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abstract

For a connected graph G, the edge Mostar indexMoe(G) is de�ned asMoe(G) =
∑

e=uv∈E(G)

|mu(e|G)−

mv(e|G)|, where mu(e|G) and mv(e|G) are respectively, the number of edges of G lying closer to

vertex u than to vertex v and the number of edges of G lying closer to vertex v than to vertex u.

We determine a sharp upper bound for the edge Mostar index on bicyclic graphs and identify the

graphs that achieve the bound, which disproves a conjecture proposed by Liu et al. [Iranian J. Math.

Chem. 11(2) (2020) 95�106].
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1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). The order and size of G are the cardinality

of V (G) and E(G), respectively. The distance between u and v in G, denoted by dG(u, v), is the

shortest path connecting u and v in G. For a vertex x and edge e = uv of a graph G, the distance

between x and e, denoted by dG(x, e) , is de�ned as dG(x, e) = min{dG(x, u), dG(x, v)}.
A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges

to the bonds of a molecule. A topological graph index, also called a molecular descriptor, is a

mathematical formula that can be applied to any graph which models some molecular structure.

From this index, it is possible to analyse mathematical values and further investigate some physic-
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ochemical properties of a molecule. Therefore, it is an e�cient method in avoiding expensive and

time-consuming laboratory experiments.

Do²li¢ et al. [7] introduced the Mostar index, which is a measure of peripherality in graphs. It

can also be considered as a bond-additive structural invariant as a quantitative re�nement of the

distance non-balancedness. For a graph G, the Mostar index is de�ned as

Mo(G) =
∑

e=uv∈E(G)

|nu(e|G)− nv(e|G)|.

where nu(e|G) is the number of vertices of G closer to u than to v and nv(e|G) is the number of

vertices closer to v than to u.

Since its introduction in 2018, the Mostar index has already incited a lot of research, mostly

concerning trees [1, 6, 5, 4, 8, 12, 14], unicyclic graphs [18], bicyclic graphs [20], tricyclic graphs [11],

cacti [13] and chemical graphs [3, 16, 21, 22].

Arockiaraj et al. [2], introduced the edge Mostar index as a quantitative re�nement of the distance

non-balancedness, also measure the peripherality of every edge and consider the contributions of all

edges into a global measure of peripherality for a given chemical graph. The edge Mostar index of

G is de�ned as

Moe(G) =
∑

e=uv∈E(G)

ψG(uv),

where ψG(uv) = |mu(e|G) −mv(e|G)|, mu(e|G) and mv(e|G) are respectively, the number of edges

of G lying closer to vertex u than to vertex v and the number of edges of G lying closer to vertex v

than to vertex u. We use ψ(uv) = |mu(e)−mv(e)| for short, if there is no ambiguity.

The problem of determining which graphs uniquely maximize (resp. minimize) the edge Mostar

index in various classes of graphs has received much attention. For example, Imran et al. [17] studied

the edge Mostar index of chemical structures and nanostructures using graph operations. Havare

[10] computed the edge Mostar index for several classes of cycle-containing graphs. Hayat et al.

[15] obtained a sharp upper bound for the edge Mostar index on tricyclic graphs and identi�ed the

graphs that attain the bound. Liu et al. [19] determined the extremal values of the edge Mostar

index among trees, unicyclic graphs, cacti and posed two conjectures for the extremal edge Mostar

index among bicyclic graphs. Ghalavand et al. [9] gave proof to a conjecture in [19], and obtained

the graph that minimizes the edge Mostar index among bicyclic graphs.

Motivated directly by [19] and [9], we determine the unique graph that maximizes the edge Mostar

index over all bicyclic graphs with �xed size, which disproves the following conjecture.

Conjecture 1.1. [19] If the size m of bicyclic graphs is large enough, then the bicyclic graphs Bm

(see Figure 1) and B5
m (see Figure 2) have the maximum edge Mostar index.

