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Abstract: For a graph G and for non-negative integers p, q and r, the triplet (p, q, r) is said to be an
admissible triplet, if 3p + 4q + 6r = |E(G)|. If G admits a decomposition into p cycles of length 3, q
cycles of length 4 and r cycles of length 6 for every admissible triplets (p, q, r), then we say that G has
a {Cp

3 ,C
q
4,C

r
6}-decomposition. In this paper, the necessary conditions for the existence of {Cp

3 ,C
q
4,C

r
6}-

decomposition of Kℓ,m,n(ℓ ≤ m ≤ n) are proved to be sufficient. This affirmatively answers the
problem raised in [Decomposing complete tripartite graphs into cycles of lengths 3 and 4, Discrete
Math. 197/198 (1999), 123-135]. As a corollary, we deduce the main results of [Decomposing
complete tripartite graphs into cycles of lengths 3 and 4, Discrete Math., 197/198, 123-135 (1999)]
and [Decompositions of complete tripartite graphs into cycles of lengths 3 and 6, Austral. J. Combin.,
73(1), 220-241 (2019)].

Keywords: Cycle decompositions, Latin square, Complete tripartite graphs

1. Introduction and preliminaries

A subset I of vertices of a graph G is independent if no two vertices in I are adjacent in G. The
cardinality of a largest independent set of G is denoted by α(G) and is called the vertex independence
number of G.

A subsetD of the vertices of a graph G is dominating if every vertex v of G is an element ofD or
is adjacent in G to an element of D. A dominating set D of G is minimal if no proper subset of D is
a dominating set in G. The cardinality of a largest minimal dominating set of G is denoted by Γ(G)
and is called the upper domination number of G.

The closed neighbourhood of a graph vertex v, denoted by N[v], is the subset of all vertices
of G that are adjacent to v in G, together with the vertex v itself. The closed neighbourhood of a
set of vertices S = {v1, . . . , vm} of G, denoted by N[S], is simply N[S] = ∪m

i=1N[vi]. The set of
private neighbours of a vertex v ∈ VG with respect to some subset S ⊂ VG is defined as PN(v,S) =
N[v]\N[S\{v}]. A subset X of the vertices of G is irredundant if every vertex v ∈ X has at least one
private neighbour in G with respect toX (that is, if PN(v,X) , ∅ for all v ∈ X). Finally, the cardinality
of a largest irredundant set of G is denoted by IR(G) and is called the irredundance number of G.
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It holds for any graph G that
α(G) ≤ Γ(G) ≤ IR(G), (1)

a result dating back to 1978 that is due to Cockayne et al. [1].
A bi-colouring of the edges of a graph, using the colours red and blue, is called a red-blue edge

colouring of the graph. If R and B are the subgraphs induced by respectively the red and the blue
edges of such a colouring, the colouring is denoted by the ordered pair (R, B), and R is referred to as
the red subgraph, while B is called the blue subgraph.

The following six classes of Ramsey numbers have previously been defined in terms of the graph
theoretic notions of independence, irredundance and domination.

The independent Ramsey number r = r(m, n) is the smallest natural number r such that in any red-
blue edge colouring (R, B) of the complete graph Kr of order r, it holds that α(B) ≥ m or α(R) ≥ n
(or both). This definition dates from 1930 and is due to Ramsey [2].

The irredundant Ramsey number s = s(m, n) is the smallest natural number s such that in any red-
blue edge colouring (R, B) of the complete graph Ks of order s, it holds that IR(B) ≥ m or
IR(R) ≥ n (or both). This definition dates from 1989 and is due to Brewster et al. [3].

The mixed irredundant Ramsey number t = t(m, n) is the smallest natural number t such that in any
red-blue edge colouring (R, B) of the complete graph Kt of order t, it holds that IR(B) ≥ m or
α(R) ≥ n (or both). This definition dates from 1990 and is due to Cockayne et al. [4].

The upper domination Ramsey number u = u(m, n) is the smallest natural number u such that in any
red-blue edge colouring (R, B) of the complete graph Ku of order u, it holds that Γ(B) ≥ m or
Γ(R) ≥ n (or both). This definition dates from the early 1990s and is due to Oellermann and
Shreve [5].

The mixed domination Ramsey number v = v(m, n) is the smallest natural number v such that in any
red-blue edge colouring (R, B) of the complete graph Kv of order v, it holds that Γ(B) ≥ m or
α(R) ≥ n (or both). This definition also dates from the early 1990s and is due to Oellermann and
Shreve [5].

The irredundant-domination Ramsey number w = w(m, n) is the smallest natural number w such
that in any red-blue edge colouring (R, B) of the complete graph Kw of order w, it holds that
IR(B) ≥ m or Γ(R) ≥ n (or both). This definition dates from 2013 is due to Burger and Van
Vuuren [6].

The arguments of the independent, irredundant and upper domination Ramsey numbers may be
interchanged without altering the values of these numbers, i.e. r(m, n) = r(n,m), s(m, n) = s(n,m) and
u(m, n) = u(n,m) for any integers m, n ≥ 2. In the case of the mixed Ramsey numbers t(m, n), v(m, n)
and w(m, n), however, the arguments m and n do not necessarily commute, i.e., t(m, n) , t(n,m),
v(m, n) , v(n,m) and w(m, n) , w(n,m) in general. Furthermore, these Ramsey numbers are related
to each other by the inequality chains

s(m, n) ≤ w(m, n) ≤
{

u(m, n)
t(m, n)

}
≤ v(m, n) ≤ r(m, n), (2)

which are easily shown to hold for all m, n ≥ 2 in view of (1). It is unknown in what way (if any) the
Ramsey numbers u(m, n) and t(m, n) are related.

