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Abstract: For a set S of vertices in a connected graph G, the multiplicative distance of a vertex v
with respect to S is defined by d∗S (v) =

∏
x∈S ,x,v

d(v, x). If d∗S (u) , d∗S (v) for each pair u, v of distinct

vertices of G, then S is called a multiplicative distance-locating set of G. The minimum cardinality of a
multiplicative distance-locating set of G is called its multiplicative distance-location number loc∗d(G).
If d∗S (u) , d∗S (v) for each pair u, v of distinct vertices of G−S , then S is called an external multiplicative
distance-locating set of G. The minimum cardinality of an external multiplicative distance-locating
set of G is called its external multiplicative location number loc∗e(G). We prove the existence or non
existence of multiplicative distance-locating sets in some well known classes of connected graphs.
Also, we introduce a family of connected graphs such that loc∗d(G) exists. Moreover, there are infinite
classes of connected graphs G for which loc∗d(G) exists as well as infinite classes of connected graphs
G for which loc∗d(G) does not exist. Lower bound for the multiplicative distance-location number of
a connected graph is established in terms of its order and diameter.

Keywords: Distance, locating set, Distance-locating set, Distance-location number, Multiplicative
distance-locating set, Multiplicative distance-location number
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1. Introduction

Let G be a connected graph and let W = {w1,w2, · · · ,wk} be an ordered set of vertices in G. If v ∈
V(G), the k-vector CW(v) of v with respect to W is defined by CW(v) = (d(v,w1), d(v,w2), · · · , d(v,wk))
where d(v,wi) is the distance between v and wi (1 ≤ i ≤ k). The set W is called a locating set if for
every pair of distinct vertices u, v ∈ V(G), CW(u) , CW(v). It is also called a resolving set. The k-
vector CW(v) is called the locating code of v with respect to W. The cardinality of a minimum locating
set in G is called the location number of G and it is denoted by loc(G). In 1975 and later in 1988,
Slater [1, 2] introduced the concept of “Locating Set” of a graph G. Independently, in 1976, Harary
and Melter [3] discovered these concepts as well but used the term Metric Dimension, rather than
location number. Let S be a subset of V(G). The distance of a vertex v with respect to S is defined by
dS (v) =

∑
x∈s
x,v

d(v, x).

If dS (u) , dS (v) for each pair u, v of distinct vertices of G, then S is called a distance-locating set
of G. In 2003, Chartrand et al. [4] defined the concept “Distance-Locating Set” of a graph G and the
minimum cardinality of a distance-locating set of G is the distance-location number locd(G). They
found the relationship between loc(G) and locd(G). Further, they found the existence of distance-
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locating sets in some well-known classes of connected graphs and proved that no distance-locating
set in a connected graph G has cardinality 2 or 3.

Moreover, there are infinite classes of connected graphs G for which locd(G) exists as well as
infinite classes of connected graphs G for which locd(G) doest not exist. Also, they found the lower
bound for the distance-location number of a connected graph in terms of its order and diameter.

Motivated by the concept Distance-Locating Set of a graph G, we introduce the new concept
“Multiplicative Distance-Locating Set” of a graph G and we define the cardinality of a minimum
multiplicative distance-locating set of G as the multiplicative distance-location number loc∗d(G). Then
we find the relationship between loc(G) and loc∗d(G). Also, we find the existence of multiplicative
distance-locating sets in some well-known classes of connected graphs and we prove that no multi-
plicative distance-locating set in a connected graph G has cardinality 2. Moreover, we find an infinite
classes of connected graphs such as complete graph and star graph for which loc∗d(G) does not exist.
Also, we find that the path P3 is the only connected graph G of diameter 2 such that loc∗d(G) exists.
We define the new class of connected graph Pn ⋇ Cm, obtained by identifying any two consecutive
vertices of Cm with the (n − 2)th and (n − 1)th vertices of Pn, for which loc∗d(G) exists. Also, we find
the lower bound for the multiplicative distance-location number of a connected graph in terms of its
order and diameter.

Chartrand et al. [4] defined the concept External Distance-Locating Set of G and the cardinality of
a minimum external distance-locating set of G is the external location number loce(G). Further, they
found the relationship between loc(G), locd(G) and locd(G) and studied the external location number
of some well-known classes of connected graphs.

