hence, the metric dimension,

β
(
Γ(R1) ◦ Γ(R2)

)
=
(
|V(Γ(R1))| − (2n − 2)

)
+ |V(Γ(R1))| ·

(
|V(Γ(R2))| − (2m − 2)

)
.

□

4. Metric Dimension of Join Graph of Zero Divisor Graphs of Direct Product of Finite Fields

Theorem 5. If R1 = F1 × · · · × Fn, (n ⩾ 2) and R2 = J1 × · · · × Jm, (m ⩾ 2) where Fi, (1 ⩽ i ⩽
n), Jk, (1 ⩽ k ⩽ m) are finite fields with |Fi| = 2, |Jk| = 2, then the Metric dimension of Join graph of
Γ(R1) and Γ(R2) is β

(
Γ(R1) + Γ(R2)

)
⩽ n + m.

Proof. According to [9, Proposition 6.2], the metric dimension β(Γ(R1)) ⩽ n and β(Γ(R2)) ⩽ m. Let

W1 =
{
vi ∈ V(Γ(R1)) : vi contains;′ 0′ in ith position and ′1′ in remaining positions, (1 ⩽ i ⩽ n)

}
.

In the proof of Theorem 3, we proved that, W1 is resolving set for Γ(R1). Let

W2 =
{
vi ∈ V(Γ(R1)) : vi contains ′0′ in ith position and ′1′ in remaining positions, (1 ⩽ i ⩽ m)

}
.

Similarly, W2 is resolving set for Γ(R2).
Let W = W1 ∪ W2. Then, clearly W is resolving set for the Join graph of Γ(R1) and Γ(R2) and for

x ∈ V
(
Γ(R1) + Γ(R2)

)
, the metric representation of x with respect to W is the vector of length n + m.

Hence, the Metric dimension of Join graph of Γ(R1) and Γ(R2) is
β
(
Γ(R1) + Γ(R2)

)
⩽ n + m. □

Remark 2. (i) If n = 2, 3, 4 and m = 2, 3, 4 and order of each field is two, then according to [10],
β
(
Γ(R1) + Γ(R2)

)
= (n − 1) + (m − 1).

(ii) If n = 5 and m = 5, and order of each field is two, then according to [9, Theorem 6.3], β
(
Γ(R1)+

Γ(R2)
)
= 5 + 5 = 10.

Theorem 6. If R1 = F1 × · · · × Fn, (n ⩾ 2) and R2 = J1 × · · · × Jm, (m ⩾ 2) where Fi, (1 ⩽ i ⩽
n), Jk, (1 ⩽ k ⩽ m) are finite fields with |Fi| ⩾ 3, |Jk| ⩾ 3, then the Metric dimension of Join graph of
Γ(R1) and Γ(R2) is β

(
Γ(R1) + Γ(R2)

)
=
(
|V(Γ(R1))| − (2n − 2)

)
+
(
|V(Γ(R2))| − (2m − 2)

)
.

Proof. Let

S 1 =
{
(a1, · · · , an) ∈ V(Γ(R1)) : ai ∈ {0, 1} with not all ai = 0 and not all ai = 1

}
.

Then |S 1| = 2n − 2. Let W1 = V(Γ(R1)) \ S 1. According to [10, Theorem 2.4], W1 is minimum
resolving set for Γ(R1) and |W1| = |V(Γ(R))| − (2n − 2). Let

S 2 =
{
(a1, · · · , am) ∈ V(Γ(R2)) : ai ∈ {0, 1} with not all ai = 0 and not all ai = 1

}
.

Then |S 2| = 2m − 2. Let W2 = V(Γ(R2)) \ S 2. Then by [10, Theorem 2.4], W2 is minimum resolving
set for Γ(R2) and |W2| = |V(Γ(R))| − (2m − 2).

Consider the Join graph of Γ(R1) and Γ(R2) and let W = W1 ∪W2. For each x ∈ V(Γ(R1)), r(x|W1)
is distinct, and d(x, z) = 1 for all z ∈ W2 in the Join graph of Γ(R1) and Γ(R2). Similarly, for each
y ∈ V(Γ(R2)), r(x|W2) is distinct, and d(y, z) = 1 for all z ∈ W1 in the Join graph of Γ(R1) and Γ(R2).
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Thus, W = W1∪W2 is resolving set for the Join graph of Γ(R1) and Γ(R2) and for w ∈ V
(
Γ(R1)+Γ(R2)

)
,

the metric representation of w with respect to W is the vector of length
(
|V(Γ(R1))| − (2n − 2)

)
+(

|V(Γ(R2))| − (2m − 2)
)
.

