

Article

Multiplicative Distance-Location Number of Graphs

KM. Kathiresan^{1,*}and S. Jeyagermani¹

¹ Department of Mathematics, Ayya Nadar Janaki Ammal College, Sivakasi, India

* Correspondence: kathir2esan@yahoo.com

Abstract: For a set *^S* of vertices in a connected graph *^G*, the multiplicative distance of a vertex *^v* with respect to *S* is defined by d_s^* $S^*(v) = \prod_{S}$ $\prod_{x \in S, x \neq v} d(v, x)$. If *d*^{*}_S
^{*d*}</sup> $d_S^*(u) \neq d_S^*$ $S^*(v)$ for each pair *u*, *v* of distinct vertices of *^G*, then *^S* is called a multiplicative distance-locating set of *^G*. The minimum cardinality of a multiplicative distance-locating set of *G* is called its multiplicative distance-location number $loc_d^*(G)$. If *d* ∗ $J_S^*(u) \neq d_S^*$ $S^*(v)$ for each pair *u*, *v* of distinct vertices of *G*−*S*, then *S* is called an external multiplicative set of *G*. The minimum cardinality of an external multiplicative distance-locating distance-locating set of *^G*. The minimum cardinality of an external multiplicative distance-locating set of *G* is called its external multiplicative location number $loc_e^*(G)$. We prove the existence or non existence of multiplicative distance-locating sets in some well known classes of connected graphs. Also, we introduce a family of connected graphs such that $loc_d^*(G)$ exists. Moreover, there are infinite classes of connected graphs G for which $loc_d^*(G)$ exists as well as infinite classes of connected graphs *G* for which $loc_d^*(G)$ does not exist. Lower bound for the multiplicative distance-location number of a connected graph is established in terms of its order and diameter.

Keywords: Distance, locating set, Distance-locating set, Distance-location number, Multiplicative distance-locating set, Multiplicative distance-location number Mathematics Subject Classification: 05C12

1. Introduction

Let *G* be a connected graph and let $W = \{w_1, w_2, \dots, w_k\}$ be an ordered set of vertices in *G*. If $v \in$ $V(G)$, the k-vector $C_W(v)$ of v with respect to W is defined by $C_W(v) = (d(v, w_1), d(v, w_2), \cdots, d(v, w_k))$ where $d(v, w_i)$ is the distance between *v* and w_i ($1 \le i \le k$). The set *W* is called a locating set if for every pair of distinct vertices $u, v \in V(G)$, $C_W(u) \neq C_W(v)$. It is also called a resolving set. The *k*vector $C_W(v)$ is called the locating code of *v* with respect to *W*. The cardinality of a minimum locating set in *G* is called the location number of *G* and it is denoted by *loc*(*G*). In 1975 and later in 1988, Slater [\[1,](#page-9-0) [2\]](#page-9-1) introduced the concept of "Locating Set" of a graph G. Independently, in 1976, Harary and Melter [\[3\]](#page-9-2) discovered these concepts as well but used the term Metric Dimension, rather than location number. Let *S* be a subset of *V*(*G*). The distance of a vertex *v* with respect to *S* is defined by $d_S(v) = \sum_{\substack{x \in S \\ x \neq v}} d(v, x).$

If $d_S(u) \neq d_S(v)$ for each pair *u*, *v* of distinct vertices of *G*, then *S* is called a distance-locating set of *G*. In 2003, Chartrand et al. [\[4\]](#page-9-3) defined the concept "Distance-Locating Set" of a graph G and the minimum cardinality of a distance-locating set of G is the distance-location number $loc_d(G)$. They found the relationship between $loc(G)$ and $loc_d(G)$. Further, they found the existence of distancelocating sets in some well-known classes of connected graphs and proved that no distance-locating set in a connected graph G has cardinality 2 or 3.

Moreover, there are infinite classes of connected graphs G for which $loc_d(G)$ exists as well as infinite classes of connected graphs G for which $loc_d(G)$ doest not exist. Also, they found the lower bound for the distance-location number of a connected graph in terms of its order and diameter.

Motivated by the concept Distance-Locating Set of a graph *^G*, we introduce the new concept "Multiplicative Distance-Locating Set" of a graph G and we define the cardinality of a minimum multiplicative distance-locating set of G as the multiplicative distance-location number $loc_d^*(G)$. Then we find the relationship between $loc(G)$ and $loc_d^*(G)$. Also, we find the existence of multiplicative distance-locating sets in some well-known classes of connected graphs and we prove that no multidistance-locating sets in some well-known classes of connected graphs and we prove that no multiplicative distance-locating set in a connected graph G has cardinality 2. Moreover, we find an infinite classes of connected graphs such as complete graph and star graph for which $loc_d^*(G)$ does not exist. Also, we find that the path P_3 is the only connected graph G of diameter 2 such that $loc_d^*(G)$ exists. We define the new class of connected graph $P_n \times C_m$, obtained by identifying any two consecutive vertices of C_m with the $(n-2)^{th}$ and $(n-1)^{th}$ vertices of P_n , for which $loc_d^*(G)$ exists. Also, we find the lower bound for the multiplicative distance-location number of a connected graph in terms of its order and diameter.

Chartrand et al. [\[4\]](#page-9-3) defined the concept External Distance-Locating Set of G and the cardinality of a minimum external distance-locating set of G is the external location number $loc_e(G)$. Further, they found the relationship between $loc(G)$, $loc_d(G)$ and $loc_d(G)$ and studied the external location number of some well-known classes of connected graphs.

Motivated by the concept External Distance-Locating Set of a graph G, we introduce the new concept "External Multiplicative Distance-Locating Set" of a graph G and the cardinality of a minimum external multiplicative distance-locating set of G is the external multiplicative location number *loc*^{*}_{*e*}(*G*). Further, we find the external multiplicative location number of some well-known classes of connected graphs. Also, we introduce the new concept "Magic Locating Set" of a graph G and we determine the magic location number of some well-known classes of connected graphs.

