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abstract

By means of the generating function method, a linear recurrence relation is explicitly resolved. The

solution is expressed in terms of the Stirling numbers of both the �rst and the second kind. Two

remarkable pairs of combinatorial identities (Theorems 3.1 and 3.3) are established as applications,

that contain some well�known convolution formulae on Stirling numbers as special cases.
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1. Introduction

Denote by N the set of natural numbers with N0 = N∪{0}. For an indeterminate x, de�ne the rising

and falling factorials by (x)0 = ⟨x⟩0 ≡ 1 and

(x)n = x(x+ 1) · · · (x+ n− 1) for n ∈ N,
⟨x⟩n = x(x− 1) · · · (x− n+ 1) for n ∈ N.

Then the unsigned Stirling numbers of the �rst kind

[
n

k

]
are determined as the connection coef-

�cients:

⟨x⟩n =
n∑

k=0

(−1)n−k

[
n

k

]
xk.
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Analogously, the Stirling numbers of the second kind

{
n

k

}
are given by

xn =
n∑

k=0

{
n

k

}
⟨x⟩k,

which admits the explicit expression{
n

k

}
=

1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn.

These numbers appear frequently in mathematical literatures and have wide applications in com-

binatorics and number theory (see [2] Chapter 5, [4] �6.2 and [5], just for example).

Recently, Stenlund [6] introduced an interesting bivariate polynomial sequence {Pn(x, z)}n∈N through
the following recurrence relation:

Pn+1(x, z) = x

(
n+ z

n

)
− x

n∑
m=1

(
n−m+ z

n−m+ 1

)
Pm(x, z) with P1(x, z) = x. (1)

The same author not only found out an explicit double sum expression

Pn(x, z) =
n∑

k=1

k∑
j=1

(−1)j−1(j − 1)!

(n− 1)!

[
n

k

]{
k

j

}
xjzk−1, (2)

but also explored applications to combinatorial identities and probability theory.

Inspired by the above work of Stenlund [6], we shall examine the extended polynomial sequence

{Qn}n∈N0 (with three variables λ, x and y) de�ned by the recurrence relation

Qn =

(
λ

n

)
(−1)n − x

n∑
k=1

(−1)k
(
y

k

)
Qn−k, with Q0 = 1. (3)

The �rst three terms are recorded as follows:

Q1 = xy − λ,

Q2 =
xy

2
(1− y + 2xy)− λ

2
(1− λ+ 2xy),

Q3 =
xy

6
(y − 1)(y − 2)− λ

6
(λ− 1)(λ− 2)− xy(1− y + xy)(λ− xy) +

λxy

2
(λ− y).

These Qn-polynomials in (3) generalize the Pn-polynomials in (1) as we can verify below that Qn

becomes Pn+1/x when λ = −1− z and y → −z. Denoting by Q̃n the resulting Qn-polynomial under

the above replacements. Then we have Q̃0 = 1 and the recurrence relation

Q̃n =

(
−1− z

n

)
(−1)n − x

n∑
k=1

(−1)k
(
−z

k

)
Q̃n−k =

(
z + n

n

)
− x

n∑
k=1

(
k − 1 + z

k

)
Q̃n−k

=

(
z + n

n

)
− x

n∑
m=1

(
n−m+ z

n−m+ 1

)
Q̃m−1 k → 1 + n−m .
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Reformulating the above equality by

(xQ̃n) = x

(
z + n

n

)
− x

n∑
m=1

(
n−m+ z

n−m+ 1

)
(xQ̃m−1),

we can see that �xQ̃n" satis�es the same relation (1) as Pn+1(x, z) with the same initial condition.

Hence, Qn indeed extends Pn as claimed.

The rest of the paper will be organized as follows. In the next section, we shall derive the generating

function and the explicit formulae for the Qn-polynomials. As applications, two pairs of convolution

sums containing both kinds of Stirling numbers will be evaluated in closed forms in Section 3.