Now consider W ′ = W \ {x}, w ∈ W. Either x ∈ W1 or x ∈ W2. Without loss of generality suppose
x ∈ W1. Suppose x contains r, 0′s in positions i1, i2, · · · , ir and non-zero entries in remaining positions
with at least one non-zero entry other than 1, and let y ∈ S 1 with r, 0′s in positions i1, i2, · · · , ir and
′1′ in remaining positions. This implies x , y and x, y contains r, 0′s in same co-ordinate positions
i1, i2, · · · , ir. This implies the vertices adjacent(non-adjacent) to x are also adjacent(non-adjacent)
to y, implies d(x, u) = d(y, u),∀u ∈ V

(
Γ(R1) + Γ(R2)

)
\ {x, y} implies d(x,w) = d(y,w),∀w ∈ W ′

implies r(x|W ′) = r(y|W ′). Similarly, if x ∈ W2 then r(x|W ′) = r(y|W ′). Thus, W ′ = W \ {x} is not a
resolving set for each x ∈ W. This implies W is a minimal resolving set. Thus, the metric dimension
is β
(
Γ(R1) + Γ(R2)

)
⩽ |W | =

(
|V(Γ(R1))| − (2n − 2)

)
+
(
|V(Γ(R2))| − (2m − 2)

)
.

Now there are exactly C(n, r) vertices in S j ( j = 1, 2), such that any two vertices with r zero entries
will differ in at least one position containing ′0′. Since |S j| = 2n − 2 if j = 1 and |S j| = 2m − 2 if
j = 2, any two vertices in S j will either differ in the number of ′0′ entries or if the two vertices contain
same number of 0′s, then the two vertices will differ in at least one position containing ′0′. Thus, if
S ′j ⊂ V(Γ(R1)) with |S ′j| = (2n − 2) + 1 where j = 1 or S ′j ⊂ V(Γ(R2)) with |S ′j| = (2m − 2) + 1 where
j = 2, then there exists at least two vertices, say, x, y ∈ S ′j such that both x, y contains same number
of 0′s and position of 0′s is also same in both x and y. This implies positions of non-zero entries is
also same, but since x and y are distinct, they will differ in at least one position containing non-zero
entry. Since x, y both contains 0′s in same co-ordinate positions, by a similar argument above, we get,
d(x, u) = d(y, u), ∀ u ∈ V

(
Γ(R1) + Γ(R2)

)
\ {x, y}.

Let S ′ be the set obtained from S = S 1 ∪ S 2, by replacing the set S j with S ′j. Then |S ′| = |S | + 1.

Therefore, if T = V
(
Γ(R1)+Γ(R2)

)
\S ′ with |T | =

(
|V(Γ(R1))|−(2n−2)

)
+
(
|V(Γ(R2))|−(2m−2)

)
−1, then

there exists at least two vertices, say, x, y ∈ V
(
Γ(R1)+Γ(R2)

)
\ T , such that, d(x, v) = d(y, v), ∀ v ∈ T ,

implies r(z|T ) = r(w|T ). This implies T cannot be a resolving set with |T | =
(
|V(Γ(R1))| − (2n − 2)

)
+(

|V(Γ(R2))|− (2m−2)
)
−1 implies β

(
Γ(R1)+Γ(R2)

)
> |T | implies β

(
Γ(R1)+Γ(R2)

)
>
(
|V(Γ(R1))|− (2n−

2)
)
+
(
|V(Γ(R2))|−(2m−2)

)
−1 implies β

(
Γ(R1)+Γ(R2)

)
⩾
(
|V(Γ(R1))|−(2n−2)

)
+
(
|V(Γ(R2))|−(2m−2)

)
.

Hence, the metric dimension is β
(
Γ(R1)+Γ(R2)

)
=
(
|V(Γ(R1))|−(2n−2)

)
+
(
|V(Γ(R2))|−(2m−2)

)
. □

5. Conclusion

We have determined the Metric dimension of Corona product and Join graph of zero divisor graphs
of direct product of finite fields.
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