2. The Multiplicative Distance-Location Number

For a set *^S* of vertices in a connected graph *^G*, the multiplicative distance of a vertex *^v* in *^V* with respect to *S* is defined by

$$
d_S^*(v) = \prod_{x \in S, x \neq v} d(v, x).
$$

If $S = \{v\}$, then we assign 0 to d_s^* $\int_S^*(v)$. If d_S^* $d_S^*(u) \neq d_S^*$ $\int_{S}^{*}(v)$ for each pair *u*, *v* of distinct vertices of G . A minimum multiplicative distance *^G*, then *^S* is called a multiplicative distance-locating set of *^G*. A minimum multiplicative distancelocating set of *G* is a multiplicative distance-locating set of minimum cardinality and this cardinality is the multiplicative distance-location number $loc_d^*(G)$. The following results describe a relationship between $loc_d^*(G)$ and $loc(G)$.

Proposition 1. *Every multiplicative distance-locating set of a graph is a locating set.*

Proof. On the contrary, assume that the multiplicative distance-locating set $S = \{w_1, w_2, \dots, w_k\}$ is not a locating set. Then there exists two distinct vertices $u, v \in V(G)$ such that $C_S(u) = C_S(v)$. That is, $(d(u, w_1), d(u, w_2), \cdots, d(u, w_k)) = (d(v, w_1, d(v, w_2), \cdots, d(v, w_k)).$ Then $\prod_{w_i \in S} d(u, w_i) =$ That is, $(d(u, w_1), d(u, w_2), \cdots, d(u, w_k)) = (d(v, w_1, d(v, w_2), \cdots, d(v, w_k))$. Then $\prod_{w_i \in S} d(u, w_i) = \prod_{w_i \in S} d(v, w_i)$. Therefore $d^*(u) = d^*(v)$, which is a contradiction to the fact that *S* is a multiplicative $w_i \in S$ *d*(*v*,*w_i*). Therefore *d*^{*}_S
∗tance-locating set of *G* $J_S^*(u) = d_S^*$ $S(S[*](v))$, which is a contradiction to the fact that *S* is a multiplicative distance-locating set of G . □

Corollary 1. *If G* is a connected graph such that $loc^*_d(G)$ exists, then $loc(G) \leq loc^*_d(G)$.

The following Theorem [1](#page-2-0) shows that the path P_n is the only connected graph of order *n* with $loc_d^*(G) = 1.$

Theorem 1. Let G be a connected graph of order $n \geq 2$. Then $loc_d^*(G) = 1$ if and only if $G = P_n$.

Proof. Let $G = P_n : v_1, v_2, ..., v_n$ be a path on *n* vertices. Since $d(v_i, v_1) = i - 1$ for $1 \le i \le n$, $f(v_i)$ is a minimum multiplicative distance-locating set of *P*. Therefore, $loc^*(G) = 1$. Conversely $\{v_1\}$ is a minimum multiplicative distance-locating set of P_n . Therefore, $loc_d^*(G) = 1$. Conversely, suppose $loc_d[*](G) = 1$. Let $S = \{w\}$ be a minimum multiplicative distance-locating set for G. Then *d* ∗ $S^*(v) = d(v, w)$ for each vertex *v* of G is a non-negative integer less than *n*. Since d_S^*

istinct, there exists a vertex *u* in G such that $d(u, w) = n - 1$. Consequently the diam $S^*(v)$, $v \in V(G)$ are distinct, there exists a vertex *u* in G such that $d(u, w) = n - 1$. Consequently the diameter of G is $n - 1$.
Hence $G = P_n$. Hence $G = P_n$.

Proposition 2. *No multiplicative distance-locating set in a connected graph G consists of two vertices of G*.

Proof. Suppose $S = \{u, v\}$ is a multiplicative distance-locating set for *G*. Then d_S^* $J_S^*(u) = d(u, v) = d_S^*$ *S* (*v*), which is a contradiction. \Box

In the case of distance-locating set of a graph *^G*, there is no distance-locating set with exactly three vertices of *^G* for any graph *^G*. However, multiplicative distance-locating set of a graph may consists of three vertices of *^G*. For example, for the following graph *^G*,

 $S = \{v_1, v_2, v_7\}$ is a minimum multiplicative distance locating set and hence $loc_d^*(G) = 3$. In order to give examples of other graphs G for which *loc*[∗](*G*) does not exist, we now make some observations. give examples of other graphs G for which $loc_d^*(G)$ does not exist, we now make some observations. In a graph *G*, the nieghbourhood of a vertex v in *G* is the set $N(v)$ consisting of all vertices which are adjacent to *v*. The closed neighbourhood is $N[v] = N(v) \cup \{v\}$

Proposition 3. If u and v are distinct vertices of a connected graph G such that either $N(u) = N(v)$ *or N*[*u*] = *N*[*v*]*, then every multiplicative distance-locating set of G contains exactly one of u and v.*

Proof. Let $u, v \in G$ and $u \neq v$. Suppose S is a multiplicative distance-locating set for G. **Case 1.** Suppose $N(u) = N(v)$.

If $u, v \in S$, then *u* and *v* are having the same distance apart from each vertex of G. Therefore,*d* ∗ $S^*(u) = d_S^*$ $S_S(v)$, which is a contradiction to the fact that S is a multiplicative distancelocating set. Similar proof holds when $u, v \notin S$.

Case 2. Suppose $N[u] = N[v]$.

The proof is similar to the case 1. \Box

Corollary 2. *If G is a connected graph containing three distinct vertices u, v and w such that either N*(*u*) = *N*(*v*) *or N*[*u*] = *N*[*v*] = *N*[*w*]*, then loc*_{^{*}}(*G*) *does not exist.*

In a graph *G*, if $deg v = 1$, then *v* is called an end-vertex.

Corollary 3. If G is a connected graph such that $loc_d^*(G)$ exists, then every vertex of G is adjacent to *at most two end-vertices.*

The converse of Corollary [3](#page-2-1) does not necessarily hold. For example, in the following graph *G* every vertex of *G* is adjacent to at most two end vertices, but $loc_d^*(G)$ does not exist.