Motivated by the concept External Distance-Locating Set of a graph G, we introduce the new
concept “External Multiplicative Distance-Locating Set” of a graph G and the cardinality of a mini-
mum external multiplicative distance-locating set of G is the external multiplicative location number
loc∗e(G). Further, we find the external multiplicative location number of some well-known classes of
connected graphs. Also, we introduce the new concept “Magic Locating Set” of a graph G and we
determine the magic location number of some well-known classes of connected graphs.

2. The Multiplicative Distance-Location Number

For a set S of vertices in a connected graph G, the multiplicative distance of a vertex v in V with
respect to S is defined by

d∗S (v) =
∏

x∈S ,x,v

d(v, x).

If S = {v}, then we assign 0 to d∗S (v). If d∗S (u) , d∗S (v) for each pair u, v of distinct vertices of
G, then S is called a multiplicative distance-locating set of G. A minimum multiplicative distance-
locating set of G is a multiplicative distance-locating set of minimum cardinality and this cardinality
is the multiplicative distance-location number loc∗d(G). The following results describe a relationship
between loc∗d(G) and loc(G).

Proposition 1. Every multiplicative distance-locating set of a graph is a locating set.

Proof. On the contrary, assume that the multiplicative distance-locating set S = {w1,w2, · · · ,wk} is
not a locating set. Then there exists two distinct vertices u, v ∈ V(G) such that CS (u) = CS (v).
That is, (d(u,w1), d(u,w2), · · · , d(u,wk)) = (d(v,w1, d(v,w2), · · · , d(v,wk)). Then

∏
wi∈S d(u,wi) =∏

wi∈S d(v,wi). Therefore d∗S (u) = d∗S (v), which is a contradiction to the fact that S is a multiplicative
distance-locating set of G. □

Corollary 1. If G is a connected graph such that loc∗d(G) exists, then loc(G) ≤ loc∗d(G).

The following Theorem 1 shows that the path Pn is the only connected graph of order n with
loc∗d(G) = 1.
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Theorem 1. Let G be a connected graph of order n ≥ 2. Then loc∗d(G) = 1 if and only if G = Pn.

Proof. Let G = Pn : v1, v2, ..., vn be a path on n vertices. Since d(vi, v1) = i − 1 for 1 ≤ i ≤ n,
{v1} is a minimum multiplicative distance-locating set of Pn. Therefore, loc∗d(G) = 1. Conversely,
suppose loc∗d(G) = 1. Let S = {w} be a minimum multiplicative distance-locating set for G. Then
d∗S (v) = d(v,w) for each vertex v of G is a non-negative integer less than n. Since d∗S (v), v ∈ V(G) are
distinct, there exists a vertex u in G such that d(u,w) = n−1. Consequently the diameter of G is n−1.
Hence G = Pn. □

Proposition 2. No multiplicative distance-locating set in a connected graph G consists of two vertices
of G.

Proof. Suppose S = {u, v} is a multiplicative distance-locating set for G. Then d∗S (u) = d(u, v) = d∗S (v),
which is a contradiction. □

In the case of distance-locating set of a graph G, there is no distance-locating set with exactly three
vertices of G for any graph G. However, multiplicative distance-locating set of a graph may consists
of three vertices of G. For example, for the following graph G,

S = {v1, v2, v7} is a minimum multiplicative distance locating set and hence loc∗d(G) = 3. In order to
give examples of other graphs G for which loc∗d(G) does not exist, we now make some observations.
In a graph G, the nieghbourhood of a vertex v in G is the set N(v) consisting of all vertices which are
adjacent to v. The closed neighbourhood is N[v] = N(v) ∪ {v}

Proposition 3. If u and v are distinct vertices of a connected graph G such that either N(u) = N(v)
or N[u] = N[v], then every multiplicative distance-locating set of G contains exactly one of u and v.

Proof. Let u, v ∈ G and u , v. Suppose S is a multiplicative distance-locating set for G.
Case 1. Suppose N(u) = N(v).

If u, v ∈ S , then u and v are having the same distance apart from each vertex of G.
Therefore,d∗S (u) = d∗S (v) , which is a contradiction to the fact that S is a multiplicative distance-
locating set. Similar proof holds when u, v < S .
Case 2. Suppose N[u] = N[v].