2. Generating Function and Explicit Expressions

For the sequence {Qn}n∈N0 de�ned by (3), we shall derive its generating function and explicit for-

mulae. The informed reader will notice that this treatment is more transparent than the induction

approach adopted by Stenlund [6].

Multiplying both sides of (3) by τn and then summing over n for n ≥ 0, we can manipulate the

generating function

Ω(τ) =
∞∑
n=0

Qnτ
n = 1 +

∞∑
n=1

Qnτ
n = 1 +

∞∑
n=1

(
λ

n

)
(−τ)n − x

∞∑
n=1

n∑
k=1

(−1)k
(
y

k
Qn−k

)
τn

=(1− τ)λ − x
∞∑
k=1

(−1)k
(
y

k

)
τ k

∞∑
n=k

Qn−kτ
n−k.

This leads us to the functional equation

Ω(τ) = (1− τ)λ − xΩ(τ){(1− τ)y − 1},

and the rational function expression.

Lemma 2.1 (Generating function).

Ω(τ) =
(1− τ)λ

1− x+ x(1− τ)y
.

By writing as a geometric series

Ω(τ) =
1

1− x
× (1− τ)λ

1− x
x−1

(1− τ)y
=

∞∑
k=0

(−x)k

(1− x)k+1
(1− τ)λ+ky,

and then extracting the coe�cient of τn, we �nd the in�nite series expression.

Proposition 2.2 (Single sum formula).

Qn =
∞∑
k=0

(−1)n+k

(
λ+ ky

n

)
xk

(1− x)k+1
.

Expanding the rightmost fraction into binomial series, we have further

Qn =
∞∑
k=0

(−1)n+k

(
λ+ ky

n

) ∞∑
j=0

(
k + j

j
xk+j

)
=

∞∑
m=0

(−1)nxm

m∑
k=0

(−1)k
(
m

k

)(
λ+ ky

n

)
,
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where the last line is justi�ed by the replacement k + j = m. Observe that the inner sum with

respect to k results substantially in the di�erences of order m about a polynomial of degree n, which

is equal to zero when m > n (cf. [3] Equation 3.150). Therefore, we have derived a �nite double sum

expression.

Proposition 2.3 (Double sum formula).

Qn =
n∑

m=0

m∑
k=0

(−1)n+k

(
m

k

)(
λ+ ky

n

)
xm.

Expressing the last binomial coe�cient in terms of unsigned Stirling numbers and then making

use of the binomial theorem, we have(
λ+ ky

n

)
=

⟨λ+ ky⟩n
n!

=
n∑

i=0

(−1)n−i

n!

[
n

i

]
(λ+ yk)i =

n∑
i=0

(−1)n−i

n!

[
n

i

] i∑
j=0

(
i

j

)
λi−j(ky)j.

By substitutions, Qn can be written as a four�fold sum

Qn =
n∑

m=0

m∑
k=0

(
m

k

)
xm

n∑
i=0

(−1)k−i

n!

[
n

i

] i∑
j=0

(
i

j

)
λi−j(ky)j,

=
n∑

m=0

xm

n∑
i=0

(−1)m−i

n!

[
n

i

] i∑
j=0

(
i

j

)
λi−jyj

m∑
k=0

(−1)m−k

(
m

k

)
kj.

Writing the rightmost sum in terms of Stirling number of the second kind, we get a triple sum

expression

Qn =
n∑

m=0

xm

n∑
i=0

(−1)m−im!

n!

[
n

i

] i∑
j=0

(
i

j

){
j

m

}
λi−jyj. (4)

Taking into account that

{
j

m

}
= 0 for 0 ≤ j < m and

(
i

j

)
= 0 for 0 ≤ i < j, we can restate the

last formula as follows.

Proposition 2.4 (Triple sum formula).

Qn =
n∑

m=0

n∑
i=m

i∑
j=m

(−1)m−im!

n!

[
n

i

](
i

j

){
j

m

}
xmλi−jyj.