We have verified this fact by considering all possible cases.

Corollary 4. *If* $n \geq 3$ *, then* $loc_d^*(K_n)$ *and* $loc_d^*(K_{1,n})$ *do not exist.*

Proof. Immediately follows from Corollaries [2](#page-2-2) and [3.](#page-2-1) □

Next we show that the path P_3 is the only connected graph *G* of diameter 2 such that $loc_d^*(G)$ exists.

Theorem 2. If G is a connected graph of diameter 2 for which $loc_d^*(G)$ exists, then $G = P_3$.

Proof. Let *S* be a minimum multiplicative distance-locating set for G and let $|S| = k$. Suppose $k = 1$. Since diameter of G is 2 and $|S| = 1$, by Theorem [1,](#page-2-0) $G = P_3$. By Proposition [2,](#page-2-3) $k \neq 2$. Suppose $k = 3$. Let $S = \{u, v, w\}$. Then d_S^*
Since *S* is a multiplicative $J_S^*(u) = d(u, v) \times d(u, w), d_S^*$
 S $J_s^*(v) = d(u, v) \times d(v, w)$ and $d_s^*(v) + d^*(v)$ and hance *dl* $J(x, y) = d(u, w) \times d(v, w).$
 $J(u, w) + d(v, w)$. Since Since *S* is a multiplicative distance-locating set, d_s^* $J_S^*(u) \neq d_S^*$ $\frac{d}{dx}(v)$ and hence $\frac{d}{dx}(u, w) \neq d(v, w)$. Since diameter of *G* is 2, without loss of generality, we may assume that $d(u, w) = 1$, $d(v, w) = 2$. Then *d* ∗ $J_S^*(u) = d(u, v), d_S^*(u, v) = 2$ If $d(u, v)$ $S^*(v) = 2d(u, v)$ and $d_S^*(v) = 1$ then $d^*(v) = 1$ $S_S^*(w) = 2$ Since *G* has diameter 2, either $d(u, v) = 1$ or 2. Therefore $d^*(v) = d^*(w)$ which is a contradiction. $d(u, v) = 2$. If $d(u, v) = 1$, then d_5^*
 $d(u, v) = 2$, then $d^*(u) = 2$. There $S[*](v) = 2$. Therefore, d_S^* $J_S^*(v) = d_S^*$ $S^*(w)$, which is a contradiction. If $d(u, v) = 2$, then d^*_{S}
multiplicative distant $S^*(u) = 2$. Therefore, d^*_S $J_S^*(u) = d_S^*$ $S^*(w)$, which is a contradiction. Thus, *S* is not a multiplicative distance-locating set for *G*. Hence assume that $k \geq 4$. Let $H = \langle S \rangle$ be the subgraph of *G* induced by *S*. Since *G* has diameter 2, for each $v \in V(H) = S$, it follows that d_S^*
determined by $k = \deg (v)$ vertices of *S* since *d* $(u, v) = 1$ for the vertices *u* which $S^*(v)$ is uniquely determined by $k - deg_H(v)$ vertices of *S* since $d_H(u, v) = 1$ for the vertices *u* which are adjacent to *v*. Since *H* is nontrivial and diameter of *G* is 2, *H* contains at least two vertices *x* and *y* such that $deg_H(x) = deg_H(y)$. Suppose $deg_H(x) = deg_H(y) = a$. Since *G* has diameter 2, d_S^* $S_{S}^{*}(x) = 2^{k-a-1}$ and *d* ∗ $S(S_S(y)) = 2^{k-a-1}$. Hence *S* is not a multiplicative distance-locating set for $k \ge 4$.

A graph *G* is a *k*-partite graph if $V(G)$ can be partitioned into *k* subsets V_1, V_2, \cdots, V_k such that *uv* is an edge of *G* if *u* and *v* are belong to different partite sets. If, in addition, every two vertices in different partite sets are joined by an edge, then *G* is a complete *k*-partite graph. If $|V_i| = n_i$ for 1 ≤ *i* ≤ *k*, then we denote this complete *k*-partite graph by K_{n_1,n_2,\dots,n_k} . The complete *k*-partite graphs are aslo referred to as complete multiplartite graphs.

The following result provides another well-known class of graphs for which $loc_d^*(G)$ does not exist.

Corollary 5. If G is a complete multipartite graph of order at least 4 that is not complete, then $loc_d^*(G)$ *does not exist.*

Now, we define a family of connected graph $P_n \times C_m$ such that $loc_d^*(G)$ exists.

Definition 1. Let P_n be a path on n vertices and let C_m be a cycle on m vertices. The graph $P_n \times C_m$ *is obtained by identifying any two consecutive vertices of* C_m *with the* $(n-2)^{th}$ *and* $(n-1)^{th}$ *vertices of Pⁿ as shown in the following Figure [1,](#page-4-0)*

Theorem 3. *For* $n > 4$, $m \ge 3$, $loc_d^*(P_n * \mathcal{C}_m) \le 4$.

Proof. Case 1. Suppose *m* is even, $m = 2k$. Let $\{v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_{k-1}, w_1, w_2, \ldots, w_{k-1}\}$ be the vertices of $P_n \times C_m$ as shown in the above Figure [1.](#page-4-0)

Let $S = \{v_n, v_{n-2}, v_{n-3}, v_{n-4}\}$ be a subset of the vertex set of $P_n \times C_m$. Then

$$
d_S^*(v_i) = d(v_i, v_n) \times d(v_i, v_{n-2}) \times d(v_i, v_{n-3}) \times d(v_i, v_{n-4}), \text{ for } 1 \le i \le n-5
$$

Utilitas Mathematica Volume 120, 27–36

$$
= (n - i)(n - i - 2)(n - i - 3)(n - i - 4).
$$

\n
$$
d_5^*(u_i) = d(u_i, v_n) \times d(u_i, v_{n-2}) \times d(u_i, v_{n-3}) \times d(u_i, v_{n-4}), \text{ for } 1 \le i \le k - 1
$$