The proof is similar to the case 1. □

Corollary 2. If G is a connected graph containing three distinct vertices u, v and w such that either
N(u) = N(v) = N(w) or N[u] = N[v] = N[w], then loc∗d(G) does not exist.

In a graph G, if degv = 1, then v is called an end-vertex.

Corollary 3. If G is a connected graph such that loc∗d(G) exists, then every vertex of G is adjacent to
at most two end-vertices.

The converse of Corollary 3 does not necessarily hold. For example, in the following graph G
every vertex of G is adjacent to at most two end vertices, but loc∗d(G) does not exist.
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We have verified this fact by considering all possible cases.

Corollary 4. If n ≥ 3, then loc∗d(Kn) and loc∗d(K1,n) do not exist.

Proof. Immediately follows from Corollaries 2 and 3. □

Next we show that the path P3 is the only connected graph G of diameter 2 such that loc∗d(G) exists.

Theorem 2. If G is a connected graph of diameter 2 for which loc∗d(G) exists, then G = P3.

Proof. Let S be a minimum multiplicative distance-locating set for G and let |S | = k. Suppose k = 1.
Since diameter of G is 2 and |S | = 1, by Theorem 1, G = P3. By Proposition 2, k , 2. Suppose k = 3.
Let S = {u, v,w}. Then d∗S (u) = d(u, v)×d(u,w), d∗S (v) = d(u, v)×d(v,w) and d∗S (w) = d(u,w)×d(v,w).
Since S is a multiplicative distance-locating set, d∗S (u) , d∗S (v) and hence d(u,w) , d(v,w). Since
diameter of G is 2, without loss of generality, we may assume that d(u,w) = 1, d(v,w) = 2. Then
d∗S (u) = d(u, v), d∗S (v) = 2d(u, v) and d∗S (w) = 2 Since G has diameter 2, either d(u, v) = 1 or
d(u, v) = 2. If d(u, v) = 1, then d∗S (v) = 2. Therefore, d∗S (v) = d∗S (w), which is a contradiction. If
d(u, v) = 2, then d∗S (u) = 2. Therefore, d∗S (u) = d∗S (w), which is a contradiction. Thus, S is not a
multiplicative distance-locating set for G. Hence assume that k ≥ 4. Let H = ⟨S ⟩ be the subgraph
of G induced by S . Since G has diameter 2, for each v ∈ V(H) = S , it follows that d∗S (v) is uniquely
determined by k − degH(v) vertices of S since dH(u, v) = 1 for the vertices u which are adjacent to
v. Since H is nontrivial and diameter of G is 2, H contains at least two vertices x and y such that
degH(x) = degH(y). Suppose degH(x) = degH(y) = a. Since G has diameter 2, d∗S (x) = 2k−a−1 and
d∗S (y) = 2k−a−1. Hence S is not a multiplicative distance-locating set for k ≥ 4. □

A graph G is a k-partite graph if V(G) can be partitioned into k subsets V1,V2, · · · ,Vk such that
uv is an edge of G if u and v are belong to different partite sets. If, in addition, every two vertices
in different partite sets are joined by an edge, then G is a complete k-partite graph. If |Vi| = ni for
1 ≤ i ≤ k, then we denote this complete k-partite graph by Kn1,n2,··· ,nk . The complete k-partite graphs
are aslo referred to as complete multiplartite graphs.

The following result provides another well-known class of graphs for which loc∗d(G) does not exist.

Corollary 5. If G is a complete multipartite graph of order at least 4 that is not complete, then loc∗d(G)
does not exist.

Now, we define a family of connected graph Pn ⋇Cm such that loc∗d(G) exists.

Definition 1. Let Pn be a path on n vertices and let Cm be a cycle on m vertices. The graph Pn ⋇ Cm

is obtained by identifying any two consecutive vertices of Cm with the (n − 2)th and (n − 1)th vertices
of Pn as shown in the following Figure 1,

Theorem 3. For n > 4, m ≥ 3, loc∗d(Pn ⋇Cm) ≤ 4.

Proof. Case 1. Suppose m is even, m = 2k. Let {v1, v2, . . . , vn, u1, u2, . . . , uk−1,w1,w2, . . .wk−1} be the
vertices of Pn ⋇Cm as shown in the above Figure 1.

