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1. Introduction

Harmonious graphs have been extensively studied since 1980, when Graham and Sloane [1] first
defined the notion.

A graph G = (V, E) with q edges is harmonious if there exists an injection f from the set of vertices
of G to the additive group Zq, f : V → Zq such that the induced edge labels w(e) of all edges, defined
as w(xy) = ( f (x) + f (y)) mod q, are all distinct.

That is, the induced function w : E → Zq is a bijection. When G is a tree, exactly one vertex
label is repeated. Graham and Sloane proved that almost all graphs are not harmonious. They also
proved that if a harmonious graph has an even number of edges q and the degree of every vertex is
divisible by 2k then q is divisible by 2k + 1. Liu and Zhang [2] generalized this condition and also
proved that there is no forbidden subgraph condition for harmonious graphs, that is, that every graph
is a subgraph of a harmonious graph.

In this paper, we study the concept of Γ-harmonious graphs by extending the notion of harmonious
graphs to any Abelian group Γ. We say that a graph G with q edges is Γ-harmonious for a given
Abelian group Γ of order q if there exists an injection f : V → Γ such that the induced labels w(e)
of all edges, defined as w(xy) = f (x) + f (y) (where the addition is performed in Γ), are again all
distinct. In other words, the induced function w : E → Γ is a bijection. This notion was introduced
by Montgomery, Pokrovskiy and Sudakov in [3], but their results were all dealing just with cyclic
groups. We are not aware of any results for non-cyclic groups whatsoever.

We will present several classes of cycles-related graphs that are Γ-harmonious for various Abelian
groups Γ. All groups in this paper are finite.
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2. Definitions and Notation

We will use A,H for subgroups, and the group operation will be the usual component-wise addi-
tion. A coset determined by a subgroup A of Γ and a coset representative α will then be denoted by
α + A. A cyclic subgroup of Zn generated by an element a will be denoted by ⟨a⟩n or simply ⟨a⟩ if no
confusion can arise.

First we repeat the formal definition of Γ-harmonious graphs.

Definition 1. Let G = (V, E) be a graph with q edges and Γ an Abelian group of order q. We say
that G is Γ-harmonious if there exists an injection f : V → Γ (called Γ-harmonious labeling) with the
property that the induced labels w(e) of all edges, defined as w(xy) = f (x) + f (y) (where the addition
is performed in Γ), are all distinct. In other words, the induced function w : E → Γ is a bijection.

When Γ = Zq, then a Zq-harmonious graph is simply called harmonious.

Definition 2. A graph G with q edges is strongly Γ-harmonious if it is Γ-harmonious for all Abelian
groups of order q.

Now we present definitions of the classes of graphs studied in the following sections.

Definition 3. The wheel graph Wn arises from the cycle Cn by adding a single vertex and joining it by
an edge to every vertex of the cycle.

The wheel graph is often described as Cn + K1.

Definition 4. The superwheel S Wk,n is a graph arising from the cycle Cn by adding k vertices not
adjacent to each other but adjacent to every vertex in Cn.

The number of edges in S Wk,n is (k + 1)n. It can be also described as Cn + kK1 or Cn + Kk. When
k = 1, S W1,n is just the wheel Wn.

Definition 5. The Dutch windmill graph Dm
n is a graph consisting of m copies of Cn with a common

vertex, called the central vertex. The n-cycles in Dm
n are also called blades.

The number of edges of Dm
n is nm. When m = 1, D1

n is a cycle; thus, in our examination, m > 1.
For n = 3, the graph Dm

3 is also called the friendship graph.

Definition 6. The generalized prism Ym,n is the Cartesian product of the path Pm and the cycle Cn.

The number of edges in Ym,n is (2m − 1)n. When m = 2, we obtain the usual prism. The cycle Cn

can also be seen as the degenerate generalized prism Y1,n.

Definition 7. The generalized closed web CWm,n is a graph arising from the generalized prism Ym,n

by adding a new vertex and joining it by an edge to every vertex of degree three of the top cycle of
Ym,n.

The number of edges in CWm,n is 2mn. The closed web CW2,n is sometimes also called the closed
helm (see below). The wheel Wn is CW1,n.

Definition 8. The generalized open web OWm,n is a graph arising from the generalized closed web
CWm,n by removing the edges of the bottom cycle Cn.

The number of edges in OWm,n is (2m− 1)n. The generalized open web OWm,n is sometimes called
just the generalized web. The open web OW2,n is better known as the helm graph. The usual web
graph is then OW3,n.
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3. Harmonious Groups

For the sake of completeness, we first state some well known group theory results, which we will
use later, starting with The Fundamental Theorem of Finite Abelian Groups. Although the reader is
probably familiar with the theorems, we include them primarily because of introducing notation that
will be used throughout the paper.

Theorem 1 (The Fundamental Theorem of Finite Abelian Groups). Let Γ be an Abelian group of or-
der n = ps1

1 ps2
2 . . . p

sk
k , where k ≥ 1, p1, p2, . . . , pk are primes, not necessarily distinct, and s1, s2, . . . , sk

positive integers.
Then Γ is isomorphic to Zps1

1
⊕ Zps2

2
⊕ · · · ⊕ Zp

sk
k

and if we moreover require that for every i =
1, 2, . . . , k − 1 we have pi ≤ pi+1 and if pi = pi+1, then si ≤ si+1, then the expression determined by the
k-tuple (ps1

1 , p
s2
2 , . . . , p

sk
k ) is unique and we call it the canonical form of the group Γ.