We disprove Conjecture 1.1, by presenting the following result.

Theorem 1.2. Let G be a bicyclic graph of size m ≥ 5. Then

Moe(G) ≤


4, if m = 5, and equality holds i� G ∼= B3

m, B
4
m;

m2 − 3m− 6, if 6 ≤ m ≤ 8, and equality holds i� G ∼= B1
m, B

3
m;

48, if m = 9, and equality holds i� G ∼= Bm, B
1
m, B

2
m, B

3
m, B

4
m;

m2 −m− 24, if m ≥ 10, and equality holds i� G ∼= Bm.

(Where Bm, B
1
m, B

2
m and B3

m, B
4
m are depicted in Figure 1 and Figure 2, respectively).
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Fig. 1. The graphs Bm, B1
m, and B2

m, each of size m, have m− 8, m− 7, and m− 6 pendent edges, respectively

Fig. 2. The graphs B3
m, B4

m, B5
m, and B6

m of size m, have m− 5, m− 5, m− 6, and m− 6 pendent edges, respectively

Based on the above Theorem, if the size m of bicyclic graphs is large, then Bm is the unique graph

that maximizes the edge Mostar index. Therefore, Conjecture 1.1 is disproved.

In Section 2, we provide some de�nitions and preliminary results. The proof of Theorem 1.2 is

presented in Section 3.

2. Preliminaries

In this section, we present some basic notations and elementary results, which will be useful in the

proof of our main result.

For v ∈ V (G), let NG(v) be the set of vertices that are adjacent to v in G. The degree of v ∈ V (G),

denoted by dG(v), is the cardinality of NG(v). A vertex with degree one is called a pendent vertex

and an edge incident to a pendent vertex is called a pendent edge. A graph G with n vertices is a

bicyclic graph if |E(G)|= n + 1. As usual by Sn, Pn, and Cn we denote the star, path, and cycle

graph on n vertices, respectively.

The join of two graphs G1 and G2 is denoted by G1 ·G2, is obtained by identifying one vertex from

G1 and G2. Let u be the identi�ed vertex in both G1 and G2. If G1 contains a cycle and u belongs

to some cycle, while G2 is a tree, then we call G2 a pendent tree in G1 ·G2 associated with u.

For each e ∈ E(G1), every path from e to some edges in G2 pass through u. Therefore, the

contribution of G2 to
∑

e∈E(G1)
ψ(e) totally depends on the size of G2. In other words, changing the

structure of G2 does not a�ect the value of
∑

e∈E(G1)
ψ(e).

Lemma 2.1. [19] Let G be a graph of size m with a cut edge e = uv. Then ψ(e) ≤ m − 1 with

equality if and only if e = uv is a pendent edge.

By Lemma 2.1, if e is a pendent edge, then ψ(e) is maximum. Therefore, it is easy to verify the

following result.
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Lemma 2.2. Let H be a graph of size m. Then

Moe(H1 ·H) ≤Moe(H1 · Sm),

where the common vertex of H1 and Sm is the center of Sm, while the common vertex of H1 and H

can be chosen arbitrarily.

Let Sm,r = Sm−r · Cr, where the common vertex of Sm−r and Cr is the center of Sm−r.

Lemma 2.3. [19] Let G be a unicyclic graph of size m ≥ 3. Then

Moe(G) ≤


m2 − 2m− 3, if 3 ≤ m ≤ 8, and equality holds i� G ∼= Sm,3;

60, if m = 9, and equality holds i� G ∼= Sm,3, Sm,4;

m2 −m− 12, if m ≥ 10, and equality holds i� G ∼= Sm,4.

Lemma 2.4. Let G1 be a connected graph of size m1 and G2 be a unicyclic graph of size m2. Then

Moe(G1 ·G2) ≤


Moe(G1 · Sm2,3) for m1 +m2 ≤ 8;

Moe(G1 · Sm2,3) =Moe(G1 · Sm2,4) for m1 +m2 = 9;

Moe(G1 · Sm2,4) for m1 +m2 ≥ 10;

where the common vertex of G1 and Sm2,3 (resp. G1 and Sm2,4) is the center of Sm2,3 (resp. Sm2,4),

while the common vertex of G1 and G2 can be chosen arbitrarily.