Let S = {vn, vn−2, vn−3, vn−4} be a subset of the vertex set of Pn ⋇Cm. Then

d∗S (vi) = d(vi, vn) × d(vi, vn−2) × d(vi, vn−3) × d(vi, vn−4), for 1 ≤ i ≤ n − 5
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= (n − i)(n − i − 2)(n − i − 3)(n − i − 4).
d∗S (ui) = d(ui, vn) × d(ui, vn−2) × d(ui, vn−3) × d(ui, vn−4), for 1 ≤ i ≤ k − 1

= i(i + 1)(i + 2)2.

d∗S (wi) = d(wi, vn) × d(wi, vn−2) × d(wi, vn−3) × d(wi, vn−4), for 1 ≤ i ≤ k − 1
= (i + 1)2(i + 2)(i + 3).

d∗S (vn−4) = d(vn−4, vn) × d(vn−4, vn−2) × d(vn−4, vn−3) = 4 × 2 × 1 = 8.
d∗S (vn−3) = d(vn−3, vn) × d(vn−3, vn−2) × d(vn−3, vn−4) = 3 × 1 × 1 = 3.
d∗S (vn−2) = d(vn−2, vn) × d(vn−2, vn−3) × d(vn−2, vn−4) = 2 × 1 × 2 = 4.
d∗S (vn−1) = d(vn−1, vn) × d(vn−1, vn−2) × d(vn−1, vn−3) × d(vn−1, vn−4) = 1 × 1 × 2 × 3 = 6.

d∗S (vn) = d(vn, vn−2) × d(vn, vn−3) × d(vn, vn−4) = 2 × 3 × 4 = 24.

Certainly, d∗S (vi) , d∗S (v j) for each pair i, j of distinct integers 1 ≤ i, j ≤ n − 5 and d∗S (ui) , d∗S (u j)
and d∗S (wi) , d∗S (w j) for each pair i, j of distinct integers 1 ≤ i, j ≤ k − 1. Since min{d∗S (vi) : 1 ≤ i ≤
n − 5, n > 5} = 30 and max{d∗S (vi) : n − 4 ≤ i ≤ n} = 24, d∗S (vi) , d∗S (v j) for each pair i, j of distinct
integers 1 ≤ i, j ≤ n. The factors of d∗S (vi), d∗S (ui) and d∗S (wi) are: d∗S (vi) = x(x+1)(x+2)(x+4) where
x = n − i − 4, d∗S (ui) = y(y + 1)(y + 2)2 where y = i and d∗S (wi) = z2(z + 1)(z + 2) where z = i + 1.

We claim that d∗S (vi) , d∗S (u j) for every two integers 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1. First we discuss
when i varies from 1 to n−5 and j varies from 1 to k−1. If y < x−2 or y > x+4,then d∗S (vi) , d∗S (u j).
We consider the following cases:

1. Suppose d∗S (vi) = d∗S (u j). Then x(x + 1)(x + 2)(x + 4) = y(y + 1)(y + 2)2

(a) Suppose y = x − 2. Then x(x + 1)(x + 2)(x + 4) = (x − 2)(x − 1)x2. This implies (x + 1)(x +
2)(x + 4) = x(x − 1)(x − 2), which is a contradiction.

(b) Suppose y = x−1. Then x(x+1)(x+2)(x+4) = (x−1)x(x+1)2. This implies x2+6x+8 =
x2 − 1. Therefore, x = −3/2, which is a contradiction to the fact that x is a positive integer.

(c) Suppose y = x. Then x(x+ 1)(x+ 2)(x+ 4) = x(x+ 1)(x+ 2)2. This implies that 4=2, which
is a contradiction.

(d) Suppose y = x + 1. Then x(x + 1)(x + 2)(x + 4) = (x + 1)(x + 2)(x + 3)2. Hence x = −9/2,
which is a contradiction.

(e) Suppose y = x + 2. Then x(x + 1)(x + 2)(x + 4) = (x + 2)(x + 3)(x + 4)2. Thus, x = −2,
which is a contradiction.
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(f) Suppose y = x + 3. Then x(x + 1)(x + 2)(x + 4) = (x + 3)(x + 4)(x + 5)2. This implies
10x2 + 53x + 75 = 0. Since b2 − 4ac = −191 < 0, it has no real solution, which is a
contradiction.