Sometimes it is useful to express an Abelian group in a different way.

Theorem 2. Let Γ = Zps1
1
⊕ Zps2

2
⊕ · · · ⊕ Zp

sk
k

of order n be as in Theorem 1. Then it can be written in a
unique way in nested form as Γ = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znt , where nt ≥ 2, n = n1n2 . . . nt, and ni+1 | ni for
i = 1, 2, . . . , t − 1.

Another well known theorem is the following.

Theorem 3. An Abelian group Γ = Zps1
1
⊕ Zps2

2
⊕ · · · ⊕ Zp

sk
k

is cyclic if and only if all primes pi,
i = 1, 2, . . . , k are distinct.

The following observation will be useful.

Observation 4. Let Γ = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znt of order n satisfy conclusion of Theorem 2 and H be its
cyclic subgroup of order m. Then m | n1 and Zn1 has a cyclic subgroup of order m.

Proof. Let Zqz1
1
⊕Zqz2

2
⊕ · · ·⊕Zqzr

r
be the canonical form of Zn1 . Then by Theorem 3 q1, q2, . . . , qr are all

distinct. Moreover, q1, q2, . . . , qr are all primes in the multiset {p1, p2, . . . , pk} defining the canonical
form of Γ. For if not, then there is pi which appears in the canonical form of some Zn j , j > 1 but not
in {q1, q2, . . . , qr}. But then n j does not divide n1, which contradicts Theorem 2. Therefore, we can
write H as Zqu1

1
⊕ Zqu2

2
⊕ · · · ⊕ Zqur

r
, where we allow each ui to be a non-negative integer.

For the same reason as above we must have ui ≤ zi for every i = 1, 2, . . . , r, since otherwise qui
i

appears in the canonical form of some Zn j , j > 1 and n j ∤ n1, a contradiction. □

Another well-known result will be useful.

Theorem 5. Let Γ be a finite Abelian group. Then

(1) if H is a subgroup of Γ, then the quotient group Γ/H is isomorphic to some subgroup K of Γ,
and conversely,

(2) if K is a subgroup of Γ, then there exists a subgroup H such that K ∩ H = {e} and the quotient
group Γ/H is isomorphic to K.

The main building block we will be using in our constructions is a theorem that follows as a direct
corollary form a group theory result proved by Beals, Gallian, Headly and Jungreis [4]. They studied
harmonious groups.

Definition 9. A finite group Γ of order n is harmonious if the elements can be ordered (g1, g2, . . . , gn)
so that the set of element products {g1g2, g2g3, . . . , gn−1gn, gng1} is equal to the set of all elements of Γ.
The ordered list (g1, g2, . . . , gn) is called the harmonious sequence of Γ.

They proved the following characterization of harmonious groups.
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Theorem 6 (Beals et al. [4]). If Γ is a finite, non-trivial Abelian group, then Γ is harmonious if and
only Γ has a non-cyclic or trivial Sylow 2-subgroup and Γ is not an elementary 2-group.

In other words, all non-trivial Abelian groups of odd order are harmonious, and a harmonious
group of even order must contain a subgroup isomorphic to Z2 ⊕ Z2 but cannot be equal to Z2 ⊕ Z2 ⊕

· · · ⊕ Z2. That is, it must contain a subgroup isomorphic to Z2 ⊕ Z2s where s ≥ 2.
An immediate consequence of Theorem 6 is a result on Γ-harmonious labeling of cycles, which

we state in the next section.

4. Known Results

The first result on cycle-related harmonious graphs was proved by Graham and Sloane [1]. Note
that “harmonious” here means “Zn-harmonious.”

Theorem 7 (Graham and Sloane [1]). The cycle Cn with n ≥ 3 is harmonious if and only if n is odd.

A more general theorem is a direct consequence of Theorem 6. Although it is technically speaking
a new result, as it was not formally stated and proved in [4], we state it here because we believe that
the authors were aware of it.

Theorem 8. The cycle Cn is Γ-harmonious if and only if Γ is of order n, and

1. n is odd, or

2. n is even and Γ has a subgroup isomorphic to Z2 ⊕ Z2s where s ≥ 2.

Proof. This follows directly from Theorem 6. Label the vertices consecutively with the elements of
Γ in their harmonious sequence order. □

Graham and Sloane [1] further proved the following result on wheel graphs.

Theorem 9 (Graham and Sloane [1]). All wheels Wn are harmonious.

We generalize their result in the Section 7. We prove that odd wheels W2k+1 are strongly Γ-
harmonious, and even wheels are Γ-harmonious for certain groups Γ.

Gallian [5] cites [6] which has the following two results on superwheel graphs.

Theorem 10 (Gnanajothi [6]). The superwheel graph S k,n is harmonious if n is odd and k = 2.

Theorem 11 (Gnanajothi [6]). The superwheel graph S k,n is not harmonious if n ≡ 2, 4, 6 mod 8
and k = 2.

We will show that all odd superwheel graphs are strongly Γ-harmonious and even superwheel
graphs are Γ-harmonious for some groups.

Graham and Sloane [1] also established the following result on Dutch windmill graphs.

Theorem 12 (Graham and Sloane [1]). The Dutch windmill graph Dm
3 is harmonious if and only if

m . 2 mod 4.