Apart from the infinite classes of Ramsey numbers x(2, n) = x(n, 2) = n for all x ∈ {r, s, t, u, v,w}
and all n ≥ 2, only 45 members of the above-mentioned six classes of Ramsey numbers are known
exactly. These numbers are shown in Table 1. Our aim in this paper is to determine the two Ramsey
numbers s(3, 8) and w(3, 8).
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s(m, n) w(m, n) u(m, n) t(m, n) v(m, n) r(m, n)
s(3, 3) = 6a w(3, 3) = 6b u(3, 3) = 6c t(3, 3) = 6d v(3, 3) = 6e r(3, 3) = 6 f

s(3, 4) = 8a w(3, 4) = 8b u(3, 4) = 8c t(3, 4) = 9d v(3, 4) = 9e r(3, 4) = 9 f

s(3, 5) = 12a w(4, 3) = 8b u(3, 5) = 12c t(4, 3) = 8d v(4, 3) = 8b r(3, 5) = 14 f

s(3, 6) = 15g w(3, 5) = 12b u(3, 6) = 15c t(3, 5) = 12d v(3, 5) = 12e r(3, 6) = 18i

s(3, 7) = 18 j w(5, 3) = 12b u(4, 4) = 13c t(5, 4) = 13d v(5, 3) = 13d r(3, 7) = 23ℓ

s(3, 8) = 21 w(3, 6) = 15b t(3, 6) = 15h v(3, 6) = 15e r(3, 8) = 28m

s(4, 4) = 13k w(6, 3) = 15b t(6, 3) = 15b v(6, 3) = 15b r(3, 9) = 36n

w(3, 7) = 18o t(3, 7) = 18o v(4, 4) = 14b r(4, 4) = 18 f

w(3, 8) = 21 t(3, 8) = 22o r(4, 5) = 25p

w(4, 4) = 13b t(4, 4) = 14b

Table 1. Exactly known Ramsey numbers from the literature, as well as new numbers (in
bold). Due to aBrewster et al. [3], bBurger and Van Vuuren [6], cDzido and Zakrzewska
[7], dCockayne et al. [4], eHenning and Oellermann [8], f Greenwood and Gleason [9],
gBrewster et al. [10], hGrobler [11], iGraver and Yackel [12], jCockayne et al. [13],
kCockayne et al. [14], ℓKalbfleisch [15], mMcKay and Min [16], nGrinstead and Roberts
[17], oBurger et al. [18], pMcKay and Radziszowski [19].

Ramsey problems are known to be difficult, and it is accepted that the use of computers is inevitable
when solving these problems. Considering all possible edge colourings works for smaller Ramsey
problems, but in larger cases a more judicious approach is required. The algorithmic approach put
forward in this paper for solving Ramsey problems of medium size offers a technique not seen before,
which can be applied more widely than previous search tree approaches. It attempts to uncover a
red-blue graph colouring systematically by looking for edges that necessarily have to be either red
or blue graph, all the while making use of a set of rules/lemmas. It branches only into different
cases when it can find no edges that are forced to be one colour or the other at that point during
the search, and it eliminates cases that lead to contradictions. The chain of algorithmic deductions
can, in fact, be printed by the algorithm in the format of a human-readable proof. This proof (by
computer) can be shortened by using more sophisticated rules/lemmas. For this paper we chose to
keep the number of rules limited and the nature of the rules themselves simple so as to avoid long
and technical arguments. The algorithm is, however, generic in nature, in the sense that it can easily
incorporate additional, newly established rules. A significant advantage of this approach is that the
proof produced by the algorithm can be checked by another algorithm in a much shorter time than
would be required to generate the proof in the first place.

The paper is organised as follows. After reviewing a number of preliminary results in §2, we
present a recursive enumeration algorithm in §3 for determining bounds on any of the six types of
Ramsey numbers mentioned above. In §4, we then show how the algorithm may be applied to deter-
mine the values of the two Ramsey numbers s(3, 8) and w(3, 8). The numerical results returned by the
algorithm are presented and analysed in §5, after which the paper closes with suggestions for further
work in §6.

2. Preliminary results

Let x ∈ {r, s, t, u, v,w} be a Ramsey number. An x(m, n, p) colouring is a red-blue edge colouring
(R, B) of the complete graph Kp of order p which satisfies neither of the two sought-after chromatic
conditions of the Ramsey number x(m, n), hence showing that x(m, n) > p.

In [6], we computed complete sets of x(3, n, p) and x(m, 3, p) colourings for all x ∈ {s, t, u, v,w},
all m, n ∈ {3, 4, 5, 6} and all admissible values of p. In that paper, we also computed complete sets of
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(a) G1 (b) G2 (c) G3 (d) G4

Figure 1. (a)–(c) The red subgraphs of the complete set of t(3, 3, 4) colourings, and (d) the
red subgraph of the only t(3, 3, 5) colouring.

(a) G5 (b) G6 (c) G7 (d) G8 (e) G9

(f) G10 (g) G11 (h) G12 (i) G13

Figure 2. The red subgraphs of the complete set of t(3, 4, 5) colourings.

x(4, 4, p) colourings for all x ∈ {s, t, u, v,w} and all admissible values of p. The red subgraphs of the
complete sets of t(3, 3, p) colourings of orders p = 4 and p = 5 are, for example, shown in Figure
1. The red subgraphs of the complete sets of t(3, 4, p) colourings of orders 5, 6, 7 and 8 are similarly
shown in Figures 2, 3, 4 and 5, respectively.

The following characterisation dates from 1989 and is due to Brewster et al. [3].