Proof. If m1 +m2 ≤ 8, then by Lemma 2.3, we have

Moe(G1 ·G2) =
∑

e=uv∈E(G1·G2)

ψG1·G2(uv)

=
∑

e=uv∈E(G1)

ψG1·G2(uv) +
∑

e=uv∈E(G2)

ψG1·G2(uv)

=
∑

e=uv∈E(G1)

ψG1·G2(uv) +Moe(Sm1 ·G2)−m1(m− 1)

≤
∑

e=uv∈E(G1)

ψG1·Sm2,3
(uv) +Moe(Sm1 · Sm2,3)−m1(m− 1)

=
∑

e=uv∈E(G1)

ψG1·Sm2,3
(uv) +

∑
e=uv∈E(Sm2,3)

ψG1·Sm2,3
(uv)

= Moe(G1 · Sm2,3).

Similarly, if m1+m2 = 9, thenMoe(G1 ·G2) ≤Moe(G1 ·Sm2,3) =Moe(G1 ·Sm2,4); if m1+m2 ≥ 10,

then Moe(G1 ·G2) ≤Moe(G1 · Sm2,4).

3. Proof of Theorem 1.2

The Θ-graph is a graph that connects two �xed vertices with three internally disjoint paths. If the

lengths of these paths are l1, l2, and l3 where l1 ≤ l2 ≤ l3, the graph is denoted as Θ(l1, l2, l3).

Let G1
m represent the set of bicyclic graphs of size m that contain exactly two edge-disjoint cycles.

Let G2
m denote the set of bicyclic graphs of size m that contain exactly three cycles. Moreover, if

G ∈ G2
m, then G contains a Θ-graph as a subgraph, which is called as the brace of G.
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For the proof of Theorem 1.2, we �rst develop several lemmas. In the �rst step, we establish a

sharp upper bound for Moe(G) on the set G1
m.

Lemma 3.1. Let G ∈ G1
m . Then

Moe(G) ≤


m2 − 3m− 6, if 6 ≤ m ≤ 8, and equality holds i� G ∼= B2

m;

48, if m = 9, and equality holds i� G ∼= Bm, B
1
m, B

2
m;

m2 −m− 24, if m ≥ 10, and equality holds i� G ∼= Bm.

Proof. Let G ∈ G1
m. Then there are two unicyclic graphs G1 and G2 with sizem1 andm2, respectively

such that G = G1 ·G2. Then, in view of Lemma 2.4. If 6 ≤ m ≤ 8, we get

Moe(G) = Moe(G1 ·G2) ≤Moe(G1 · Sm2,3)

≤ Moe(Sm1,3 · Sm2,3) =Moe(B
2
m);

if m = 9, then

Moe(G) = Moe(G1 ·G2) ≤Moe(G1 · Sm2,3) =Moe(G1 · Sm2,4)

≤ Moe(Sm1,3 · Sm2,3) =Moe(Sm1,3 · Sm2,4) =Moe(B
2
m)

= Moe(Sm1,4 · Sm2,4) =Moe(Bm) =Moe(B
1
m) =Moe(B

2
m).

If m ≥ 10, we have

Moe(G) = Moe(G1 ·G2) ≤Moe(G1 · Sm2,4)

≤ Moe(Sm1,4 · Sm2,4) =Moe(Bm).

By simple calculation, we getMoe(Bm) = m2−m−24,Moe(B
1
m) = m2−2m−15, andMoe(B

2
m) =

m2−3m−6. If m = 9, then Moe(Bm) =Moe(B
1
m) =Moe(B

2
m) = 48. This completes the proof.

In the following, we determine a sharp upper bound for Moe(G) on the set G2
m.