\n
$$
= i(i + 1)(i + 2)^2.
$$

\n
$$
d_5^*(w_i) = d(w_i, v_n) \times d(w_i, v_{n-2}) \times d(w_i, v_{n-3}) \times d(w_i, v_{n-4}), \text{ for } 1 \le i \le k - 1
$$

\n
$$
= (i + 1)^2(i + 2)(i + 3).
$$

\n
$$
d_5^*(v_{n-4}) = d(v_{n-4}, v_n) \times d(v_{n-4}, v_{n-2}) \times d(v_{n-4}, v_{n-3}) = 4 \times 2 \times 1 = 8.
$$

\n
$$
d_5^*(v_{n-3}) = d(v_{n-3}, v_n) \times d(v_{n-3}, v_{n-2}) \times d(v_{n-3}, v_{n-4}) = 3 \times 1 \times 1 = 3.
$$

\n
$$
d_5^*(v_{n-2}) = d(v_{n-2}, v_n) \times d(v_{n-2}, v_{n-3}) \times d(v_{n-2}, v_{n-4}) = 2 \times 1 \times 2 = 4.
$$

\n
$$
d_5^*(v_{n-1}) = d(v_{n-1}, v_n) \times d(v_{n-1}, v_{n-2}) \times d(v_{n-1}, v_{n-3}) \times d(v_{n-1}, v_{n-4}) = 1 \times 1 \times 2 \times 3 = 6.
$$

\n
$$
d_5^*(v_n) = d(v_n, v_{n-2}) \times d(v_n, v_{n-3}) \times d(v_n, v_{n-4}) = 2 \times 3 \times 4 = 24.
$$

Certainly, *d* ∗ $J_S^*(v_i) \neq d_S^*$ $S(v_j)$ for each pair *i*, *j* of distinct integers $1 \le i, j \le n - 5$ and d_S^*
for each pair *i*, *i* of distinct integers $1 \le i, i \le k - 1$. Since $\min\{d^*\}$ $d_S^*(u_i) \neq d_S^*$ $S^*(u_j)$ and *d* ∗ $J_S^*(w_i) \neq d_S^*$ $S^*(w_j)$ for each pair *i*, *j* of distinct integers $1 \le i, j \le k - 1$. Since min{*d*^{*}_S³⁰ and max{*d*^{*}(*v*) : *n* − *A* < *i* < *n*) − 2*A d*^{*}(*v*) + *d*^{*}(*v*) for each pair. $S^*(v_i)$: 1 $\leq i \leq$ *ⁿ* [−] ⁵, *ⁿ* > ⁵} ⁼ 30 and max{*^d* ∗ $S^*(v_i)$: $n-4 \le i \le n$ } = 24, d_S^* $J_S^*(v_i) \neq d_S^*$ $S^*(v_j)$ for each pair *i*, *j* of distinct integers $1 \le i, j \le n$. The factors of d_{S}^{*}
 $x = n - i - 4$, $d^{*}(u) = y(y + 1)(y + 2)$ $J_S^*(v_i)$, d_S^* $J_S^*(u_i)$ and d_S^* $J_S^*(w_i)$ are: d_S^* $S_S^*(v_i) = x(x+1)(x+2)(x+4)$ where $x = n - i - 4, d_s^*$ $S^*(u_i) = y(y + 1)(y + 2)^2$ where $y = i$ and d_S^* $S^*(w_i) = z^2(z + 1)(z + 2)$ where $z = i + 1$.

We claim that d_s^* $J_S^*(v_i) \neq d_S^*$ $S^*(u_j)$ for every two integers $1 \le i \le n$, $1 \le j \le k - 1$. First we discuss when *i* varies from 1 to *n*−5 and *j* varies from 1 to $k-1$. If $y < x-2$ or $y > x+4$, then d_s^*
We consider the following cases: $J_S^*(v_i) \neq d_S^*$ $S^{*}(u_{j}).$ We consider the following cases:

- 1. Suppose d_S^* $J_S^*(v_i) = d_S^*$ $S(x_j)(u_j)$. Then $x(x + 1)(x + 2)(x + 4) = y(y + 1)(y + 2)^2$
	- (a) Suppose $y = x 2$. Then $x(x + 1)(x + 2)(x + 4) = (x 2)(x 1)x^2$. This implies $(x + 1)(x + 1)$ $2(x+4) = x(x-1)(x-2)$, which is a contradiction.
	- (b) Suppose $y = x 1$. Then $x(x + 1)(x + 2)(x + 4) = (x 1)x(x + 1)^2$. This implies $x^2 + 6x + 8 = 0$ $x^2 - 1$. Therefore, $x = -3/2$, which is a contradiction to the fact that *x* is a positive integer.
	- (c) Suppose $y = x$. Then $x(x + 1)(x + 2)(x + 4) = x(x + 1)(x + 2)^2$. This implies that 4=2, which is a contradiction.
	- (d) Suppose $y = x + 1$. Then $x(x + 1)(x + 2)(x + 4) = (x + 1)(x + 2)(x + 3)^2$. Hence $x = -9/2$, which is a contradiction which is a contradiction.
	- (e) Suppose $y = x + 2$. Then $x(x + 1)(x + 2)(x + 4) = (x + 2)(x + 3)(x + 4)^2$. Thus, $x = -2$, which is a contradiction.

- (f) Suppose $y = x + 3$. Then $x(x + 1)(x + 2)(x + 4) = (x + 3)(x + 4)(x + 5)^2$. This implies $10x^2 + 53x + 75 = 0$. Since $b^2 - 4ac = -191 < 0$, it has no real solution, which is a contradiction contradiction.
- (g) Suppose $y = x + 4$. Then $x(x + 1)(x + 2)(x + 4) = (x + 4)(x + 5)(x + 6)^2$. This implies $14x^2 + 94x + 180 = 0$. Since $b^2 - 4ac = -1244 < 0$, it has no real solution, which is a contradiction contradiction.