We will prove that when both m and n are odd, Dm
n is strongly Γ-harmonious. Moreover, we will

show for m odd and n even, Dm
n is Γ-harmonious for certain groups.

Also, Graham and Sloane [1] proved the following result on generalized prisms.

Theorem 13 (Graham and Sloane [1]). The generalized prism Ym,n is harmonious whenever n is odd
and m ≥ 2.

Later, Gallian, Prout and Winters [7] showed the following result on even prisms.
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Theorem 14 (Gallian et al. [7]). The prism Y2,n is harmonious except when n = 4.

Jungreis and Reid [8] showed the following results on type harmonious prisms. Y2m,4n and Y2m+1,4m

Theorem 15 (Jungreis and Reid [8]). The generalized prism Ym,n is harmonious if:

1. m = 2k and n = 4l except when (k, l) = (1, 1)

2. m = 2k + 1 and n = 4l

3. m = 2k and n = 4l + 2

4. n = 2l + 1

We prove results on generalized prisms showing Ym,n is Γ-harmonious for some Γ.
Seoud and Youssef [9] proved the following two results on open webs (or helm graphs) OW2,n and

closed webs (or closed helms) CW2,n.

Theorem 16 (Seoud and Youssef [9]). The open web OW2,n is harmonious for all n ≥ 3.

Theorem 17 (Seoud and Youssef [9]). The closed web CW2,n is harmonious for all odd n ≥ 3.

In [5], Gallian cites [6] which states the following result on open webs OW3,n.

Theorem 18 (Gnanajothi [6]). The open web OW3,n is harmonious when n is odd and n ≥ 3.

We will generalize results on OW(m, n) and CW(m, n) by showing that they are Γ-harmonious for
certain Γ.

5. Superwheels

The superwheel S Wk,n is a graph with a cycle of length Cn and has k vertices not adjacent to each
other but all adjacent to every vertex in Cn. The number of edges of S Wk,n is n(k + 1). When k = 1,
then S Wk,n is the wheel Wn.

Theorem 19. The superwheel S Wk,n is Γ-harmonious with Γ of order n(k+1) if there exists a subgroup
H of order n that satisfies conditions in Theorem 8.

Proof. Let v1, v2, . . . , vn be the vertices of the Cn in S Wk,n and u1, u2, . . . , uk be the the vertices in its
center. For 1 ≤ j ≤ k, let E j = {u jvi|vi ∈ V(Cn)}.

Assume H is a subgroup of order n that satisfies Theorem 8. Then we can find a Γ-harmonious
labeling of Cn with H. Let (h1, h2, . . . , hn) be a H-harmonious labeling of Cn, where for 1 ≤ i ≤ n, vi

is labeled with the element hi ∈ H. We can write Γ as the following disjoint union, Γ = H ∪ g1 + H ∪
g2 + H ∪ · · · ∪ gk + H for g1, g2, . . . , gk in G − H. For 1 ≤ j ≤ k, label the central vertex u j with g j.
Thus, for a fixed j, the edge u jvi in E j would be labeled with g j + hi, which is an element of g j + H.

Since for a fixed j, each g j + hi is distinct, there would be no repetition among the edge labels of
the edges in E j. Hence, the edges of Cn are labeled with elements of H and the edges of E j are labeled
with those of g j + H. Since the cosets are disjoint, there would be no repetition in the edge labels
across all edges of S Wk,n Thus, we have our Γ-harmonious labeling of S Wk,n. □

We illustrate the method by two examples.

Example 1. A Z10 ⊕ Z2 labeling of the superwheel S W3,5.

Example 2. A Z4 ⊕ Z2 ⊕ Z4 labeling of the superwheel S W3,8.
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(0,0) (2,0) (4,0) (6,0) (8,0)

(1,0) (1,1) (0,1)

Figure 1. Labeling of S W3,5 with Z10 ⊕ Z2

(0,0,0) (2,0,0) (1,0,0) (2,1,0) (3,0,0) (3,1,0) (1,1,0) (0,1,0)

(0,0,1) (0,0,2) (0,0,3)

Figure 2. Labeling of S W3,5 with Z4 ⊕ Z2 ⊕ Z4

6. Windmill Graphs

The Dutch windmill graph Dm
n is a graph consisting of m copies of Cn with a common vertex,

called the central vertex. The n-cycles in Dm
n are also called blades. Therefore, the number of edges

of Dm
n is nm. When m = 1, Dm

n is a cycle; thus, in our examination, m > 1.
We know that m | |Γ|. Therefore, there must be a subgroup H of order m and index n. Because Γ

is Abelian, H is normal. Therefore, K = Γ/H is a quotient group. Denote the coset representatives
of K by γ0 = 0, γ1, γ2, . . . , γn−1, where 0 is the identity element of Γ (and thus of H as well). Since
there are m copies of Cn, we can denote each Cn as C j where 0 ≤ j ≤ m − 1. Let u be the central
vertex. In each C j, we denote other vertices by v j

i for i = 1, 2, . . . , n − 1 such that the the edges in C j

are e j
0 = uv j

1, e
j
i = v j

i v
j
i+1 for i = 1, 2, . . . , n − 2, and e j

n−1 = v j
n−1u.

Before we start constructing the vertex labeling of Dm
n with Γ, it is convenient to prove the follow-

ing observation. We will show that there exists a valid labeling of C j with K. The coset representatives
of the elements of K in the vertex labeling of v j

i in the K-harmonious labeling of C j will be later used
in the construction of a valid labeling of Dm

n with Γ.