(g) Suppose y = x + 4. Then x(x + 1)(x + 2)(x + 4) = (x + 4)(x + 5)(x + 6)2. This implies
14x2 + 94x + 180 = 0. Since b2 − 4ac = −1244 < 0, it has no real solution, which is a
contradiction.

Thus, d∗S (vi) , d∗S (u j) for every two integers 1 ≤ i ≤ n − 5, 1 ≤ j ≤ k − 1. Since max{d∗S (vi) :
n − 4 ≤ i ≤ n} = 24 and {d∗S (u j) : 1 ≤ j ≤ k − 1} = {18, 96, . . .}, d∗S (vi) , d∗S (u j) for every two
integers 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1. Next we claim that d∗S (vi) , d∗S (w j) for every two integers
1 ≤ i ≤ n, 1 ≤ j ≤ k − 1. First we discuss when i varies from 1 to n − 5 and j varies from 1
to k − 1. If z < x − 2 or z > x + 4, then x(x + 1)(x + 2)(x + 4) , z2(z + 1)(z + 2). Therefore,
d∗S (vi) , d∗S (w j).

2. Suppose d∗S (vi) = d∗S (w j). Then x(x+ 1)(x+ 2)(x+ 4) = z2(z+ 1)(z+ 2). If x− 2 ≤ z ≤ x+ 4, then
the proof is similar to the above case. Thus, d∗S (vi) , d∗S (w j) for every two integers 1 ≤ i ≤ n− 5,
1 ≤ j ≤ k − 1. Since max{d∗S (vi) : n − 4 ≤ i ≤ n} = 24 and min{d∗S (w j) : 1 ≤ j ≤ k − 1} = 48,
d∗S (vi) , d∗S (w j) for every two integers 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1. Next we claim that d∗S (ui) ,
d∗S (w j) for every two integers 1 ≤ i, j ≤ k − 1. If z < y − 3 or z > y + 2, then d∗S (ui) , d∗S (w j).

3. Suppose d∗S (ui) = d∗S (w j). Then y(y + 1)(y + 2)2 = z2(z + 1)(z + 2). If y − 3 ≤ z ≤ y + 2, then the
proof is similar to the first case. Thus, d∗S (ui) , d∗S (w j) for every two integers 1 ≤ i, j ≤ k − 1.
From the above three cases, d∗S (u) , d∗S (v) for any two pair of distinct vertices u, v of Pn ⋇ Cm.
Therefore, S is a multiplicative distance-locating set for Pn⋇Cm. Hence, loc∗d(Pn⋇Cm) ≤ 4 when
m is even.

Case 2. Suppose m is odd, m = 2k + 1.
Let {v1, v2, . . . , vn, u1, u2, . . . , uk−1,w1,w2, . . . ,wk−1,wk} be the vertices of Pn ⋇ Cm as shown in the

Figure 2.
Let S = {vn, vn−2, vn−3, vn−4} be a subset of the vertex set of Pn ⋇Cm. Then

d∗S (vi) = d(vi, vn) × d(vi, vn−2) × d(vi, vn−3) × (vi, vn−4), for 1 ≤ i ≤ n − 5
= (n − i)(n − i − 2)(n − i − 3)(n − i − 4).

d∗S (ui) = d(ui, vn) × d(ui, vn−2) × d(ui, vn−3) × d(ui, vn−4), for 1 ≤ i ≤ k − 1
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= i(i + 1)(i + 2)2.

d∗S (wi) = d(wi, vn) × d(wi, vn−2) × d(wi, vn−3) × d(wi, vn−4), for 1 ≤ i ≤ k − 1
= (i + 1)2(i + 2)(i + 3).

d∗S (wk) = d(wi, vn) × d(wi, vn−2) × d(wi, vn−3) × d(wi, vn−4) = k(k + 1)2(k + 2).
d∗S (vn−4) = d(vn−4, vn) × d(vn−4, vn−2) × d(vn−4, vn−3) = 4 × 2 × 1 = 8.
d∗S (vn−3) = d(vn−3, vn) × d(vn−3, vn−2) × d(vn−3, vn−4) = 3 × 1 × 1 = 3.
d∗S (vn−2) = d(vn−2, vn) × d(vn−2, vn−3) × d(vn−2, vn−4) = 2 × 1 × 2 = 4.
d∗S (vn−1) = d(vn−1, vn) × d(vn−1, vn−2) × d(vn−1, vn−3) × d(vn−1, vn−4) = 1 × 1 × 2 × 3 = 6.

d∗S (vn) = d(vn, vn−2) × d(vn, vn−3) × d(vn, vn−4) = 2 × 3 × 4 = 24.