Thus, d^*_s $d_S^*(v_i) \neq d_S^*$ $S^*(u_j)$ for every two integers $1 \le i \le n-5$, $1 \le j \le k-1$. Since max $\{d_s^*\}$ $S^*(v_i)$: $n - 4 \le i \le n$ } = 24 and { d_s^* } $S^*(u_j)$: $1 \le j \le k - 1$ } = {18, 96, . . .}, $d_S^*(u_j)$
 $\le k - 1$ Next we claim that $d^*(v_j) + d^*(v_j)$ $J_S^*(v_i) \neq d_S^*$ $S^*(u_j)$ for every two integers $1 \le i \le n$, $1 \le j \le k - 1$. Next we claim that $d_{\mathcal{S}}^*$ $d_S^*(v_i) \neq d_S^*$ $S^*(w_j)$ for every two integers 1 ≤ *i* ≤ *n*, 1 ≤ *j* ≤ *k* − 1. First we discuss when *i* varies from 1 to *n* − 5 and *j* varies from 1 to $k - 1$. If $z < x - 2$ or $z > x + 4$, then $x(x + 1)(x + 2)(x + 4) ≠ z²(z + 1)(z + 2)$. Therefore, *d* ∗ $J_S^*(v_i) \neq d_S^*$ $\int_{S}^{*}(w_j).$

- 2. Suppose d^* $J_S^*(v_i) = d_S^*$ *s*^{*}(*w_j*). Then *x*(*x* + 1)(*x* + 2)(*x* + 4) = $z^2(z + 1)(z + 2)$. If *x*−2 ≤ *z* ≤ *x* + 4, then the proof is similar to the above case. Thus, d_s^* $J_S^*(v_i) \neq d_S^*$ $S^*(w_j)$ for every two integers $1 \le i \le n-5$, 1 ≤ j ≤ k − 1. Since max $\{d_s^*$ $S^*(v_i)$: *n* − 4 ≤ *i* ≤ *n*} = 24 and *min*{*d*^{*}_S $S^*(w_j)$: $1 \le j \le k - 1$ } = 48, *d* ∗ $d_S^*(v_i) \neq d_S^*$ $S^*(w_j)$ for every two integers $1 \le i \le n, 1 \le j \le k - 1$. Next we claim that d_S^* $\int_{S}^{*}(u_i)$ \neq *d* ∗ $S^*(w_j)$ for every two integers $1 \le i, j \le k - 1$. If $z < y - 3$ or $z > y + 2$, then $d_S^*(w_j)$ $J_S^*(u_i) \neq d_S^*$ *S* (*wj*).
- 3. Suppose *d* ∗ $J_S^*(u_i) = d_S^*$ *S*^{*}(*w_j*). Then *y*(*y* + 1)(*y* + 2)² = *z*²(*z* + 1)(*z* + 2). If *y* − 3 ≤ *z* ≤ *y* + 2, then the proof is similar to the first case. Thus, d_s^* $J_S^*(u_i) \neq d_S^*$ $J_s^*(w_j)$ for every two integers $1 \le i, j \le k - 1$. From the above three cases, d_s^* $d_S^*(u) \neq d_S^*$ $S(S(V))$ for any two pair of distinct vertices *u*, *v* of $P_n \times C_m$. Therefore, S is a multiplicative distance-locating set for $P_n * C_m$. Hence, $loc_d^*(P_n * C_m) \leq 4$ when *m* is even.

Case 2. Suppose *m* is odd, $m = 2k + 1$.

Let $\{v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_{k-1}, w_1, w_2, \ldots, w_{k-1}, w_k\}$ be the vertices of $P_n \times C_m$ as shown in the Figure [2.](#page-5-0)

Let $S = \{v_n, v_{n-2}, v_{n-3}, v_{n-4}\}$ be a subset of the vertex set of $P_n \times C_m$. Then

$$
d_S^*(v_i) = d(v_i, v_n) \times d(v_i, v_{n-2}) \times d(v_i, v_{n-3}) \times (v_i, v_{n-4}), \text{ for } 1 \le i \le n-5
$$

= $(n-i)(n-i-2)(n-i-3)(n-i-4).$

$$
d_S^*(u_i) = d(u_i, v_n) \times d(u_i, v_{n-2}) \times d(u_i, v_{n-3}) \times d(u_i, v_{n-4}), \text{ for } 1 \le i \le k-1
$$

Utilitas Mathematica Volume 120, 27–36

$$
= i(i + 1)(i + 2)^2.
$$

\n
$$
d_S^*(w_i) = d(w_i, v_n) \times d(w_i, v_{n-2}) \times d(w_i, v_{n-3}) \times d(w_i, v_{n-4}), \text{ for } 1 \le i \le k - 1
$$

\n
$$
= (i + 1)^2(i + 2)(i + 3).
$$

\n
$$
d_S^*(w_k) = d(w_i, v_n) \times d(w_i, v_{n-2}) \times d(w_i, v_{n-3}) \times d(w_i, v_{n-4}) = k(k + 1)^2(k + 2).
$$

\n
$$
d_S^*(v_{n-4}) = d(v_{n-4}, v_n) \times d(v_{n-4}, v_{n-2}) \times d(v_{n-4}, v_{n-3}) = 4 \times 2 \times 1 = 8.
$$

\n
$$
d_S^*(v_{n-3}) = d(v_{n-3}, v_n) \times d(v_{n-3}, v_{n-2}) \times d(v_{n-3}, v_{n-4}) = 3 \times 1 \times 1 = 3.
$$

\n
$$
d_S^*(v_{n-2}) = d(v_{n-2}, v_n) \times d(v_{n-2}, v_{n-3}) \times d(v_{n-2}, v_{n-4}) = 2 \times 1 \times 2 = 4.
$$

\n
$$
d_S^*(v_{n-1}) = d(v_{n-1}, v_n) \times d(v_{n-1}, v_{n-2}) \times d(v_{n-1}, v_{n-3}) \times d(v_{n-1}, v_{n-4}) = 1 \times 1 \times 2 \times 3 = 6.
$$