Observation 20. If n is odd then each C j has a K-harmonious labeling where u is labeled with H.

Proof. Since K is an Abelian group of order n, there exists a K-harmonious labeling of each C j.
Thus, we can find a K-harmonious labeling g of C j such that u is labeled with H and v j

i is labeled
with g(v j

i ) = γi + H for γi + H ∈ K = Γ/H, where γi < H. The induced edge label of edge e is
denoted by wg(e). Notice that while we are labeling the cycle with cosets, the labeling is well-defined
since they are elements of the group K. Notice that we label the cycles with the cosets; this labeling
is well-defined because they are elements of K, which is a group.

Let γ̃0 + H = γ1 + H and γ̃n−1 + H = γn−1 + H and for 1 ≤ i ≤ n − 2, γ̃i + H = γi + γi+1 + H. In
this scheme, w(e j

i ) = γ̃i + H.
□

Let us look at a specific example how we would use this lemma to construct a vertex labeling of
D3

5 with Γ = Z5 ⊕ Z3 that would induce a Γ-harmonious labeling. We realize that the group Z5 ⊕ Z3

is in fact isomorphic to Z15, but we are using this example to illustrate how the method works for a
group of type Za ⊕ Zb. It is independent on whether or not the numbers a and b are relatively prime.

Example 3. Γ-harmonious labeling of D3
5 with Γ = Z5 ⊕ Z3 � Z15.
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Here, we have, H = {0} ⊕ Z3 and K = {H, (1, 0) + H, (2, 0) + H, (3, 0) + H, (4, 0) + H}. In Figure
3 (a), we have a K-harmonious labeling for each C j, where u is labeled with H, and in each C j, v j

i is
labeled with (i, 0) + H.

In Figure 3(b), u is labeled with (0, 0). We have chosen a distinct element of {0} ⊕ Z3 for each C j

specifically, h1 = (0, 0) for C1, h2 = (0, 1) for C2, and h3 = (0, 2) for C3. We labeled the vertices
v1

i with (1, 0) + (0, 0), (2, 0) + (0, 0), (3, 0) + (0, 0), (4, 0) + (0, 0). Similarly, we labeled the vertices v2
i

with {i, 0) + (0, 1)} and vertices v3
i with {i, 0) + (0, 2)}. We can check that this construction produces a

Γ-harmonious labeling of D3
5.

Figure 3. (a) K-harmonious Labeling of Each C j in D3
5 where K = Γ/H, Γ = Z5 ⊕ Z3 and

H = {0} ⊕ Z3

(b) Γ-Harmonious Labeling of D3
5

Theorem 21. When n and m are odd, then Dm
n is Γ-harmonious for any Abelian group Γ of order mn.

Proof. We will use Observation 20 to construct a vertex labeling f of Dm
n with Γ that will induce a Γ-

harmonious labeling of Dm
n . For every n-cycle C j, choose a distinct element h j in H. This is possible

because |H| = m.
We start by labeling the central vertex u with 0, the identity element of Γ. If a vertex v j

i in some C j

is labeled with g(v j
i ) = γi +H in the K-harmonious labeling of C j constructed in Observation 20, then

we label it with f (v j
i ) = γi + h j, where h j is the chosen element of H for C j.

First we want to show that this construction produces a well-defined vertex labeling. Suppose that
for some v j1

i1
, v j2

i2
we have f (v j1

i1
) = f (v j2

i2
).

f (v j1
i1

) = γi1 + h j1 = γi2 + h j2 = f (v j2
i2

) and

(γi1 + h j1) + H = (γi2 + h j2) + H. (1)

Because h j1 , h j2 ∈ H, we know that

(γi1 + h j1) + H = γi1 + H (2)

and
(γi2 + h j2) + H = γi2 + H. (3)

Combining equations 1, 2 and 3, we obtain that

γi1 + H = γi2 + H.

But then
g(v j1

i1
) = γi1 + H = γi2 + H = g(v j2

i2
)
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and we have a contradiction, because in Observation 20 we have shown that g is injective. More-
over, if for some v j0

i0
we have f (v j0

i0
) = γi0 + h j0 = 0, then γi0 ∈ H, which again contradicts Observa-

tion 20. Therefore, this construction induces an injective vertex labeling.
Second, we must check if this construction induces a Γ-harmonious labeling of Dm

n . We have to
check whether there are any repetitions in the edge labels w f (e) within a blade and across any two
blades.

In C j when wg(e j
i ) = γ̃i + H, then w f (e

j
i ) = γ̃i + kh j,where k ∈ {1, 2}. In particular, for edges uv j

0

and v j
n−1 we have k = 1, otherwise, k = 2.

For a fixed j and 0 ≤ i ≤ n − 1, we claim that each w f (e
j
i ) = γ̃i + kh j is distinct. For 1 ≤ i ≤ n − 2,

each γ̃i + 2h j is distinct because each label γ̃i + H in C j was distinct. Moreover, γ̃0 + h j , γ̃n−1 + h j

for the same reason.
Now suppose that for a fixed j and some i, 1 ≤ i ≤ n − 2, we have γ̃0 + h j = γ̃i + 2h j. Then

γ̃0 = γ̃i + h j and
wg(e0) = γ̃0 + H = (γ̃i + h j) + H = γ̃i + H = wg(ei),

which is a contradiction by Observation 20. Similarly for 2 ≤ i ≤ n − 2,w f (e
j
n−1) = γ̃n−1 + h j ,

γ̃i + 2h j = w f (e
j
i ).