Lemma 1 ( [3]). The blue subgraph of a red-blue edge colouring of a complete graph has an irredun-
dant set of cardinality 3 if and only if there is a 3-cycle in the red subgraph or a 6-cycle v1v2v3v4v5v6v1

in the red subgraph with the edges v1v4, v2v5 and v3v6 in the blue subgraph.

We call the second substructure in the above lemma a red 6-cycle with blue diagonals. The follow-
ing result relates x(m, n, p) colourings and y(m, n, p) colourings for different types x, y ∈ {r, s, t, u, v,w}
of Ramsey numbers.

Lemma 2 ( [6]). Let m, n > 2 be integers, and let x(m, n) and y(m, n) be two Ramsey numbers in (2)
satisfying x(m, n) ≤ y(m, n). Then any x(m, n, p) colouring is also a y(m, n, p) colouring.

The minimum degree of the subgraph R [B, resp.] in a x(m, n, p) colouring (R, B) is referred to as
the minimum red [blue, resp.] degree and is denoted by δ(R) [δ(B), resp.]. Similar definitions hold for
the maximum degrees of R and B, denoted by ∆(R) and ∆(B), respectively.

(a) G14 (b) G15 (c) G16 (d) G17 (e) G18 (f) G19 (g) G20

(h) G21 (i) G22 (j) G23 (k) G24 (l) G25 (m) G26 (n) G27

Figure 3. The red subgraphs of the complete set of t(3, 4, 6) colourings.
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(a) G28 (b) G29 (c) G30 (d) G31

(e) G32 (f) G33 (g) G34 (h) G35

Figure 4. The red subgraphs of the complete set of t(3, 4, 7) colourings.

(a) G36 (b) G37

Figure 5. The red subgraphs of the complete set of t(3, 4, 8) colourings.

Lemma 3 ( [20]). Let m, n > 2 be integers. Then, ∆(R) < s(m − 1, n) and ∆(B) < s(m, n − 1) in any
s(m, n, p) colouring (R, B).

The following corollary follows from Lemma 3.

Corollary 1. Let m, n ≥ 2 be integers and let x ∈ {r, s, t, u, v,w} be a Ramsey number. Then, ∆(R) <
x(m − 1, n) and ∆(B) < x(m, n − 1) in any x(m, n, p) colouring (R, B).

Finally, the following useful result immediately follows from Corollary 1.

Corollary 2. Let m, n ≥ 2 be integers and let x ∈ {r, s, t, u, v,w} be a Ramsey number. Then, δ(R) ≥
p − x(m, n − 1) and δ(B) ≥ p − x(m − 1, n) in any x(m, n, p) colouring (R, B).

3. Enumeration of x(m, n, p) colourings

We present a recursive algorithm for deciding whether or not a partial red-blue edge colouring of a
complete graph of order p can be completed to form an x(m, n, p) colouring, where x ∈ {r, s, t, u, v,w}
is a Ramsey number. A pseudo-code listing of the algorithm is presented as Algorithm 1.

The algorithm takes as global input parameter a natural number p and as local input variables a set
R of red edges, a set B of blue edges and a set U of uncoloured edges of a complete graph of order
p and essentially follows a branch-and-bound approach to yield the boolean variable output True if
the edges in U can be coloured red or blue in some combination to form an x(m, n, p) colouring, or
False otherwise.

The external function CheckUndecidedEdges(R,B,U) is repeatedly called (step 3) during the
repeat-until loop (steps 1–5). This function examines each edge in U in turn, determining whether
perhaps it must necessarily be coloured either red or blue in order to avoid violating a so-called
bounding list of properties of an x(m, n, p) colouring. An example of such a list of properties in the
context of the Ramsey number r(3, 4) is the bounding list in Table 2. If a colouring of any edge
e ∈ U is thus necessitated, the edge e is removed from U and inserted into R or B (whichever
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Algorithm 1 Ramsey(R,B,U)
Require: A graph of order p (global variable) as well as a set R of red edges, a set B of blue edges

and a setU of uncoloured edges of a complete graph of order p (local variables).
Ensure: True if the colouring induced by the red edges in R and the blue edges in B can be com-

pleted to an x(m, n, p) colouring, or False otherwise.
1: repeat
2: t ← |R| + |B|
3: (R,B,U, OK)← CheckUndecidedEdges(R,B,U)
4: if OK = False then return(False)
5: until |R| + |B| = t
6: ifU = ∅ then return(True)
7: e← any edge inU
8: if Ramsey(R ∪ {e},B,U\{e}) or Ramsey(R,B ∪ {e},U\{e}) then return(True)
9: else return(False)

is appropriate). In addition to this set update, the function CheckUndecidedEdges(R,B,U) also
updates the value of a global boolean variable OK, originally initialised as having the value True, to
the value False if it is determined that some edge e∗ ∈ U can be coloured neither red nor blue (as
a result of avoiding the contradiction of some pair of properties in the bounding list). This process
of calling the function CheckUndecidedEdges(R,B,U) is repeated until the colouring of no further
edges inU is necessitated by the bounding list.

Property Description
a No red triangle is formed
b No blue clique of order 4 is formed
c The red degree of each vertex is at most 3 by Corollary 1
d The blue degree of each vertex is at most 5 by Corollary 1

Table 2. Bounding list of properties used to illustrate that r(3, 4) = 9.

If all edges have either been coloured red or blue (U = ∅ in step 6), a valid x(m, n, p) colouring has
been found, in which case the boolean value True is returned. Otherwise, an edge e ∈ U is randomly
selected (step 7) and branched upon, attempting to colour it either red or blue by calling the algorithm
recursively with the updated input variable triples R ∪ {e},B,U\{e} or R,B ∪ {e},U\{e} (step 8). If
this cannot be achieved, then the boolean value False is returned (step 9).