\n
$$
d_S^*(v_n) = d(v_n, v_{n-2}) \times d(v_n, v_{n-3}) \times d(v_n, v_{n-4}) = 2 \times 3 \times 4 = 24.
$$

By case 1, d_s^* $s^*(u) \neq d_s^*$ $S(S[*](v)$ for any two pair of distinct vertices *u*, *v* of $P_n * C_m$. Therefore, *S* is a subcating set for *P* $\times C$. Thus, $loc^*(P \times C) < A$ for *m* is odd. Hence multiplicative distance-locating set for $P_n \times C_m$. Thus, $loc_d^*(P_n \times C_m) \leq 4$ for *m* is odd. Hence $loc[*]_d(P_n * C_m) \leq 4.$

Corollary 6. *The multiplicative distance location number of* $P_n \times C_m$ *is either 3 or 4.*

Proof. Since $P_n \times C_m$ is not a path, the proof follows from Theorem [1](#page-2-0) and Proposition [2](#page-2-3) □

Now we establish a lower bound for the multiplicative distance-location number of a connected graph in terms of its order and diameter. Let *G* be a connected graph of order *n*. For a subset *S* of $V(G)$, define

$$
D_{min}^{*}(S) = \min\{d_{S}^{*}(v) : v \in V(G)\},
$$

$$
D_{max}^{*}(S) = \max\{d_{S}^{*}(v) : v \in V(G)\}.
$$

Observation 4. Let G be a connected graph of order $n \geq 2$ and diameter $d \geq 2$. If S is a multiplicative *distance-locating set for G with* $|S| = k$, then $n - 1 \le D_{max}^*(S) - D_{min}^*(S) \le d^k$.

Proof. Suppose *S* is a multiplicative distance-locating set for *G*. Then the numbers d_S^*
are distinct. The set $(d^*(y) : y \in V(G))$ contains *n* distinct numbers. Therefore *S* (*v*), *^v* [∈] *^V*(*G*) are distinct. The set {*d*^{*}_S $S[*](v)$: $v \in V(G)$ } contains *n* distinct numbers. Therefore,

$$
D_{max}^*(S) - D_{min}^*(S) \ge n - 1 \dots
$$
 (1)

Since *S* is a multiplicative distance-locating set, *diamG* = *d* and $|S| = k$, $D_{min}^*(S) \ge 0$ and $D_{max}^*(S) \le$ d^k . Thus,

$$
D_{max}^*(S) - D_{min}^*(S) \le d^k \dots \tag{2}
$$

Combining [\(1\)](#page-6-0) and [\(2\)](#page-6-1), we get, $n - 1 \le D_{max}^*(S) - D_{min}^*(S) \le d^k$. □

Observation 5. *If G is a connected graph of order n*≥2 *and diameter d*≥2 *for which loc*^{*}_{*d*}(*G*) *exists, then* $loc_d^*(G) \ge \left\lceil \frac{log(n-1)}{log d} \right\rceil$ *.*

Proof. Let *S* be a multiplicative distance-locating set for G and let $|S| = k$. By Observation [4,](#page-6-2) $n-1 \le D_{max}^*(S) - D_{min}^*(S) \le d^k$. Therefore, $n-1 \le d^k$. Thus $loc_d^*(G) \ge \left\lceil \frac{log(n-1)}{log d} \right\rceil$. □

3. The External Multiplicative Location Number of a graph

We shown in Section 2, for many graphs G, $loc_d^*(G)$ does not exist. However, there is a closely related parameter that is defined for every graph. For a set *^S* of vertices in a connected graph *^G*, the multiplicative distance of a vertex ν with respect to S is defined by

$$
d_S^*(v) = \prod_{x \in S, x \neq v} d(v, x).
$$

If d_S^* $J_S^*(u) \neq d_S^*$ $S[*](v)$ for each pair *u*, *v* of distinct vertices of *G* − *S*, then *S* is called an external multiplica-
belocating set of *G*. The cardinality of a minimum external multiplicative distance-locating tive distance-locating set of *^G*. The cardinality of a minimum external multiplicative distance-locating set of *G* is called the external multiplicative location number of *G*. It is denoted by $loc_e^*(G)$.

Proposition 4. *Every external multiplicative distance-locating set is a locating set.*

Proof. Let *S* be an external multiplicative distance-locating set for *G*. Then the numbers d_S^*
 $V(G) = S$ are distinct. Let *u y* be any two distinct vertices of *G*. *S* (*v*), *^v* [∈] $V(G) - S$ are distinct. Let *u*, *v* be any two distinct vertices of *G*.

- 1. If $u, v \in S$, then $C_S(u) \neq C_S(v)$.
- 2. Suppose $u, v \in V(G) S$. If $C_S(u) = C_S(v)$, then d_S^*
Therefore $C_S(u) + C_S(v)$ $d_S^*(u) = d_S^*$ $S^*(v)$, which is a contradiction. Therefore, $C_S(u) \neq C_S(v)$.
- 3. Suppose *u* ∈ *S* and *v* ∈ *V*(*G*) − *S*. Then the locating code of the vertex *u* with respect to S, $C_S(u)$ contains the zero vector. Since $v \in V(G) - S$, $C_S(v)$ does not contain the zero vector. Therefore, $C_S(u) \neq C_S(v)$. Thus, from the above three cases, *S* is a locating set.

□

Since the vertex set of *G* is an external multiplicative distance-locating set, $loc_e^*(G)$ exists for every graph *^G*. Since every multiplicative distance-locating set is an external multiplicative distancelocating set and since every external multiplicative distance-locating set is a locating set, we have the following.