Finally suppose for 0 ≤ j1 < j2 ≤ m, and 0 ≤ i1 ≤ i2 ≤ n − 1 two edge labels w f (e
j1
i1

) and w f (e
j2
i2

)
across cycles C j1 and C j2 are the same.

Then γ̃i1 + k1h j1 = γ̃i2 + k2h j2 , where k1, k2 ∈ {1, 2}. Then similarly as above we have

γ̃i1 = γ̃i2 + k2h j2 − k1h j1 = γ̃i2 + h∗

for some h∗ ∈ H. It follows that

wg(ei1) = γ̃i1 + H = (γ̃i2 + h∗) + H = γ̃i2 + H = wg(ei2),

a contradiction again. Thus, each edge label is distinct and the proof is complete. □

When n is even, we have a weaker theorem.

Theorem 22. For n even and m odd, Dm
n is Γ-harmonious when |Γ| = mn, and Γ has a subgroup H or

order m such that K = Γ/H satisfies the conditions in Theorem 8.

Proof. Let m be odd and n be even. If Γ has a subgroup of order m such that K = Γ/H satisfies the
conditions in Theorem 8. Then, each C j is K-harmonious labeling where u is labeled with H. The
construction then is same as in Theorem 21. □

When m is even, this construction does not work. As discussed in Theorem 21, the label of edge e j
i

is γ̃i + kh j for k = {1, 2} and h j ∈ H. We know |H| = m. Thus in H, we can have two distinct elements
h j and h j′ such that 2h j = 2h j′ .

7. Generalized Prisms

For generalized prisms, our result is again more general for n odd. This is because even cycles
are not Γ-harmonious for all Γ of the proper order, while odd cycles are Γ-harmonious for all Abelian
groups Γ of order n (see Theorem 6 or 8).

Recall that the number of edges of the generalized prism Ym,n is (2m − 1)n. The main idea of our
construction is the following. Given a group Γ of order (2m − 1)n and a subgroup H of Γ of order
n satisfying assumptions of Theorem 8 and assume that there is an H-harmonious labeling of Cn.
Then we label the vertices of each Cn by elements of a coset β+H where β is a generator of the cyclic
quotient group Γ/H in a way corresponding to the original H-harmonious labeling. This way the edge
labels of every “layer”, that is, either edges of a particular cycle or all edges between two consecutive
cycles form a coset of Γ.

We illustrate the method in two examples.
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Example 4. We present a labeling of Y3,5 with Z5 ⊕ Z5, starting with a labeling of C5 with Z5.

0

1

2

3

4

Figure 4. Labeling of C5 with Z5

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

Figure 5. Labeling of C5 with Z5 ⊕ {0}

(0,0)

(1,0)

(2,0)

(3,0) (4,0)

(1,1)

(2,1)

(3,1)

(4,1)

(0,1)

(2,2)

(3,2)

(4,2)

(0,2)

(1,2)

Figure 6. Labeling of Y3,5 with Z5 ⊕ Z5

Example 5. We present a labeling of Y3,8 with Z4⊕Z2⊕Z5, starting with a labeling of C8 with Z4⊕Z2.

Theorem 23. Let n ≥ 3,m ≥ 2 and Γ be an Abelian group of order n(2m − 1). If Γ has a subgroup
H of order n that satisfies the assumptions of Theorem 8, and the quotient group Γ/H is cyclic, then
prism Ym,n � Pm2Cn admits a Γ-harmonious labeling.

Proof. We will use the following notation. Each n-cycle C j for j = 0, 1, . . . ,m − 1 will consist of
vertices x j

i with i = 1, 2, . . . , n and edges x j
i x j

i+1, where i = 1, 2, . . . , n and addition in the subscript is
performed modulo n. The paths Pi will consist of vertices x0

i , x
1
i+1, . . . , x

m−1
i+m−1 and edges x j

i x j+1
i+1 where

i = 1, 2, . . . , n, j = 0, 1, . . . ,m − 2 and addition in the subscript is again performed modulo n. Thus,
the path edges can be seen as “diagonal”, which is done for computational convenience.
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(0,0)

(2,0)

(1,0)

(2,1)

(3,0)

(3,1)

(1,1)

(0,1)

Figure 7. Labeling of C8 with Z4 ⊕ Z2

(0,0,0)

(2,0,0)(1,0,0)

(2,1,0)

(3,0,0)

(3,1,0) (1,1,0)

(0,1,0)

(2,0,1)

(1,0,1)
(2,1,1)

(3,0,1)

(3,1,1)

(1,1,1)
(0,1,1)

(0,0,1)

(1,0,2)

(2,1,2)

(3,0,2)

(3,1,2)

(1,1,2)

(0,1,2)

(0,0,2)

(2,0,2)

Figure 8. Labeling of Y3,8 with Z4 ⊕ Z2 ⊕ Z5

Let H be a subgroup Γ of order n that satisfies the assumptions of Theorem 8 and K = Γ/H be
cyclic of order 2m − 1 generated by a coset β + H.

Hence there exists an H-harmonious labeling g of Cn = x1, x2, . . . , xn. For each x j
i we now define

f (x j
i ) = g(xi) + jβ.