By case 1, d∗S (u) , d∗S (v) for any two pair of distinct vertices u, v of Pn ⋇ Cm. Therefore, S is a
multiplicative distance-locating set for Pn ⋇ Cm. Thus, loc∗d(Pn ⋇ Cm) ≤ 4 for m is odd. Hence
loc∗d(Pn ⋇Cm) ≤ 4. □

Corollary 6. The multiplicative distance location number of Pn ⋇Cm is either 3 or 4.

Proof. Since Pn ⋇Cm is not a path, the proof follows from Theorem 1 and Proposition 2 □

Now we establish a lower bound for the multiplicative distance-location number of a connected
graph in terms of its order and diameter. Let G be a connected graph of order n. For a subset S of
V(G), define

D∗min(S ) = min{d∗S (v) : v ∈ V(G)},
D∗max(S ) = max{d∗S (v) : v ∈ V(G)}.

Observation 4. Let G be a connected graph of order n ≥ 2 and diameter d ≥ 2. If S is a multiplicative
distance-locating set for G with |S | = k, then n − 1 ≤ D∗max(S ) − D∗min(S ) ≤ dk.

Proof. Suppose S is a multiplicative distance-locating set for G. Then the numbers d∗S (v), v ∈ V(G)
are distinct. The set {d∗S (v) : v ∈ V(G)} contains n distinct numbers. Therefore,

D∗max(S ) − D∗min(S ) ≥ n − 1 . . . . (1)

Since S is a multiplicative distance-locating set, diamG = d and |S | = k, D∗min(S ) ≥ 0 and D∗max(S ) ≤
dk. Thus,

D∗max(S ) − D∗min(S ) ≤ dk . . . . (2)

Combining (1) and (2), we get, n − 1 ≤ D∗max(S ) − D∗min(S ) ≤ dk. □

Observation 5. If G is a connected graph of order n≥2 and diameter d≥2 for which loc∗d(G) exists,
then loc∗d(G) ≥

⌈
log(n−1)

logd

⌉
.

Proof. Let S be a multiplicative distance-locating set for G and let |S | = k. By Observation 4,
n − 1 ≤ D∗max(S ) − D∗min(S ) ≤ dk. Therefore, n − 1 ≤ dk. Thus loc∗d(G) ≥

⌈
log(n−1

logd

⌉
. □

3. The External Multiplicative Location Number of a graph

We shown in Section 2, for many graphs G, loc∗d(G) does not exist. However, there is a closely
related parameter that is defined for every graph. For a set S of vertices in a connected graph G, the
multiplicative distance of a vertex v with respect to S is defined by

d∗S (v) =
∏

x∈S ,x,v

d(v, x).
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If d∗S (u) , d∗S (v) for each pair u, v of distinct vertices of G − S , then S is called an external multiplica-
tive distance-locating set of G. The cardinality of a minimum external multiplicative distance-locating
set of G is called the external multiplicative location number of G. It is denoted by loc∗e(G).

Proposition 4. Every external multiplicative distance-locating set is a locating set.

Proof. Let S be an external multiplicative distance-locating set for G. Then the numbers d∗S (v), v ∈
V(G) − S are distinct. Let u, v be any two distinct vertices of G.

1. If u, v ∈ S , then CS (u) , CS (v).

2. Suppose u, v ∈ V(G) − S . If CS (u) = CS (v), then d∗S (u) = d∗S (v), which is a contradiction.
Therefore, CS (u) , CS (v).

3. Suppose u ∈ S and v ∈ V(G)− S . Then the locating code of the vertex u with respect to S, CS (u)
contains the zero vector. Since v ∈ V(G) − S , CS (v) does not contain the zero vector. Therefore,
CS (u) , CS (v). Thus, from the above three cases, S is a locating set.

□

Since the vertex set of G is an external multiplicative distance-locating set, loc∗e(G) exists for
every graph G. Since every multiplicative distance-locating set is an external multiplicative distance-
locating set and since every external multiplicative distance-locating set is a locating set, we have the
following.