Lemma 3.2. Let G ∈ G2
m with brace Θ(1, 2, 2). Then

Moe(G) ≤


4, if m = 5, and equality holds i� G ∼= B3

m, B
4
m;

m2 − 3m− 6, if 6 ≤ m ≤ 8, and equality holds i� G ∼= B3
m;

48, if m = 9, and equality holds i� G ∼= B3
m, B

4
m;

m2 − 2m− 15, if m ≥ 10, and equality holds i� G ∼= B4
m.

Proof. Let G ∈ G2
m with brace Θ(1, 2, 2). Suppose that v1, v2, v3, v4 be the vertices in Θ(1, 2, 2) of

G with dG(v1) = dG(v2) = 3, and dG(v3) = dG(v4) = 2. Let ai be the number of pendent edges of vi
(i = 1, 2, 3, 4). Suppose that a1 ≥ a2 and a3 ≥ a4. Let G1 be the graph obtained from G by shifting

a2 pendent edges from v2 to v1. We have

Moe(G1)−Moe(G) =(a1 + a2 + 2− 2)− (a1 + 2− a2 − 2) + (a1 + a2 + a4 + 2− a3 − 1)

− (a1 + a4 + 2− a3 − 1) + (a1 + a2 + a3 + 2− a4 − 1)

− (a1 + a3 + 2− a4 − 1) + (a4 + 2− a3 − 1)− (a2 + a4 + 2− a3 − 1)

+ (a3 + 2− a4 − 1)− (a2 + a3 + 2− a4 − 1) = 2a2 ≥ 0.
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Hence, Moe(G1) ≥Moe(G) and equality holds if and only if a2 = 0, i.e., G ∼= G1.

Let G2 be the graph obtained from G1 by shifting a4 pendent edges from v4 to v3. We have

Moe(G2)−Moe(G1) =(a1 + 2− 2)− (a1 + 2− 2) + (a3 + a4 + 1− a1 − 2)

− (a3 + 1− a1 − a4 − 2) + (a1 + a3 + a4 + 2− 1)

− (a1 + a3 + 2− a4 − 1) + (a3 + a4 + 1− 2)

− (a3 + 1− a4 − 2) + (a3 + a4 + 2− 1)− (a3 + 2− a4 − 1)

=8a4 ≥ 0.

Hence, Moe(G2) ≥Moe(G1) and equality holds if and only if a4 = 0, i.e., G2
∼= G1.

Let G3 be the graph obtained from G2 by shifting a1 pendent edges from v1 to v3. We have

Moe(G3)−Moe(G2) =− (a1 + 2− 2) + (a1 + a3 + 1− 2)− (a3 + 1− a1 − 2)

+ (a1 + a3 + 2− 1)− (a1 + a3 + 2− 1) + (a1 + a3 + 1− 2)

− (a3 + 1− 2) + (a1 + a3 + 2− 1)− (a3 + 2− 1)

=3a1 ≥ 0.

Hence, Moe(G3) ≥ Moe(G2) and equality holds if and only if a1 = 0, i.e., G3
∼= G2. Clearly,

G2
∼= B3

m with a3 = 0, and G3
∼= B4

m. Also, by simple calculation, we have Moe(B
3
m) = m2− 3m− 6,

Moe(B
4
m) = m2 − 2m− 15.

Lemma 3.3. Let G ∈ G2
m with brace Θ(2, 2, 2). If m ≥ 6, then Moe(G) ≤ m2−m− 28 with equality

if and only if G ∼= B5
m (see Figure 2).