For some value p and a fixed vertex v ∈ V(Kp), the set R may be initialised without loss of
generality in the context of seeking an x(m, n, p) colouring by taking p − x(m, n − 1) arbitrary edges
incident to v according to Corollary 2. The set B may similarly be initialised by taking any p− x(m−
1, n) of the remaining edges incident to v. This is illustrated in Figure 6(a) for v = 1 in the context
of an r(3, 4, 8) colouring, upon which Algorithm 1 returns the boolean value True, resulting in the
r(3, 4, 8) colouring shown in Figure 6(b), which shows that r(3, 4) > 8.

If, however, the same initialisation process is followed in the context of an r(3, 4, 9) colouring, as
shown in Figure 6(c), Algorithm 1 returns the boolean value False as a result of not being able to
compute an r(3, 4, 9) colouring, because r(3, 4) = 9. Although a conceptually simple algorithm, the
ranges of possible values of the smallest unknown Ramsey numbers are currently so large that direct
application of Algorithm 1 to determine these Ramsey numbers is not technologically possible. The
rapid growth in the number of branches and associated computing times required to determine the
Ramsey numbers r(3, n) for n ∈ {3, 4, 5, 6} via Algorithm 1 is, for example, illustrated in Table 3.

There is, however, a better way of initialising the input sets R and B to Algorithm 1 than the
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Figure 6. (a) Initialisation of the input sets R and B to Algorithm 1 in pursuit of an r(3, 4, 8)
colouring. (b) The r(3, 4, 8) colouring returned by Algorithm 1 with input sets R and B
initialised as in (a). (c) Initialisation of the input sets R and B to Algorithm 1 in pursuit of
an r(3, 4, 9) colouring. (d) A larger initialisation of the input sets R and B to Algorithm 1,
without loss of generality, in pursuit of an r(3, 4, 9) colouring.

Ramsey Best lower bound Best upper bound
number Value Branches Time Value Branches Time
r(3, 3) > 5 2 ≪ 1 ≤ 6 0 ≪ 1
r(3, 4) > 8 12 ≪ 1 ≤ 9 234 < 1
r(3, 5) > 13 1 034 < 1 ≤ 14 0 ≪ 1
r(3, 6) > 17 7 969 625 276 ≤ 18 6 944 615 486 416 233

Table 3. The number of branches and associated computing times required to determine
the Ramsey numbers r(3, n) for n ∈ {3, 4, 5, 6}. The times are given in seconds and were
measured on an Intel core of eight 3.4GHz, 7.7Gb RAM processors running in a 64 bit
Linux operating system.

initialisations shown in Figure 6 (a) and (c). Knowledge about smaller avoidance colourings may be
utilised in the initialisations. The subgraph induced in any eventual r(3, 4, 9) colouring by the vertex
subset {5, 6, 7, 8, 9} in Figure 6(c), for example, is necessarily an r(3, 3, 5) colouring, for if this were
not the case, then the subgraph induced in the r(3, 4, 9) colouring by the vertex subset {1, 5, 6, 7, 8, 9}
would contain either a red triangle or a clique of order 4 as subgraph, a contradiction. Similarly,
the subgraph induced in any eventual r(3, 4, 9) colouring by the vertex subset {2, 3, 4} in Figure 6(c)
is necessarily an r(2, 4, 3) colouring, for otherwise the subgraph induced in the r(3, 4, 9) colouring
by the vertex subset {1, 2, 3, 4} would contain a red triangle as subgraph, again a contradiction. The
input sets R and B to Algorithm 1 may therefore be initialised, without loss of generality, as shown
in Figure 6(d), because there is only one r(2, 4, 3) colouring (a blue triangle) and only one r(3, 3, 5)
colouring (consisting of a red five-cycle embedded within a blue five-cycle, as shown in Figure 1(d)).

When initialising the input sets R and B to Algorithm 1 as shown in Figure 6(d), the branching
process illustrated in Figure 7 results, which shows that r(3, 4) ≤ 9. In the figure, branching nodes are
denoted by circles (containing the edges that are branched upon in coordinate form), while bounding
nodes are denoted by rectangles (containing the reasons for contradictions preventing further growth
of the tree in the form i, j!xy which means that the edge i j can be coloured neither red because of
reason x in Table 2 nor blue because of reason y in Table 2). Square brackets are used to present lists
of edges whose colours are fixed by a branching decision, where a string of the form i, jRx means that
the edge i j is necessarily red so as to avoid contradicting property x in Table 2, and similarly for blue
edges. Angular brackets are used at the top of the tree to present a list of edge colours corresponding
to the initialisation of the input sets R andB to Algorithm 1, where i, jB means that edge i j is coloured
blue, and similarly for red edges.

Note that because of the extended initialisation in Figure 6(d), the tree in Figure 7 has merely eight
branches instead of the 234 branches that result according to Table 3 when the sparser initialisation in
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2,5

B

R

4,6!cb 4,7!cb

4,9!cb

4,9!cb

1,8B1,9B2,3B2,4B3,4B5,6B5,9B6,7B7,8B8,9B〉

[2,9Bc3,6Bc]

〈1,2R1,3R1,4R5,7R5,8R6,8R6,9R7,9R1,5B1,6B1,7B

BR

B

2,62,6

B

[2,8Ba2,9Ba3,6Bc
R

4,8!cb

2,7

4,6Bc2,7Rd3,7Bc]

[2,8Rd2,9Rd3,8Bc
3,9Bc4,8Bc]

[2,9Rd3,9Bc]

[2,9Ba3,7Bc4,7Bc2,8Rd3,8Bc]

[2,7Ba2,8Ba
3,5Bc4,5Bc]

R

Figure 7. The branch-and-bound process followed by Algorithm 1 to show that r(3, 4) ≤ 9.