Theorem 6. For every connected graph G, loc(G) ≤ loc∗e(G). Moreover, if G is a connected graph G
of order n ≥ 2 for which loc∗d(G) exists, then 1 ≤ loc(G) ≤ loc∗e(G) ≤ loc∗d(G).

In Theorem 1 the path Pn of order n ≥ 2 is the only connected graph with loc∗d(G) = 1. It is straight
forward to show that the path Pn is also the only connected graph of order n with loc∗e(G) = 1.

Theorem 7. Let G be a connected graph G of order n ≥ 2. Then loc∗e(G) = 1 if and only if G = Pn.

It is shown that the complete graph Kn of order n ≥ 2 is the only connected graph of order n with
loc(G) = n − 1, while loc∗d(Kn) does not exist by Corollary ??. Certainly loc∗e(Kn) = n − 1 for all n≥2
as well. On the other hand, Kn is not the only connected graph of order n with external multiplicative
location number n − 1.

Theorem 8. If G is an r−regular connected graph of order n and diameter 2, then loc∗e(G) = n − 1.

Proof. Suppose G is an r−regular connected graph of order n and diameter 2. Because of Theorem
7, it suffices to show that for each integer k with 2 ≤ k ≤ n − 2, there is no external multiplicative
distance-locating set of G consisting of k vertices. Assume to the contrary, that there is an external
multiplicative distance-locating set of order k in G. Let S = {w1,w2, . . . ,wk} be an external multi-
plicative distance-locating set for G, where 2 ≤ k ≤ n − 2. Let V(G) − S = {v1, v2, . . . , vn−k}. For each
vi ∈ V(G) − S , where 1 ≤ i ≤ n − k, let si be the number of vertices of S that are adjacent to vi, and
let ti be the number of vertices of S that are not adjacent to vi. Thus, si + ti = k, 0 ≤ si ≤ min{r, k},
and 0 ≤ ti ≤ min{n − 1 − r, k}, for all i with 1 ≤ i ≤ n − k. Since diamG = 2, d∗S (vi) = 2ti for
all i with 1 ≤ i ≤ n − k. Since S is an external multiplicative distance-locating set for G, all n − k
numbers d∗S (vi) are distinct. Therefore, ti , t j. Since si + ti = k, all n − k numbers si are distinct and
all n − k numbers ti are distinct. Let H = ⟨V(G) − S ⟩ be the subgraph induced by V(G) − S . Then
degH(vi) = r − si for all i with 1 ≤ i ≤ n − k. Since the n − k numbers si are distinct, degH(vi) are
distinct, 1 ≤ i ≤ n − k. Therefore, no two vertices of H have the same degree, which is impossible.
Hence loc∗e(G) = n − 1. □

As an immediate consequence of Theorem 8 we obtain the external location number of the Petersen
graph.
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Corollary 7. The Petersen graph has external location number 9.

Next we determine the external location number of the complete bipartite graphs.

Theorem 9. For integers r, s ≥ 1 with r + s ≥ 4,

loc∗e(Kr,s) =
{

r + s − 2 if r , s,
r + s − 1 if r = s.

Proof. Assume that r ≤ s. Let V1 = {u1, u2, . . . , ur} and V2 = {v1, v2, . . . , vs} be the partite sets of
Kr,s. If r = s, then by Theorem 8 loc∗e(Kr,s) = r + s − 1. So we may assume that r < s. Every
external multiplicative distance-locating set of Kr,s contains at least r − 1 vertices from V1 and at
least s − 1 vertices from V2. Thus, loc∗e(Kr,s) ≥ r + s − 2. Let W = (V1 − {ur}) ∪ (V2 − {vs}). Then
d∗W(ur) = 2(r−1) and d∗W(vs) = 2(s−1). Suppose d∗W(ur) = d∗W(vs). Then r = s, which is a contradiction.
Therefore, d∗W(ur) , d∗W(vs). Thus, W is an external multiplicative distance-locating set for Kr,s.
Since loc∗e(Kr,s) ≥ r + s − 2, W is the minimum external multiplicative distance-locating set for Kr,s.
Therefore, loc∗e(Kr,s) = r + s − 2. □

4. The Magic Location Number of a graph

Let G be a connected graph with vertex set V(G). Let S be a subset of V(G).We define the distance
of a vertex v with respect to S by

d∗S (v) =
∑

x∈S ,x,v

d(v, x).