By comparing the coe�cients of xm between the two expressions in Proposition 2.3 and Proposition

2.4, we derive the following summation formula.

Theorem 2.5 (Convolution formula).

n∑
i=m

i∑
j=m

(−1)n+i

[
n

i

](
i

j

){
j

m

}
λi−jyj =

n!

m!

m∑
k=0

(−1)m+k

(
m

k

)(
λ+ ky

n

)
.

As kindly pointed out by an anonymous referee, letting λ = 0 in Theorem 2.5 gives a nicer formula

than the corresponding ones found by Stenlund [6] Theorem 4 and Corollary 5).
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3. Applications to Convolution Formulae

By specifying y to particular values, we shall derive from Theorem 2.5 two pairs of combinatorial

identities as in Theorems 3.1 and 3.3 that extend, with an extra parameter �λ", the related known

convolution formulae on Stirling numbers.

The �rst pair of identities are given in the following theorem.

Theorem 3.1 (1 ≤ m ≤ n).

(a)
n∑

i=m

i∑
j=m

(−1)n+i

[
n

i

](
i

j

){
j

m

}
λi−j =

n!

m!

(
λ

n−m

)
,

(b)
n∑

i=m

i∑
j=m

(−1)i+j

[
n

i

](
i

j

){
j

m

}
λi−j =

n!

m!

(
λ−m

n−m

)
(−1)m+n.

This theorem may be considered as signi�cant extensions of the two well�known results (cf. [4]�6.1)

recorded in the corollary below, that correspond to the special cases of λ = 0.

Corollary 3.2 (1 ≤ m ≤ n).

(a)
n∑

k=m

(−1)n−k

[
n

k

{
k

m
=

{
1, m = n;

0, m ̸= n;

(b)
n∑

k=m

[
n

k

{
k

m
=

n!

m!

(
n− 1

m− 1
. Lah number

Proof. Proof of Theorem 3.1. When y = 1 in Theorem 2.5, the corresponding equality becomes

n∑
i=m

i∑
j=m

(−1)n+i

[
n

i

](
i

j

){
j

m

}
λi−j =

n!

m!

m∑
k=0

(−1)m+k

(
m

k

)(
λ+ k

n

)
.

Then the �rst formula �(a)" follows by evaluating the above sum on the right (cf. [3] Eq. 3.47)

m∑
k=0

(−1)m+k

(
m

k

)(
λ+ k

n

)
=

m∑
k=0

(−1)m+k

(
m

k

) n∑
ℓ=0

(
λ

n− ℓ

)(
k

ℓ

)
=

n∑
ℓ=0

(
λ

n− ℓ

)(
m

ℓ

) m∑
k=ℓ

(−1)m+k

(
m− ℓ

k − ℓ

)
=

n∑
ℓ=0

(
λ

n− ℓ

)(
m

ℓ
(1− 1)m−ℓ

)
=

(
λ

n−m

)
,

where the Chu�Vandemonde convolution formula and the binomial theorem have been utilized.

Alternatively, for y = −1, the corresponding equality in Theorem 2.5 reads as

n∑
i=m

i∑
j=m

(−1)i+j

[
n

i

](
i

j

){
j

m

}
λi−j = (−1)m−n n!

m!

m∑
k=0

(−1)k
(
m

k

)(
λ− k

n

)
.
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Then we can analogously evaluate the sum on the right (cf. [3]Equation 3.49) as follows:

m∑
k=0

(−1)k
(
m

k

)(
λ− k

n

)
=

m∑
k=0

(−1)k
(
m

k

) n∑
ℓ=0

(
λ−m

n− ℓ

)(
m− k

ℓ

)

=
n∑

ℓ=0

(
λ−m

n− ℓ

)(
m

ℓ

)m−ℓ∑
k=0

(−1)k
(
m− ℓ

k

)
=

n∑
ℓ=0

(
λ−m

n− ℓ

)(
m

ℓ

)
(1− 1)m−ℓ =

(
λ−m

n−m

)
.

This proves the second formula �(b)" in the theorem.