Figure 6(c) is used. But even with the denser initialisation procedure described above, which utilises
information about smaller avoidance colourings, the rapid growth in the number of branches and
associated computing times required by Algorithm 1 places the computation of most Ramsey numbers
of the form r(3, n) for n > 6 out of the current reach of computing technology. It is, nevertheless,
possible to apply the algorithm judiciously in order to determine some of these Ramsey number
values, as we show in the next sections.

4. Enumeration of t(3, 8, 21) colourings

We denote the subgraph of the blue [red, resp.] subgraph of a t(m, n, p)-colouring induced by some
set A ⊆ V(Kp) by ⟨A⟩blue [⟨A⟩red, resp.]. Let Di(v) [D>i(v) or D≥i(v), resp.] be the set of vertices at
distance i ∈ N [at a distance greater than i or at a distance at least i, resp.] from some specified vertex
v in the red subgraph of a t(3, n, p)-colouring. Since we avoid an irredundant set of cardinality 3 in
the blue subgraph, we have the following useful result, adapted from [20].

Lemma 4 ( [20]). Let v be any vertex of a t(3, n, p)-colouring.
(a) If xyz is a path in ⟨D>1(v)⟩red and x, z ∈ D2(v), then x and z are joined by red edges to a common

vertex in D1(v).
(b) If A ⊆ D>1(v) contains at most one vertex of D>2(v), then ⟨A⟩red is bipartite.

The following generalisation of the result in Lemma 4(a) is useful.

Corollary 3. Let K1,k be a star in ⟨D≥2(ξ)⟩red with centre in D≥2(ξ) and endpoints in D2(ξ). Then all
the endpoints of this star have a common neighbour in D1(ξ).

Proof. By induction on the number of endpoints of the star. The result of Lemma 4(a) serves as the
base case for the induction. Suppose, as induction hypothesis, that all the endpoints in D2(ξ) of any
red star K1,k with centre in D≥2(ξ) have a common neighbour in D1(ξ). We show by contradiction that
all the endpoints in D2(ξ) of any red star K1,k+1 with centre in D≥2(ξ) have a common neighbour in
D1(ξ). Let S be the set of endpoints of such a star with centre w, and let t1 and t2 be two vertices in
S . Suppose, to the contrary, that this star does not have a common neighbour in D1(ξ). Let S 1 and
S 2 be subsets of cardinality k of S such that S = S 1 ∪ {t2} = S 2 ∪ {t1}, as shown in Figure 8. Then
it follows by the induction hypothesis that all vertices in S 1 have a common neighbour in D1(ξ), and
similarly for the vertices in S 2. Let these common neighbours be c1 and c2, respectively. Then the
edges c1t2 and c2t1 must both be blue (since the vertices in S do not all have a common neighbour in
D1(ξ)). But then ξc1t1wt2c2ξ is a red six-cycle with blue diagonals ξw, c1t2 and c2t1 — contradicting
Lemma 1. □

It follows from [18, Figure 4.1] that t(3, 8, 21) colourings exist. These colourings have, however,
not yet been enumerated. Let Ξ and Ξ be respectively the red and blue subgraphs of a t(3, 8, 21)
colouring, and denote the minimum and maximum degrees of Ξ by δ(Ξ) and ∆(Ξ), respectively.
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ξ

D1(ξ) D2(ξ) D≥3(ξ)

c2

c1
S2

t1
· · ·S1 t2

w

Figure 8. The neighbours of the endpoints of a star in D2(ξ).

Suppose ξ is a vertex of red degree ∆(Ξ) in this colouring. Then the colourings in Figures 2–5 are
relevant in the context of the t(3, 8, 21) colouring (Ξ,Ξ) as a result of the following observation.

Observation 1. The colouring induced in (Ξ,Ξ) by the vertices in D≥3(ξ) is a t(3, 8 − ∆(Ξ), 20 −
|D1(ξ) ∪ D2(ξ)|) colouring.

The subgraph Ξ also has the following properties.

Lemma 5 ( [18], Lemmas 5–6). D1(ξ) is an independent set of Ξ, ∆(Ξ) ≤ 5, |D2(ξ)| ≤ 11 and
|D>2(ξ)| < t(3, 8 − ∆(Ξ)).

By Corollary 2, we therefore have the bounds 3 ≤ δ(Ξ) ≤ ∆(Ξ) ≤ 5. Note, however, that ∆(Ξ) , 3,
for otherwise we would have a cubic graph Ξ of odd order. Therefore,

4 ≤ ∆(Ξ) ≤ 5. (3)

The subgraph ⟨D2(ξ)⟩red of Ξ is bipartite by Lemma 4(b). Suppose ⟨D2(ξ)⟩red contains c components
and denote the bipartitions of these components by (Xi,Yi) for all i = 1, . . . , c. We call a component
of the form (Xi,Yi) an (|Xi|, |Yi|) component, and we assume, without loss of generality, that |Xi| ≥ |Yi|

for all i = 1, . . . , c. Define X = ∪c
i=1Xi and Y = ∪c

i=1Yi. Then |X| ≥ |Y |.

4.1. Four-step enumeration process

Our approach toward enumerating t(3, 8, 21) colourings consists of the following four steps:

Step 1. For each possible pair (i, j) satisfying 0 ≤ j ≤ i ≤ 6, we determine all non-isomorphic (i, j)
components in D2(ξ). That is, connected, bipartite subgraphs with partite sets of cardinalities i
and j satisfying the above inequality chain.