If dS (u) = dS (v) for each pair u, v of distinct vertices of G − S , then S is called a magic locating set
of G. The cardinality of a minimum magic locating set of G is called the magic location number of
G. It is denoted by locM(G). Every distance-locating set is not a magic locating set and every external
distance-locating set is not a magic locating set.

The following Theorem 10 characterizes graph G with locM(G) = 1.

Theorem 10. Let G be a connected graph of order n ≥ 2. Then locM(G) = 1 if and only if G contains
a vertex of degree n − 1.

Proof. Suppose locM(G) = 1. Let S = {w} be a minimum magic locating set for G. Then d(u,w) =
d(v,w) for each pair u, v of distinct vertices of V(G) − S . Assume that d(u,w) = l > 1 for some
u ∈ V(G) − S , where 2 ≤ l ≤ n − 1. Then there exists a path P : u = u0, u1, u2, . . . , ul−1, ul = w
in G. Therefore, d(u,w) = l and d(ul−1,w) = 1, which is a contradiction. Thus, d(u,w) = 1 for all
u ∈ V(G) − S . Hence, w is adjacent to all the vertices of G − S . Therefore, deg(w) = n − 1.

Conversely, assume that G contains a vertex of degree n − 1. Let w be a vertex of G such that
deg(w) = n − 1. Let S = {w}. Then dS (u) = 1 for all u ∈ V(G) − S . Therefore, S is a minimum magic
locating set for G. Hence, locM(G) = 1. □

Corollary 8. The magic location number of the graphs Kn,K1,n,Wn, Fn is 1.

In Theorem 11 and Theorem 12 we determine the magic location number of an even cycle and the
complete bipartite graphs.

Theorem 11. If Cn is an even cycle, then locM(Cn) = 2.

Proof. Let Cn : v1, v2, . . . , vk, . . . , v2k be an even cycle. Let S = {vk, v2k} be a subset of V(Cn). Then
dS (vi) = k for 1 ≤ i < k and dS (vi) = k for k < i < 2k. Hence S is a magic locating set for Cn.
Therefore, locM(Cn) ≤ 2. By Theorem 10 locM(Cn) = 2. □

Theorem 12. For m, n ≥ 2, locM(Km,n) = 2.
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Proof. Let G be a complete bipartite graph with vertex set V = V1 ∪ V2 where V1 = {v1, v2, . . . , vm}

and V2 = {u1, u2, . . . , un}. Let S = {v1, u1} be a subset of V(G). Then dS (vi) = 3 for 1 ≤ i ≤ m and
dS (vi) = 3 for 1 ≤ i ≤ n. Hence S is a magic locating set for G. Therefore, locM(Km,n) ≤ 2. By
Theorem 10 locM(Km,n) = 2. □

Theorem 13 shows that the magic location number of a path Pn of order n ≥ 2 is less than or equal
to n − 2.

Theorem 13. If Pn is a path on n vertices, then locM(Pn) ≤ n − 2.

Proof. Let Pn : v1, v2, . . . , vk, . . . , vn be a path on n vertices. Let S = {v2, v3, . . . , vn−1} be a subset of

the vertex set of Pn. Then dS (v1) = 1+2+ . . .+ (n−2) =
(n − 2)(n − 1)

2
and dS (vn) = (n−2)+ (n−3)+

. . . + 2 + 1 =
(n − 2)(n − 1)

2
. Thus, S is a magic locating set for Pn. Therefore, locM(Pn) ≤ n − 2. □

5. Conclusion

We have defined some new concepts Multiplicative Distance-locating set, multiplicative distance
location number, External Multiplicative location number and magic location number of graphs. We
have discussed the existence or non-existence of these numbers for some well known classes of con-
nected graphs. For future study we would like to propose the following open problems.

1. If G is a connected graph of diameter 3 for which loc∗d(G) exists, then what about G?

2. For what values of n and m, loc∗d(Pn ⋇Cm) = 4.

3. For what values of n and m, loc∗d(Pn ⋇Cm) = 3.

4. Does equality holds in Theorem 13. Based on our experience we believe that equality holds.
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