Proof. Let G ∈ G2
m with brace Θ(2, 2, 2). Let v1, v2, v3, v4, v5 be vertices in Θ(2, 2, 2) of G with

dG(v1) = dG(v2) = 3 and dG(v3) = dG(v4) = dG(v5) = 2. Let ai be the number of pendent edges of

vi (i = 1, 2, 3, 4, 5). Suppose that a1 ≥ a2 and a3 ≥ a4 ≥ a5. Let G1 be the graph obtained from G

by shifting a2 pendent edges from v2 to v1. We have

Moe(G1)−Moe(G) =(a1 + a2 + a4 + a5 + 2− a3 − 1)− (a1 + a4 + a5 + 2− a2 − a3 − 1)

+ (a1 + a2 + a3 + a5 + 2− a4 − 1)− (a1 + a3 + a5 + 2− a2 − a4 − 1)

+ (a1 + a2 + a3 + a4 + 2− a5 − 1)− (a1 + a3 + a4 + 2− a2 − a5 − 1)

+ (a1 + a2 + a3 + 1− a4 − a5 − 2)− (a1 + a3 + 1− a2 − a4 − a5 − 2)

+ (a1 + a2 + a4 + 1− a3 − a5 − 2)− (a1 + a4 + 1− a2 − a3 − a5 − 2)

+ (a1 + a2 + a5 + 1− a3 − a4 − 2)− (a1 + a5 + 1− a2 − a3 − a4 − 2)

=12a2 ≥ 0.

Hence, Moe(G1) ≥Moe(G) and equality holds if and only if a2 = 0, i.e., G ∼= G1.
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Let G2 be the graph obtained from G1 by shifting a5 pendent edges from v5 to v3. We get

Moe(G2)−Moe(G1) =(a3 + a5 + 1− a1 − a4 − 2)− (a3 + 1− a1 − a4 − a5 − 2)

+ (a1 + a3 + a5 + 2− a4 − 1)− (a1 + a3 + a5 + 2− a4 − 1)

+ (a1 + a3 + a4 + a5 + 2− 1)− (a1 + a3 + a4 + 2− a5 − 1)

+ (a1 + a3 + a5 + 1− a4 − 2)− (a1 + a3 + 1− a4 − a5 − 2)

+ (a3 + a5 + 2− a1 − a4 − 1)− (a3 + a5 + 2− a1 − a4 − 1)

+ (a3 + a4 + a5 + 2− a1 − 1)− (a3 + a4 + 2− a1 − a5 − 1)

=8a5 ≥ 0.

Hence, Moe(G2) ≥Moe(G1) and equality holds if and only if a5 = 0, i.e., G2
∼= G1.

Let G3 be the graph obtained from G2 by shifting a4 pendent edges from v4 to v3. By symmetry,

Moe(G3) ≥Moe(G2), and equality holds if and only if G3
∼= G2. Let G4 be the graph obtained from

G3 by shifting a1 pendent edges from v1 to v3. We get

Moe(G4)−Moe(G3) =(a1 + a3 + 1− 2)− (a3 + 1− a1 − 2) + (a1 + a3 + 2− 1)

− (a1 + a3 + 2− 1) + (a1 + a3 + 2− 1)− (a1 + a3 + 2− 1)

+ (a1 + a3 + 1− 2)− (a1 + a3 + 1− 2) + (a1 + a3 + 2− 1)

− (a3 + 2− a1 − 1) + (a1 + a3 + 2− 1)− (a3 + 2− a1 − 1)

=6a1 ≥ 0.

Hence, Moe(G4) ≥ Moe(G3) and equality holds if and only if a1 = 0, i.e., G4
∼= G3. Note that

G4
∼= B5

m. Clearly, Moe(B
5
m) = m2 −m− 28.

Lemma 3.4. Let G ∈ G2
m with brace Θ(1, 2, 3). If m ≥ 6, then Moe(G) ≤ m2−2m−16 with equality

if and only if G ∼= B6
m (see Figure 2).