Step 2. We consider each combination of values for the triple |X|, |Y |,∆(Ξ) satisfying the inequalities
in Lemma 5 and in (3). These combinations are listed as the eleven subcases in Table 4 where,
of course, ∆(Ξ) = |D1(ξ)|. In each subcase of the table, we insert red edges in D2(ξ) according
to all permissable combinations of (i, j) component combinations determined in Step 1.

Step 3. For each of the red subgraphs on D2(ξ) in Step 2 above, we consider all non-isomorphic
ways in which to join vertices in D1(ξ) to vertices in D2(ξ) by means of red edges, satisfying
the requirements of Corollary 3. The number of these non-isomorphic red-edge connections
between D1(ξ) and D2(ξ) is given by a Stirling number of the second kind*. These cases are
pruned by ensuring that the properties in Table 5 are satisfied.

*The Stirling number S (a, b) of the second kind counts the number of distinct ways of distributing a distinguishable objects among
b indistinguishable containers. In the above context of red-edge connections between D1(ξ) and D2(ξ), the objects represent the
endpoints of a Corollary 3 star in D2(ξ) and the containers represent the vertices of D1(ξ).
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Subcase |D0(ξ)| |D1(ξ)| |D2(ξ)| |X| |Y | |D>2(ξ)| Reference
I 1 4 11 6 5 5 [21, Table 7]

IIa 1 4 10 6 4 6 [21, Table 8]
IIb 1 4 10 5 5 6 [21, Table 9]
IIIa 1 4 9 6 3 7 [21, Table 10]
IIIb 1 4 9 5 4 7 [21, Table 11]
IVa 1 4 8 6 2 8 [21, Table 12]
IVb 1 4 8 5 3 8 Table 7
IVc 1 4 8 4 4 8 [21, Table 14]
V 1 5 11 6 5 4 [21, Table 15]

VIa 1 5 10 6 4 5 [21, Table 16]
VIb 1 5 10 5 5 5 [21, Table 17]

Table 4. Subcases considered in Step 2 of our t(3, 8, 21) colouring enumeration procedure.

Step 4. For each graph found in Step 3 above, and for each permissible avoidance graph on D3(ξ)
(that is, for each t(3, 4, p) colouring in Figures 2–5 in the case where ∆(Ξ) = 4, or for each
t(3, 3, p) colouring in Figure 1 in the case where ∆(Ξ) = 5), we employ our recursive branching
algorithm of §3 to decide the colours of the remaining edges joining vertices in D1(ξ) to D2(ξ)
as well as edges joining vertices in D2(ξ) to D3(ξ), as illustrated in Figure 9. For the branching
process we use the bounding properties in Table 6.

Property Description
e No red triangle is formed; see Lemma 1
f No red 6-cycle with blue diagonals is formed; see Lemma 1
g The red degree of each vertex is at most ∆(Ξ); see (3)
h Every vertex in D2(ξ) is joined by a red edge to some vertex in D1(ξ)

Table 5. Pruning rules applied to the Stirling edges of Step 3.

D≥3(ξ)D2(ξ)

ξ

D1(ξ)

chingBran

(Step 4)

chingBran

(Step 4)

(Step 3)

X

Y

(Steps 1 & 2)
At most 11 vertices

Bipartite according
to Hattingh (1990)

At most

· 8 (∆(Ξ) = 4)

vertices

· 5 (∆(Ξ) = 5)

Figure 9. Edges branched upon in Step 4 of our t(3, 8, 21) colouring enumeration procedure.

It is possible to rule out certain types of components in ⟨D2(ξ)⟩red. We start, however, by noting
that in order to avoid a clique of order 8 in ⟨{ξ} ∪ X ∪ D>3(ξ)⟩blue, the following result holds.

Observation 2. If |X| = 6, then D>3(ξ) = ∅.

We also have the following restriction on small components of ⟨D2(ξ)⟩red.

Lemma 6. If |X| = 6, |Y | = 5 and ⟨D2(ξ)⟩red has exactly one (1, 0) component, then ⟨D2(ξ)⟩red is not a
subgraph of Ξ.
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Property Description
i No red triangle is formed; see Lemma 1
j No red 6-cycle with blue diagonals is formed; see Lemma 1
k The red degree of each vertex is at most ∆(Ξ); see (3)
l The endpoints in D2(ξ) of a star in ⟨D≥2(ξ)⟩red with centre in D≥2(ξ)

all have a common neighbour in D1(v); see Corollary 3
m No odd red cycle is formed; see Lemma 4(b)
n No blue complete graph of order 7 is formed in D≥2(ξ)

Table 6. Bounding list of properties used for the colouring of edges between vertices in
D1(ξ) and vertices in D2(ξ) as well as between vertices in D2(ξ) and vertices in D>2(ξ) (in
Step 4).

Proof. By contradiction. Suppose, to the contrary, that |X| = 6 and that ⟨D2(ξ)⟩red has exactly one
(1, 0) component in Ξ. Then any vertex v ∈ D3(ξ) is joined to the (1, 0) component by a red edge,
for otherwise ⟨{ξ, v} ∪ D2(ξ)⟩blue contains a clique of order 8. The subgraph ⟨D3(ξ)⟩red is therefore
edgeless (so as to avoid triangles in ⟨D≥2(ξ)⟩red). But then ⟨D1(ξ) ∪ D3(ξ)⟩blue contains a clique of
order 9 (and hence of order 8), a contradiction. □

We similarly have the following restriction on large components of ⟨D2(ξ)⟩red.