Furthermore, setting y = 2 and y = 1/2 in Theorem 2.5 yields another pair of double sum identities

of which the case λ = 0 is again known.

Theorem 3.3 (1 ≤ m ≤ n).

(a)
n∑

i=m

i∑
j=m

(−1)n+i

[
n

i

](
i

j

){
j

m

)
λi−j2n−j =

n!

m!

n∑
ℓ=m

m

ℓ

(
λ

n− ℓ

)(
−ℓ

ℓ−m

)
2m+n−2ℓ,

(b)
n∑

i=m

i∑
j=m

(−1)m+i

[
n

i

](
i

j

){
j

m

)
λi−j2j−m =

n!

m!

n∑
ℓ=m

(−1)m+n

(
λ

n− ℓ

)(
m

ℓ−m
2m−ℓ

)
.

Proof. Proof of Theorem 3.3. For y = 1
2
, the equality in Theorem 2.5 reduces to

n∑
i=m

i∑
j=m

(−1)n+i

[
n

i

](
i

j

){
j

m

)
λi−j2n−j = 2n

n!

m!

m∑
k=0

(−1)m+k

(
m

k

)(
λ+ k

2

n

)
.

In this case, the �rst formula �(a)" is con�rmed by �rst reformulating the above sum on the right

m∑
k=0

(−1)m+k

(
m

k

)(
λ+ k

2

n

)
=

m∑
k=0

(−1)m+k

(
m

k

) n∑
ℓ=0

(
λ

n− ℓ

)(
k
2

ℓ

)
=

n∑
ℓ=0

(
λ

n− ℓ

) m∑
k=0

(−1)m+k

(
m

k

)(
k
2

ℓ

)
,

and then evaluating the inner sum by the binomial formula (cf. [3]Equation 3.164)

m∑
k=0

(−1)m−k

(
m

k

)(
k
2

ℓ

)
=

m

ℓ

(
−ℓ

ℓ−m
2m−2ℓ

)
.

When y = 2, the corresponding equality in Theorem 2.5 can be stated as

n∑
i=m

i∑
j=m

(−1)m+i

[
n

i

](
i

j

){
j

m

}
λi−j2j−m = 2−m n!

m!

m∑
k=0

(−1)n+k

(
m

k

)(
λ+ 2k

n

)
.

The above sum on the right can be rewritten as
m∑
k=0

(−1)n+k

(
m

k

)(
λ+ 2k

n

)
=

m∑
k=0

(−1)n+k

(
m

k

) n∑
ℓ=0

(
λ

n− ℓ

)(
2k

ℓ

)
=

n∑
ℓ=0

(−1)n
(

λ

n− ℓ

) m∑
k=0

(−1)k
(
m

k

(
2k

ℓ

)
.
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Denote by [xn]f(x) the coe�cient of xn in the formal power series f(x). Observe that the last

inner sum (cf. [3]Equation 3.64) can be expressed and then evaluated as

m∑
k=0

(−1)k
(
m

k

)(
2k

ℓ

)
= [xℓ]

m∑
k=0

(−1)k
(
m

k

)
(1 + x)2k

= [xℓ]
{
1− (1 + x)2

}m

= (−1)m[xℓ−m](2 + x)m

= (−1)m
(

m

ℓ−m
22m−ℓ

)
.

After substitutions, the second formula �(b)" in the theorem is done.

Finally letting λ = 0 in Theorem 3.3, we recover the following two elegant identities due to Yang

and Qiao [7], who discovered them by employing the Riordan array and expressed the results in

terms of Bessel numbers [1].

Corollary 3.4 (1 ≤ m ≤ n).

(a)
n∑

k=m

[
n

k

]{
k

m

}
(−2)n−k =

(n− 1)!

(m− 1)!

(
−n

n−m
2m−n

)
,

(b)
n∑

k=m

[
n

k

]{
k

m

}
(−2)k−m =

n!

m!

(
m

n−m

)
(−2)m−n

)
.
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