Proof. Let G ∈ G2
m with brace Θ(1, 2, 3). Let v1, v2, v3, v4, v5 be vertices in Θ(1, 2, 3) of G with

dG(v1) = dG(v2) = 3 and dG(v3) = dG(v4) = dG(v5) = 2. Let ai be the number of pendent edges of vi
(i = 1, 2, 3, 4, 5). Suppose that a1 + a4 ≥ a2 + a5 . Let G1 be the graph obtained from G by shifting

a2 (resp. a5) pendent edges from v2 (resp. v5) to v1 (resp. v4). We deduce that

Moe(G1)−Moe(G) =(a1 + a2 + a4 + a5 + 2− 2)− (a1 + a4 + 2− a2 − a5 − 2)

+ (a1 + a2 + a4 + a5 + 3− a3 − 1)− (a1 + a4 + 3− a3 − 1)

+ (3− a3 − 1)− (a2 + a5 + 3− a3 − 1)

+ (a1 + a2 + a3 + 3− a4 − a5 − 1)− (a1 + a2 + a3 + 3− a4 − a5 − 1)

+ (a1 + a2 + a3 + 3− a4 − a5 − 1)− (a1 + a2 + a3 + 3− a4 − a5 − 1)

+ (a1 + a2 + a4 + a5 + 2− 2)− (a1 + a4 + 2− a2 − a5 − 2)

=4(a2 + a5) ≥ 0.

Hence, Moe(G1) ≥Moe(G) and equality holds if and only if a2 = a5 = 0, i.e., G ∼= G1.
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Let G2 be the graph obtained from G1 by shifting a4 pendent edges from v4 to v1. We obtain

Moe(G2)−Moe(G1) =(a1 + a4 + 2− 2)− (a1 + a4 + 2− 2)

+ (a1 + a4 + 3− a3 − 1)− (a1 + a4 + 3− a3 − 1) + (3− a3 − 1)

− (3− a3 − 1) + (a1 + a3 + a4 + 3− 1)− (a1 + a3 + 3− a4 − 1)

+ (a1 + a3 + a4 + 3− 1)− (a1 + a3 + 3− a4 − 1)

+ (a1 + a4 + 2− 2)− (a1 + a4 + 2− 2)

=4a4 + a1 − a3 ≥ 0.

Hence, Moe(G2) ≥Moe(G1) and equality holds if and only if a4 = 0, a1 = a3, i.e., G2
∼= G1.

Let G3 be the graph obtained from G2 by shifting a3 pendent edges from v3 to v1. We have

Moe(G3)−Moe(G2) =(a1 + a3 + 2− 2)− (a1 + 2− 2) + (a1 + a3 + 3− 1)

− (a1 + 3− a3 − 1) + (a1 + a3 + 3− 1)− (a1 + a3 + 3− 1)

+ (a1 + a3 + 2− 2)− (a1 + 2− 2) + (3− 1)− (3− a3 − 1)

+ (a1 + a3 + 3− 1)− (a1 + a3 + 3− 1) = 5a3 ≥ 0.

Hence, Moe(G3) ≥ Moe(G2) and equality holds if and only if a3 = 0, i.e., G3
∼= G2. Note that

G3
∼= B6

m. Clearly, Moe(B
6
m) = m2 − 2m− 16.

Lemma 3.5. Let G ∈ G2
m with brace Θ(a, b, c). Then

Moe(G) ≤



4, if m = 5, and equality holds i� G ∼= B3
m, B

4
m;

m2 − 3m− 6, if 6 ≤ m ≤ 8, and equality holds i� G ∼= B3
m;

48, if m = 9, and equality holds i� G ∼= B3
m, B

4
m;

m2 − 2m− 15, if 10 ≤ m ≤ 12, and equality holds i� G ∼= B4
m;

128, if m = 13, and equality holds i� G ∼= B4
m, B

5
m;

m2 −m− 28, if m ≥ 14, and equality holds i� G ∼= B5
m.

Proof. Suppose that x and y are the vertices with degree 3 in Θ(a, b, c) of G. Let Pa+1, Pb+1, Pc+1

be the three disjoint paths connecting x and y. We now proceed by considering the following three

possible cases.

Case 1. c ≥ b ≥ a ≥ 3.