Lemma 7. ⟨D2(ξ)⟩red is not a (6, 5) component.

Proof. By contradiction. Suppose, to the contrary, that ⟨D2(ξ)⟩red is a (6, 5) component. Since |X| = 6,
it follows from Observation 2 that D>3(ξ) = ∅. Every vertex v ∈ D3(ξ) is therefore joined to X by
a red edge, for otherwise ⟨{ξ, v} ∪ X⟩blue contains a clique of order 8. Hence all edges from D3(ξ) to
Y in (Ξ,Ξ) are blue (so as to avoid odd cycles in ⟨D≥2(ξ)⟩red). But then ⟨{ξ, v,w} ∪ Y⟩blue contains a
clique of order 8, by Lemma 4(b), since there is at least one blue edge vw for some pair v,w ∈ D3(ξ),
a contradiction. □

4.2. Results for the case ∆(Ξ) = 4

Suppose ∆(Ξ) = 4. Then |D2(ξ)| ≤ 11 and |D>2(ξ)| < t(3, 4) = 9 by Lemma 5. Furthermore,
⟨D>1(ξ)⟩red does not contain a (4, 1) component (because of the red degree restriction on each vertex).

The results obtained when applying our four-step enumeration process described above to subcases
I–IVc in Table 4 are presented in [21, Tables 7–14]. Table 7 is reproduced here as an example. In
these tables, Φ≤2 and Φ≥3 denote respectively the set of valid t(3, 8, 21) subcolourings on the vertices
in {ξ} ∪ D1(ξ) ∪ D2(ξ) and the set of valid t(3, 8, 21) subcolourings on the vertices in D≥3(ξ) found
upon completion of Steps 1–3 in our four-step enumeration process of §4.1. Furthermore, Φ denotes
the set of valid t(3, 8, 21) subcolourings involving only edges between vertices in D1(ξ) and D2(ξ),
and between vertices in D2(ξ) and D≥3(ξ), as a result of applying our branching algorithm of §3 (i.e.
Step 4 of our four-step enumeration process of §4.1). The times reported in the tables are measured
in seconds and represent the times required to carry out the four-step enumeration process on the
processor described in the caption of Table 3.

Consider, for example, Subcase IVb(viii) in Table 7. An example of a result obtained upon having
applied the first three steps of our four-step enumeration process in this case (i.e. before the branching
of Step 4 commences) is shown in Figure 10. Note that one of the two possible t(3, 4, 8) colourings in
Figure 5, namely G36, appears as ⟨D≥3(ξ)⟩red in Figure 10. All non-red edges entirely within the sets
D1(ξ), D2(ξ) and D3(ξ) are blue, and so are the edges between ξ and D2(ξ), between ξ and D3(ξ), and
between D1(ξ) and D3(ξ). Branching occurs only on the remaining edges between D1(ξ) and D2(ξ)
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No X Y |Φ≤2| |Φ≥3| |Φ| Time
(i) 1 1 3 0 0 3 14 2 0 143.3

(ii) 1 1 2 1 0 0 2 1 18 2 0 659.4
(iii) 1 1 1 1 1 0 0 1 1 1 10 2 0 212.2
(iv) 1 2 2 0 1 2 12 2 0 1 405.7
(v) 1 2 1 1 0 1 1 1 15 2 0 317.5

(vi) 1 3 1 0 2 1 19 2 0 84.1
(vii) 1 4 0 3 3 2 0 1.6

(viii) 2 2 1 1 1 1 9 2 3 274.3
(ix) 2 3 1 2 8 2 1 43.0
(x) 3 2 1 2 4 2 0 10.4

(xi) 3 1 1 1 1 1 2 2 0 7.7
(xii) 4 1 2 1 3 2 0 1.7

(xiii) 5 3 0 — 0 0.1

Table 7. Results obtained for Subcase IVb in Table 4.

as well as on the edges between D2(ξ) and D3(ξ), eventually resulting in the t(3, 8, 21) colouring H3

shown in Figure 11.

4.3. Results for the case ∆(Ξ) = 5

Suppose now ∆(Ξ) = 5. Then |D2(ξ)| ≤ 11 and |D>2(ξ)| < t(3, 3) = 6 by Lemma 5. Furthermore,
we have the following restriction on the number of small components in ⟨D2(ξ)⟩red.

Lemma 8. If |X| = 6, |Y | = 4, ∆(Ξ) = 5 and ⟨D>2(ξ)⟩red has exactly two (1, 0) components, then
⟨D2(ξ)⟩red is not a subgraph of Ξ.

Proof. By contradiction. Suppose, to the contrary, that |X| = 6, |Y | = 4, ∆(Ξ) = 5 and ⟨D>2(ξ)⟩red

has exactly two (1, 0) components, but that ⟨D2(ξ)⟩red is a subgraph of Ξ. It follows from Observation
2 that D>3(ξ) = ∅ and hence from Observation 1 that ⟨D3(ξ)⟩red is the red subgraph of a t(3, 3, 5)
colouring. Furthermore, each vertex v ∈ D3(ξ) is joined to a (1, 0) component by a red edge, for
otherwise ⟨{ξ, v} ∪ D2(ξ)⟩blue contains a clique of order 8. Consequently one of the (1, 0) components
is joined to at least three vertices of D3(ξ) by red edges. These three vertices form a triangle in
⟨D3(ξ)⟩blue in order to avoid forming a triangle in Ξ, but this contradicts the fact that ⟨D3(ξ)⟩red is the
red subgraph of a t(3, 3, 5) colouring. □

ξ

D1(ξ) D2(ξ) D≥3(ξ)

Figure 10. An example of the result of applying the first three steps of the enumeration
process to Subcase IVb(viii) of Table 7.