Theorem 6. For every connected graph G , $loc(G) \leq loc_e^*(G)$. Moreover, if G is a connected graph G order $n > 2$ for which $loc^*(G)$ exists, then $1 \leq loc(G) \leq loc^*(G) \leq loc^*(G)$ *of order* $n \geq 2$ *for which loc*_{*d*}</sub>^{*d*}*G*) *exists, then* $1 \leq loc(G) \leq loc_e^*(G) \leq loc_d^*(G)$ *.*

In Theorem [1](#page-2-0) the path P_n of order $n \geq 2$ is the only connected graph with $loc_d^*(G) = 1$. It is straight forward to show that the path P_n is also the only connected graph of order *n* with $loc_e^*(G) = 1$.

Theorem 7. Let G be a connected graph G of order $n \geq 2$. Then $loc_e^*(G) = 1$ if and only if $G = P_n$.

It is shown that the complete graph K_n of order $n \geq 2$ is the only connected graph of order *n* with *loc*(*G*) = *n* − 1, while $loc_d^*(K_n)$ does not exist by Corollary ??. Certainly $loc_e^*(K_n) = n - 1$ for all n≥2 as well. On the other hand, K_n is not the only connected graph of order *n* with external multiplicative location number $n - 1$.

Theorem 8. *If G is an r*−*regular connected graph of order n and diameter 2, then loc*^{*}_{*e*}(*G*) = *n* − 1*.*

Proof. Suppose *G* is an *r*−regular connected graph of order *n* and diameter 2. Because of Theorem [7,](#page-7-0) it suffices to show that for each integer *k* with $2 \le k \le n - 2$, there is no external multiplicative distance-locating set of *G* consisting of *k* vertices. Assume to the contrary, that there is an external multiplicative distance-locating set of order *k* in *G*. Let $S = \{w_1, w_2, \ldots, w_k\}$ be an external multiplicative distance-locating set for *G*, where $2 \le k \le n - 2$. Let $V(G) - S = \{v_1, v_2, \ldots, v_{n-k}\}$. For each $v_i \in V(G) - S$, where $1 \le i \le n - k$, let s_i be the number of vertices of *S* that are adjacent to v_i , and let t_i be the number of vertices of *S* that are not adjacent to v_i . Thus, $s_i + t_i = k$, $0 \le s_i \le \min\{r, k\}$, and $0 \le t_i \le \min\{r - 1 - r_k\}$ for all *i* with $1 \le i \le n - k$. Since diam $G = 2 - d^*(v_i) = 2t$ for and $0 \le t_i \le \min\{n-1-r, k\}$, for all *i* with $1 \le i \le n-k$. Since *diamG* = 2, d_S^*
all *i* with $1 \le i \le n-k$. Since *S* is an external multiplicative distance-locating set for $S^*(v_i) = 2t_i$ for all *i* with $1 \le i \le n - k$. Since *S* is an external multiplicative distance-locating set for *G*, all $n - k$ numbers *d* ∗ $Sⁱ(v_i)$ are distinct. Therefore, $t_i \neq t_j$. Since $s_i + t_i = k$, all $n - k$ numbers s_i are distinct and all *n* − *k* numbers t_i are distinct. Let $H = \langle V(G) - S \rangle$ be the subgraph induced by $V(G) - S$. Then $deg_H(v_i) = r - s_i$ for all i with $1 \le i \le n - k$. Since the $n - k$ numbers s_i are distinct, $deg_H(v_i)$ are distinct, $1 \le i \le n - k$. Therefore, no two vertices of *H* have the same degree, which is impossible. Hence *loc*[∗] *e* $(G) = n - 1.$ □

As an immediate consequence of Theorem [8](#page-7-1) we obtain the external location number of the Petersen graph.

Corollary 7. *The Petersen graph has external location number 9.*

Next we determine the external location number of the complete bipartite graphs.

Theorem 9. *For integers r, s* \geq 1 *with r* + *s* \geq 4*,*

$$
loc_e^*(K_{r,s}) = \begin{cases} r+s-2 & \text{if } r \neq s, \\ r+s-1 & \text{if } r=s. \end{cases}
$$

Proof. Assume that $r \leq s$. Let $V_1 = \{u_1, u_2, \ldots, u_r\}$ and $V_2 = \{v_1, v_2, \ldots, v_s\}$ be the partite sets of *K*_{*r*,*s*}. If *r* = *s*, then by Theorem [8](#page-7-1) *loc*^{*}_{*e*}(*K_{<i>r*},*s*) = *r* + *s* − 1. So we may assume that *r* < *s*. Every external multiplicative distance-locating set of $K_{r,s}$ contains at least $r-1$ vertices from V_1 and at least *s* − 1 vertices from *V*₂. Thus, $loc_e^*(K_{r,s}) \ge r + s - 2$. Let $W = (V_1 - \{u_r\}) \cup (V_2 - \{v_s\})$. Then *d* ∗ $W(W_r) = 2^{(r-1)}$ and d^* ^{*}_{*W*}(*v*_{*s*}) = 2^(*s*−1). Suppose d_V^* $d^*_{W}(u_r) = d^*_{W}(u_r)$ $W_W^*(v_s)$. Then $r = s$, which is a contradiction. Therefore, *d* ∗ $w_W^*(u_r) \neq d_V^*$ $W_W^*(v_s)$. Thus, *W* is an external multiplicative distance-locating set for $K_{r,s}$. Since $loc_e^*(K_{r,s}) \ge r + s - 2$, *W* is the minimum external multiplicative distance-locating set for $K_{r,s}$. Therefore, $loc_e^*(K_{r,s}) = r + s - 2$.

4. The Magic Location Number of a graph

Let *^G* be a connected graph with vertex set *^V*(*G*). Let *^S* be a subset of *^V*(*G*). We define the distance of a vertex *v* with respect to *S* by

$$
d_{\mathcal{S}}^*(v) = \sum_{x \in S, x \neq v} d(v, x).
$$

If $d_S(u) = d_S(v)$ for each pair *u*, *v* of distinct vertices of $G - S$, then *S* is called a magic locating set of *^G*. The cardinality of a minimum magic locating set of *^G* is called the magic location number of *^G*. It is denoted by *locM*(*G*). Every distance-locating set is not a magic locating set and every external distance-locating set is not a magic locating set.