Subcase 1.1. c = b = a ≥ 3.

We choose six edges such that each one is incident to x or y in Θ(a, b, c). Let e be one of these six

edges. Then ψ(e) ≤ m− 7. This property holds for the remaining �ve edges as well. Therefore,

Moe(G) ≤ 6(m− 7) + (m− 6)(m− 1) < m2 −m− 28.

Subcase 1.2. c ≥ b ≥ 4, a = 3.

Let e1 be one of the four edges incident to x or y in the paths Pb+1 and Pc+1, and e2 be one of the

two edges incident to x or y in the path Pa+1. Then ψ(e1) ≤ m− 8, and ψ(e2) ≤ m− 9. Hence,

Moe(G) ≤ 4(m− 8) + 2(m− 9) + (m− 6)(m− 1) < m2 −m− 28.

Case 2. c ≥ b ≥ a = 2.
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Subcase 2.1. c = b = a = 2.

The Subcase follows from Lemma 3.3.

Subcase 2.2. c ≥ 3, b = a = 2.

Let e1 be one of the four edges in the paths Pa+1 and Pb+1, and e2 be one of the two edges incident

to x or y in the path Pc+1. Then ψ(e1) ≤ m− 7, and ψ(e2) ≤ m− 6. Hence,

Moe(G) ≤ 4(m− 7) + 2(m− 6) + (m− 6)(m− 1) < m2 −m− 28.

Subcase 2.3. c ≥ b ≥ 3, a = 2.

Let e1 be one of the four edges incident to x or y in the paths Pb+1 and Pc+1, and e2 is an edge in

the path Pa+1. Then ψ(e1) ≤ m− 6, and ψ(e2) ≤ m− 9. Hence,

Moe(G) ≤ 4(m− 6) + 2(m− 9) + (m− 6)(m− 1) < m2 −m− 28.

Case 3. c ≥ b ≥ 2 ≥ a = 1.

Subcase 3.1. c = b = 3, a = 1.

By Lemma 3.2 and simple calculation, we have if m ≥ 14, then Moe(B
5
m) > Moe(B

4
m); if m = 13,

thenMoe(B
3
m) =Moe(B

4
m) > Moe(B

5
m); if 10 ≤ m ≤ 12, thenMoe(B

4
m) > Moe(B

5
m); if m = 9, then

Moe(B
3
m) = Moe(B

4
m) > Moe(B

5
m); if 6 ≤ m ≤ 8, Moe(B

3
m) > Moe(B

4
m) > Moe(B

5
m); if m = 5,

then Moe(B
3
m) =Moe(B

4
m).

Subcase 3.2. c = 3, b = 2, a = 1.

This Subcase follows from Lemma 3.4.

Subcase 3.3. c ≥ 4, b = 2, a = 1.

Let e1 = xy, e2 be one of the four edges in the paths Pb+1 and Pc+1 that are incident to x or y,

and e3 be one of the two edges in the middle of the path Pc+1. Then ψ(e1) = 0, ψ(e2) ≤ m− 5, and

ψ(e3) ≤ m− 6. Thus,

Moe(G) ≤ 4(m− 5) + 2(m− 6) + (m− 7)(m− 1) < m2 −m− 28.

Subcase 3.4. c ≥ 4, b = 3, a = 1.

Let e1 = xy, e2 be one of the two edges in the path Pb+1 that are incident to x or y, e3 be one

of the two edges in the path Pc+1 that are incident to x or y, and e4 be one of the two edges in the

middle of the path Pc+1. Then ψ(e1) = 0, ψ(e2) ≤ m− 4, ψ(e2) ≤ m− 5, and ψ(e4) ≤ m− 6. Hence,

Moe(G) ≤ 2(m− 4) + 2(m− 5) + 2(m− 6) + (m− 7)(m− 1) < m2 −m− 28.

The proof of Theorem 1.2 directly follows from Lemmas 3.1 and 3.5.
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