Then the label w(x j
i x j

i+1) of an edge x j
i x j

i+1 in cycle C j is defined as

w(x j
i x j

i+1) = f (x j
i ) + f (x j

i+1)
= (g(xi) + jβ) + (g(xi+1) + jβ)
= g(xi) + g(xi+1) + 2 jβ

= w(xixi+1) + 2 jβ.

Now the set of all edge labels in C j is

W j = {w(x j
i x j

i+1) | i = 1, 2, . . . , n}
= {w(xixi+1) + 2 jβ | i = 1, 2, . . . , n}.

Because g is an H-harmonious labeling, the set of all weights w(xixi+1) forms the subgroup H itself
and

W j = {w(xixi+1) + 2 jβ | i = 1, 2, . . . , n} = 2 jβ + H,

an even coset in Γ/H. Consequently, the labels of all edges in cycles C0,C1, . . . ,Cm form all m even
cosets H, 2β + H, . . . , 2(m − 1)β + H of the cyclic group Γ/H.
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For paths, the label of x j
i x j+1

i+1 is defined as

w(x j
i x j+1

i+1 ) = f (x j
i ) + f (x j+1

i+1 )
= (g(xi) + jβ) + (g(xi+1) + ( j + 1)β)
= g(xi) + g(xi+1) + (2 j + 1)β
= w(xixi+1) + (2 j + 1)β.

The set of labels of the path edges between cycles C j and C j+1 for j = 0, 1, . . . ,m − 2 is then

U j = {w(x j
i x j+1

i+1 ) | i = 1, 2, . . . , n}
= {w(xixi+1) + (2 j + 1)β | i = 1, 2, . . . , n}

the coset (2 j+ 1)β+H. Therefore, the weights of all path edges form all m− 1 odd cosets β+H, 3β+
H, . . . , (2m − 3)β + H of Γ/H.

Because we have j = 0, 1, . . . ,m − 1, we obtained 2m − 1 distinct cosets and their union forms the
group Γ. This completes the proof. □

For convenience, we express the above result in more explicit form, describing the group Γ in the
nested form.

Corollary 1. Let n ≥ 3 be odd, m ≥ 2 and Γ an Abelian group of order (2m − 1)n with a cyclic
subgroup K of order 2m − 1. Then the prism Ym,n � Cn2Pm admits a Γ-harmonious labeling.

Proof. By Theorem 5 part 2, there exists a subgroup H such that K ≈ Γ/H. Indeed, H is of order n
and n is odd. Thus, by Theorem 8 there exists a H-harmonious labeling of Cn. The result now follows
from Theorem 23. □

Corollary 2. Let n ≥ 4 be even, m ≥ 2 and Γ an Abelian group of order (2m − 1)n written in the
nested form as Γ = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znt where t ≥ 2, with a cyclic subgroup K of order 2m − 1. If

(1) n1 ≡ 0 (mod 4) and n2 is even, or
(2) n2 ≥ 4 is even,

then the prism Ym,n � Cn2Pm admits a Γ-harmonious labeling.

Proof. By Observation 4, 2m − 1 divides n1. By Theorem 5 part 2, there is a subgroup H such that
K ≈ Γ/H. Moreover, H can be written as H = Zn′1

⊕ Zn2 ⊕ · · · ⊕ Znt , where n′1 = n1/(2m − 1).
When n1 ≡ 0 (mod 4) and n2 is even, then also n′1 ≡ 0 (mod 4) and H contains a subgroup iso-

morphic to Z4 ⊕ Z2 and satisfies assumptions of Theorem 6. The result then follows from Theorems 8
and 23.

When n2 ≥ 4 is even, then n1 is even as well. And because n2 ≥ 4, H contains a subgroup
isomorphic to Z2 ⊕ Z2s for s ≥ 2. Therefore, the result follows again from Theorems 6, 8 and 23. □

8. Generalized Web Graphs

For computation convenience, we slightly change the notation here and number the cycles of the
generalized prism Ym,n as C1,C2, . . . ,Cm.

A generalized closed web is then a graph arising from Ym,n by adding a vertex x0
0 and joining it by

an edge to every vertex of the top cycle C1 of Ym,n. The remaining vertices will follow the notation
from Section 7.

The number of edges and order of Γ is now 2mn.

Theorem 24. Let n ≥ 3,m ≥ 2 and Γ be an Abelian group of order 2mn. If Γ has a subgroup H
of order n that satisfies assumptions of Theorem 8 and the quotient group Γ/H is cyclic, then the
generalized closed web CWm,n admits a Γ-harmonious labeling.
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Proof. We will use the following notation. The central vertex of degree n will be denoted by x0
0. Each

n-cycle C j for j = 1, 2, . . . ,m will consist of vertices x j
i with i = 1, 2, . . . , n and edges x j

i x j
i+1, where

i = 1, 2, . . . , n and addition in the subscript is performed modulo n. The paths Pi will consist of
vertices x0

0, x
1
i , x

2
i+1 . . . , x

m−1
i+m−2 and edges x0

0x1
i and x j

i+ j−1x j+1
i+ j where i = 1, 2, . . . , n, j = 1, 2, . . . ,m − 1

and addition in the subscript is again performed modulo n.
The number of edges in CWm,n is 2mn, which implies |Γ| = 2mn.
By our assumption, H satisfies conditions of Theorem 8 and therefore there exists an H-

harmonious labeling g of Cn = x1, x2, . . . , xn. We first label the central vertex by the identity element
of Γ, that is,

f (x0
0) = e.