The following Theorem [10](#page-8-0) characterizes graph *G* with $loc_M(G) = 1$.

Theorem 10. Let G be a connected graph of order $n \geq 2$. Then $loc_M(G) = 1$ if and only if G contains *a vertex of degree n* -1 *.*

Proof. Suppose $\text{loc}_M(G) = 1$. Let $S = \{w\}$ be a minimum magic locating set for *G*. Then $d(u, w) =$ $d(v, w)$ for each pair *u*, *v* of distinct vertices of $V(G) - S$. Assume that $d(u, w) = l > 1$ for some *u* ∈ *V*(*G*) − *S*, where $2 \le l \le n - 1$. Then there exists a path *P* : *u* = *u*₀, *u*₁, *u*₂, , *u*_l-1, *u*_l = *w* in *G*. Therefore, $d(u, w) = l$ and $d(u_{l-1}, w) = 1$, which is a contradiction. Thus, $d(u, w) = 1$ for all $u \in V(G) - S$. Hence, *w* is adjacent to all the vertices of $G - S$. Therefore, deg(*w*) = *n* − 1.

Conversely, assume that *G* contains a vertex of degree $n - 1$. Let *w* be a vertex of *G* such that $deg(w) = n - 1$. Let $S = \{w\}$. Then $d_S(u) = 1$ for all $u \in V(G) - S$. Therefore, *S* is a minimum magic locating set for *G*. Hence, $\text{loc}_{M}(G) = 1$.

Corollary 8. The magic location number of the graphs K_n , $K_{1,n}$, W_n , F_n is 1.

In Theorem [11](#page-8-1) and Theorem [12](#page-8-2) we determine the magic location number of an even cycle and the complete bipartite graphs.

Theorem 11. *If* C_n *is an even cycle, then* $loc_M(C_n) = 2$ *.*

Proof. Let $C_n : v_1, v_2, \ldots, v_k, \ldots, v_{2k}$ be an even cycle. Let $S = \{v_k, v_{2k}\}\)$ be a subset of $V(C_n)$. Then $d_{\sigma}(v_k) = k$ for $1 \leq i \leq k$ and $d_{\sigma}(v_k) = k$ for $k \leq i \leq 2k$. Hence S is a magic locating set for C *d_S*(v_i) = *k* for 1 ≤ *i* < *k* and *d_S*(v_i) = *k* for $k < i$ < 2*k*. Hence *S* is a magic locating set for C_n .
Therefore, $loc_M(C_n) \le 2$. By Theorem 10 $loc_M(C_n) = 2$. Therefore, $loc_M(C_n) \leq 2$. By Theorem [10](#page-8-0) $loc_M(C_n) = 2$.

Theorem 12. *For m, n* \geq 2*, loc_M*($K_{m,n}$) = 2*.*

Proof. Let *G* be a complete bipartite graph with vertex set $V = V_1 \cup V_2$ where $V_1 = \{v_1, v_2, \ldots, v_m\}$ and $V_2 = \{u_1, u_2, \dots, u_n\}$. Let $S = \{v_1, u_1\}$ be a subset of $V(G)$. Then $d_S(v_i) = 3$ for $1 \le i \le m$ and *d_S*(*v*_{*i*}) = 3 for 1 ≤ *i* ≤ *n*. Hence *S* is a magic locating set for *G*. Therefore, $loc_M(K_{m,n})$ ≤ 2. By Theorem 10 $loc_M(K_{m,n})$ = 2. Theorem [10](#page-8-0) $loc_M(K_{m,n}) = 2$.

Theorem [13](#page-9-4) shows that the magic location number of a path P_n of order $n \geq 2$ is less than or equal to $n-2$.

Theorem 13. *If* P_n *is a path on n vertices, then* $loc_M(P_n) \leq n - 2$ *.*

Proof. Let *P_n* : *v*₁, *v*₂, ..., *v*_{*k*}, ..., *v*_{*n*} be a path on *n* vertices. Let *S* = {*v*₂, *v*₃, ..., *v*_{*n*-1}} be a subset of $(n-2)(n-1)$ the vertex set of *P_n*. Then $d_S(v_1) = 1 + 2 + ... + (n-2) =$ (*n* − 2)(*n* − 1) $\frac{2(n-1)}{2}$ and $d_S(v_n) = (n-2)+(n-3)+$ \dots + 2 + 1 = $(n-2)(n-1)$ $\frac{2(n-1)}{2}$. Thus, *S* is a magic locating set for *P_n*. Therefore, $loc_M(P_n)$ ≤ *n* − 2. □

5. Conclusion

We have defined some new concepts Multiplicative Distance-locating set, multiplicative distance location number, External Multiplicative location number and magic location number of graphs. We have discussed the existence or non-existence of these numbers for some well known classes of connected graphs. For future study we would like to propose the following open problems.

- 1. If *G* is a connected graph of diameter 3 for which $loc_d^*(G)$ exists, then what about *G*?
- 2. For what values of *n* and *m*, $loc_d^*(P_n * \mathcal{C}_m) = 4$.
- 3. For what values of *n* and *m*, $loc_d^*(P_n * \mathcal{C}_m) = 3$.
- 4. Does equality holds in Theorem [13.](#page-9-4) Based on our experience we believe that equality holds.

Acknowledgment

The authors would like to thank the two referees for their useful suggestions and comments.

References

- 1. Slater, P. J., 1975. Leaves of trees. *Congressus Numerantium*, 14, pp.549-559.
- 2. Slater, P. J., 1988. Dominating and reference sets in graphs. *Journal of Mathematical and Physical Sciences*, 22, pp.445-455.
- 3. Harary, F. and Melter, R. A., 1976. On the metric dimension of a graph. *Ars Combinatoria*, 2, pp.191-195.
- 4. Chartrand, G., Erwin, D., Slater, P. J. and Zhang, P., 2003. Distance-location number of graphs. *Utilitas Mathematica*, 63, pp.65-79.

© 2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://[creativecommons.org](http://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)