The results obtained upon having applied our four-step enumeration process of §4.1 to subcases
V–VIb in Table 4 are presented in [21, Tables 15–17].
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4.4. Validation of results

It is known that there is only one t(3, 3, 5) colouring, two t(3, 4, 8) colourings, six t(3, 5, 11) colour-
ings and thirty four t(3, 6, 14) colourings [6, Table 3]. We validated our computer implementation of
the four-step enumeration process described in §4.1 by verifying these results independently. We also
verified that the results obtained by this process are independent of the choice of the vertex ξ in each
case.

4.5. The sets of t(3, 7, 17) colourings and t(3, 8, 21) colourings

A total of 298 t(3, 7, 17) colourings were uncovered during the enumeration process described in
the previous sections. These colourings have not been enumerated before and are available online
[22].

Furthermore, a total of six t(3, 8, 21) colourings were similarly found, as summarised in [21, Tables
7–17]. Among these colourings there are, however, only three pairwise non-isomorphic colourings
— all corresponding to the case where ∆(Ξ) = 4. The red subgraphs of these colourings are shown in
Figure 11.

(a) H1 (b) H2 (c) H3

Figure 11. The red subgraphs of the complete set of t(3, 8, 21) colourings. A minimal
dominating (maximal irredundant) set is indicated by means of solid vertices for each graph.

5. The Ramsey numbers s(3, 8) and w(3, 8)

Since the circulant graph R in Figure 12(a) contains no irredundant set of cardinality 8 and the
circulant graph B in Figure 12(b) contains no irredundant set of cardinality 3, it follows that the pair
(R, B) in Figure 12 forms an s(3, 8, 20) colouring.

v3

v2

v1

v4

v7

v8

v9

v6
v5

v0v10

v17

v18

v19

v16

v13

v12

v11

v14 v15

(a) R = C20⟨7, 8, 9, 10⟩

v3

v2

v1

v4

v7

v8

v9

v6
v5

v10 v0

v18

v19

v16

v13

v12

v11

v14 v15

v17

(b) B = C20⟨1, 2, 3, 4, 5, 6⟩

Figure 12. An s(3, 8, 20) colouring (R, B) in which both R and B are circulant graphs.

It therefore follows by (2) and Table 1 that

21 ≤ s(3, 8) ≤ w(3, 8) ≤ t(3, 8) = 22. (4)
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Lemma 2 implies that sets of s(3, 8, 21) and w(3, 8, 21) colourings may be found from among the
set of t(3, 8, 21) colourings enumerated in §4. The graphs in Figure 11 each contains a minimal
dominating (or maximal irredundant) set of cardinality 9, so that none of these graphs represent
w(3, 8, 21) colourings, or s(3, 8, 21) colourings, and hence we have the following result in view of (4).

Theorem 3. s(3, 8) = w(3, 8) = 21.

6. Further work

In order to pave the way for the computation of the Ramsey numbers s(3, 9) and t(3, 9), we establish
the following bounds.

Theorem 4. 24 ≤ s(3, 9) ≤ t(3, 9) ≤ 27.

Proof. Using the notation introduced in Figure 12, the circulant graph R′ = C23⟨8, 9, 10, 11⟩ contains
no irredundant set of cardinality 9 and the circulant graph B′ = C23⟨1, 2, 3, 4, 5, 6, 7⟩ contains no
irredundant set of cardinality 3. The pair (R′, B′) therefore forms an s(3, 9, 23) colouring and hence
s(3, 9) ≥ 24.

In order to establish the desired upper bound on t(3, 9), we show by contradiction that no t(3, 9, 27)
colouring exists. Suppose, to the contrary, that such a colouring indeed exists, and let Ξ′ be its red
subgraph. Then it follows from Corollary 2 that δ(Ξ′) ≥ 27 − t(3, 8) = 27 − 22 = 5. It also follows
from Corollary 1 that ∆(Ξ′) < t(2, 9) = 9, and so ∆(Ξ′) = 5, 6, 7 or 8.

Let v be a vertex of maximum degree in Ξ′ and suppose ∆(Ξ′) = 8. Then D≥3(v) is empty in order
to avoid a clique of order 9 in the blue subgraph Ξ′. But then D2(v) has cardinality 18 and forms a
clique of order 9 in Ξ′ by Lemma 4(b), a contradiction.

Suppose next that v has degree 6 or 7. Then by an argument similar to the one above, we may
assume that D3(v) is not empty (so as to avoid a large set D2(v)). But then it follows from Lemma
4(b) that D2(v) has fewer than 14 vertices in order to avoid a clique of order 9 in Ξ′ (on the vertices of
a partite set of the bipartite graph in D≥2(v) together with v). Furthermore, similar to Observation 1,
we also have that D≥3(v) has fewer than t(3, 9 − ∆(Ξ′)) vertices, and so Ξ′ has fewer than 1 + ∆(Ξ′) +
13 + t(3, 9 − ∆(Ξ′)) vertices. For ∆(Ξ′) = 6 or 7, this value is 25 or 24, respectively — contradicting
the fact that Ξ′ has order 27.

It follows that Ξ′ is a 5-regular graph, which is a contradiction, because it has odd order. □

As further work, we propose that the values of s(3, 9) and t(3, 9) be computed according to our
enumeration strategy in §4.1. In order to render this strategy feasible for graphs of orders 24–27,
however, we anticipate that our branch-and-bound procedure in §3 will have to be refined, possibly
by selecting the branching order judiciously. We furthermore expect that the development of new
theoretical results will be required in order to extend the bounding list of Table 6.
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