The remaining vertices will be labeled as

f (x j
i ) = g(xi) + jβ.

Then the label w(x j
i x j

i+1) of an edge x j
i x j

i+1 in cycle C j is defined as

w(x j
i x j

i+1) = f (x j
i ) + f (x j

i+1)
= g(xi) + g(xi+1) + 2 jβ

= w(xixi+1) + 2 jβ

and the set of all edge labels in C j is

W j = {w(x j
i x j

i+1) | i = 1, 2, . . . , n}
= {w(xixi+1) + 2 jβ | i = 1, 2, . . . , n}
= 2 jβ + H,

an even coset in the quotient group Γ/H, because the set of weights of the edges in the cycle Cn forms
the subgroup H. This follows from our assumption that H allows an H-harmonious labeling g.

Notice that in the cycle Cm we have

Wm = 2mβ + H = H,

because Γ/H is cyclic of order 2m. Therefore, the labels of all edges in cycles C1,C2, . . . ,Cm form all
m even cosets H, 2β + H, . . . , (2m − 2)β + H of the cyclic group Γ/H.

For paths, the label of x j
i x j+1

i+1 is defined as

w(x j
i x j+1

i+1 ) = f (x j
i ) + f (x j+1

i+1 )
= g(xi) + g(xi+1) + (2 j + 1)β
= w(xixi+1) + (2 j + 1)β.

The set of labels of the edges incident with the central vertex is

U0 = {w(x0
0x1

i ) | i = 1, 2, . . . , n}
= { f (x0

0) + f (x1
i ) | i = 1, 2, . . . , n}

= {e + g(xi) + β | i = 1, 2, . . . , n}
= β + H,

because g is the H-harmonious labeling of the cycle Cn and therefore a bijection from the vertex set
of Cn to H.
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For the remaining path edges, the set of labels between cycles C j and C j+1 for j = 1, 2, . . . ,m − 1
is

U j = {w(x j
i x j+1

i+1 ) | i = 1, 2, . . . , n}
= {w(xixi+1) + (2 j + 1)β | i = 1, 2, . . . , n}
= (2 j + 1) + H.

Hence, the weights of all path edges form all m odd cosets β + H, 3β + H, . . . , (2m − 1)β + H of Γ/H.
We obtained 2m distinct cosets and their union forms the group Γ. This completes the proof. □

Example 6. A Z5 ⊕ Z6-harmonious labeling of the closed web CW3,5.

(0,1)

(1,1)

(2,1)

(3,1) (4,1)

(1,2)

(2,2)

(3,2)

(4,2)

(0,2)

(2,3)

(3,3)

(4,3)

(0,3)

(1,3)

(0,0)

Figure 9. Labeling of CW3,5 with Z5 ⊕ Z6

Example 7. A Z4 ⊕ Z2 ⊕ Z6-harmonious labeling of the closed web CW3,8.

(0,0,1)

(2,0,1)(1,0,1)

(2,1,1)

(3,0,1)

(3,1,1) (1,1,1)

(0,1,1)

(2,0,2)

(1,0,2)
(2,1,2)

(3,0,2)

(3,1,2)

(1,1,2)
(0,1,2)

(0,0,2)

(1,0,3)

(2,1,3)

(3,0,3)

(3,1,3)

(1,1,3)

(0,1,3)

(0,0,3)

(2,0,3)

(0,0,0)

Figure 10. Labeling of CW3,8 with Z4 ⊕ Z2 ⊕ Z6

Recall that Seoud and Youssef [9] proved that closed webs CW2,n are harmonious for all odd n. A
special case of the previous theorem generalizes their result as follows.

Corollary 3. The closed web CWm,n is harmonious for all odd n ≥ 3 and any m ≥ 2.

We again express the previous result of Theorem 24 in terms of the nested form of Γ.

Corollary 4. Let n ≥ 3 be odd, m ≥ 2 and Γ an Abelian group of order 2mn with a cyclic subgroup
of order 2m. Then the closed web CWm,n is Γ-harmonious.
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Proof. Similarly as in the proof of Corollary 1, this follows from Theorems 6, 8, and 24. □

For even n, the explicit expression is broken into several cases.

Corollary 5. Let n ≥ 4 be even, m ≥ 2 and Γ an Abelian group of order 2mn written in the nested
form as Γ = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znt where t ≥ 2, with a cyclic subgroup of order 2m. If

(1) n1 ≡ 0 (mod 8m) and n2 ≡ 0 (mod 2), or
(2) n1 ≡ 0 (mod 4m), n2 ≡ 0 (mod 2), n2 ≥ 4, or
(3) n1 ≡ 0 (mod 2m), n2 ≡ 0 (mod 4) and n3 ≡ 0 (mod 2), or
(4) n1 ≡ 0 (mod 2m), n3 ≡ 0 (mod 2) and nt > 1 is odd,

then the closed web CWm,n is Γ-harmonious.

Proof. We again denote n′1 = n1/(2m). By similar reasoning as in the proof of Corollary 2, Γ has a
subgroup H ≈ Zn′1

⊕ Zn2 ⊕ · · · ⊕ Znt .
In Case (1), because n1 ≡ 0 (mod 8m), n′1 ≡ 0 (mod 4) and H has a subgroup isomorphic to

Z4 ⊕ Z2. Indeed, Γ/H is cyclic of order 2m.
In Case (2), because n1 ≡ 0 (mod 4m), n′1 ≡ 0 (mod 2) and H has a subgroup isomorphic to

Z2 ⊕ Z2s with s ≥ 2 because n2 ≥ 4.
In Case (3), because n2 ≡ 0 (mod 4) and n3 ≡ 0 (mod 2), H has a subgroup isomorphic to Z4⊕Z2.
Finally, in Case (4), n2 is even because n3 is even. Because nt > 1 is odd, we must have n3 = 2s

where s ≥ nt ≥ 3, because nt divides n3.
Therefore, the proof again follows from Theorems 6, 8 and 24. □

A generalized open web OWm,n is the graph arising from the generalized closed web CWm,n by
removing the edges of the bottom n-cycle Cm. The number of edges and order of Γ is then (2m − 1)n.

The proof of the following theorem is just a slight modification of the proof of Theorem 24 and is
left to the reader.

Theorem 25. Let n ≥ 3,m ≥ 2 and Γ be an Abelian group of order (2m − 1)n. If Γ has a subgroup H
of order n that satisfies the assumptions of Theorem 8 and the quotient group Γ/H is cyclic, then the
generalized open web OWm,n admits a Γ-harmonious labeling.

Example 8. A Z5 ⊕ Z5-harmonious labeling of the open web OW3,5.

(0,1)

(1,1)

(2,1)

(3,1) (4,1)

(1,2)

(2,2)

(3,2)

(4,2)

(0,2)

(2,3)

(3,3)

(4,3)

(0,3)

(1,3)

(0,0)

Figure 11. Labeling of OW3,5 with Z5 ⊕ Z5

Example 9. A Z4 ⊕ Z2 ⊕ Z5-harmonious labeling of the open web OW3,5.
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(0,0,1)

(2,0,1)(1,0,1)

(2,1,1)

(3,0,1)

(3,1,1) (1,1,1)

(0,1,1)

(2,0,2)

(1,0,2)
(2,1,2)

(3,0,2)

(3,1,2)

(1,1,2)
(0,1,2)

(0,0,2)

(1,0,3)

(2,1,3)

(3,0,3)

(3,1,3)

(1,1,3)

(0,1,3)

(0,0,3)

(2,0,3)

(0,0,0)

Figure 12. Labeling of OW3,8 with Z4 ⊕ Z2 ⊕ Z5

Seoud and Youssef [9] and Gnanajothi [6] proved that open webs OWm,n are harmonious for all
odd n and m = 2 and 3, respectively. We state a generalization following directly from the previous
theorem as a corollary.

Corollary 6. The open web OWm,n is harmonious for all odd n and any m ≥ 2.

For convenience, we again express the result of Theorem 25 in a more explicit form, describing
the group Γ in the nested form.

Corollary 7. Let n ≥ 3 be odd, m ≥ 2 and Γ an Abelian group of order (2m − 1)n with a cyclic
subgroup of order 2m − 1. Then the open web OWm,n admits a Γ-harmonious labeling.

Proof. This follows directly from Theorems 6, 8 and 25. □

Corollary 8. Let n ≥ 4 be even, m ≥ 2 and Γ an Abelian group of order (2m − 1)n with a cyclic
subgroup of order 2m − 1 written in the nested form as Γ = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znt , where t ≥ 2. If

(1) n1 ≡ 0 (mod 4) and n2 is even, or
(2) n2 ≥ 4 is even,

then the web OWm,n admits a Γ-harmonious labeling.

The proofs are identical to the proofs of Corollaries 1 and 2, respectively.

9. Conclusion

We explored Γ-harmonious labeling, a generalization of a well-known notion of harmonious label-
ing, for several families of cycles-related graphs. In most cases, our results are only partial. Therefore,
we state some open problems here.

There are two main directions for further research. One is dealing with graphs based on even
cycles where the group Γ does not contain a subgroup isomorphic to Z4 ⊕ Z2.

Problem 1. Determine for what Abelian groups Γ not containing a subgroup of order n isomorphic
to Z2 ⊕ Z2s, s ≥ 2 there exists a Γ-harmonious labeling of generalized prisms Ym,n, open and closed
webs OWm,n, CWm,n and superwheels S Wk,n for even n.

For Dutch windmill graphs, we only covered the cases when the number of cycles is odd. When
the cycle length was even, we have an additional restriction on the quotient group. We propose the
following two problems on Dutch windmill graphs.
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Problem 2. Determine for what Abelian groups Γ there exists a Γ-harmonious labeling of Dutch
windmill graphs Dm

n for even m.

Problem 3. Determine for what Abelian groups Γ there exists a Γ-harmonious labeling of Dutch
windmill graphs Dm

n for odd m and even n when there does not exist a subgroup H of order m such
that K = Γ/H satisfies the conditions in Theorem 8.

The other direction concerns graphs Ym,n and OWm,n when Γ does not have a cyclic subgroup of
order 2m − 1 or CWm,n when Γ does not have a cyclic subgroup of order 2m.

Problem 4. Determine for what Abelian groups Γ not containing a cyclic subgroup

1. of order 2m − 1 there exists a Γ-harmonious labeling of generalized prisms Ym,n and open webs
OWm,n

2. of order 2m there exists a Γ-harmonious labeling of closed webs CWm,n.
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