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abstract

This study introduces a novel approach to investigating Sombor indices and applying machine learn-

ing methods to assess the similarity of non-steroidal anti-in�ammatory drugs (NSAIDs). The research

aims to predict the structural similarities of nine commonly prescribed NSAIDs using a machine

learning technique, speci�cally a linear regression model. Initially, Sombor indices are calculated

for nine di�erent NSAID drugs, providing numerical representations of their molecular structures.

These indices are then used as features in a linear regression model trained to predict the similarity

values of drug combinations. The model's prediction performance is evaluated by comparing the

predicted similarity values with the actual similarity values. Python programming is employed to

verify accuracy and conduct error analysis.

Keywords: Sombor index, Machine Learning Algorithm, Liner regression model, Nonsteroidal anti-

in�ammatory drugs (NSAIDs)
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1. Introduction

All of us have occasionally used painkillers in our lives. Painkillers can be used to ease a variety of

acute and chronic pains. Sudden acute discomfort subsides once the underlying cause is resolved.

However, chronic pain can persist for weeks or even months at a time, leading to a prolonged reliance
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on opioids [9]. While the majority of people think that opioids are safe, long-term or excessive use

may be harmful to one's health. The human body has hundreds of nerves that communicate with one

another to send messages. Although nerves are found all over the body, their terminals, also known

as nerve endings, are restricted to the skin, gastrointestinal tract, and connective tissues. Analgesics,

the term used in medicine to describe painkillers, can work in one of two ways: Prostaglandins should

not be released since they block the brain's ability to perceive pain [20]. To prevent pain signals

from reaching the brain, sever the connection between the two nerves. These processes allow for the

temporary reduction or alleviation of pain with the use of medication. The two main categories into

which painkillers fall are non-prescription (over-the-counter) and prescription. The most popular

types of painkillers range depending on their capacity to reduce pain:

� Nonsteroidal anti-in�ammatory drugs (NSAIDs).

� Non-opioid relievers.

� Opioid relievers.

� Mixed painkillers.

This study focus on the analysis of NSAID drugs. Despite their widespread use, NSAIDs can not be

taken by everyone and can occasionally have undesirable side e�ects [5]. If you feel unease in one or

more muscles or joints in a particular body part, it may be valuable to use NSAID gels and creams

that you nourish into your skin because compared to tablets or capsules, they typically have less

negative e�ects . Chemical graph theory is a �eld of mathematical chemistry focused on the study

of chemical graphs, which represent and characterize chemical structures. [1, 21, 22] A best tool of

chemical graph theory is a topological index, that play a crucial rule in binding the mathematical

concept with chemistry [4, 3, 16]. While conducting this study, a diversity of pharmaceuticals are

engross, and then, by use invariants depending upon the degree of nodes, For each of these med-

ications, a variety of topological indicators are developed to ascertain their unique characteristics

and corresponding chemical processes. Chemists and pharmacists might use the resources o�ered by

graph theory for further study, such as Quantitative Structure-Activity/Property/Toxicity Relation-

ship (QSAR/QSPR/QSTR). QSAR modeling is employed to determine the biological activity of the

structures [18]. Husin et al. [11] gives the topological analysis of certain networks.

Lately, studies have concentrated on topological indexes for pharmaceutical, and QSAR has been

utilized to discuss and present a number of �ndings. Topological indices are important considerations

in the physio-chemical analysis of chemical compound structures [15, 19]. On a graph, a chemical

compound's constituents are often illustrated as vertices, while the bonds that link them are portrayed

as edges. As on the same steps, The NSAID drugs that are the subject of this investigation are

regarded as chemicals, and the topological indices are de�ned. Additionally, we show that there

is a high correlation between the obtained features and those of NSAIDs using regression analysis.

In chemistry, the concepts of valence and in graph theory idea of degree are somewhat related.

These days, QSPR plays an crucial part in the process of drug design. This is because they are

a more a�ordable substitute for the conventionally employed medium throughput in vitro and low

throughput in vivo testing. Environmental toxicity and drug development are two areas where

QSAR models are becoming more widely accepted as a valid scienti�c approach for anticipate and

characterization of biological poisonings of unexamined substances, as well as for predicting drug

toxicity, resistance, and physicochemical qualities. In the �eld of chemistry, drugs are portrayed as

networks of molecules, where each edge denotes a link between two atoms and each vertex represents

an atom [2, 25, 6].



Employing Machine Learning 107

Most of the time, the prices related to the experimental determinations are very substantial;

however, these costs can be reduced by using the QSPR modeling research. It is mostly utilized to

investigate biological processes in addition to the various facets related to the structures, which is

favorable for analyzing how a medicine molecule's structural components a�ect its biological actions.

With the aid of QSPR and QSAR techniques, models that can precisely predict the characteristics or

actions of organic molecules can be built [13, 10, 8]. However, in order to formulate realistic models,

a approach that is simultaneously skilled and e�ective of encoding the structures with predicted

molecular structure descriptors is essential. When creating models, with the help of descriptors might

equip an opportunity to zero down on particular traits that account for the activity or property of

interest in the compounds [23, 17].

2. Materials and Analytical Techniques

In this research, we implemented a detailed methodology to calculate Sombor invariats and create

Quantitative Structure-Property Relationship (QSPR) modeling for the molecular structures of vari-

ous NSAID drugs, as shown in Figure 1. First, we assembled a exhaustive database of NSAID drugs,

speci�cally Ketorolac, Meloxicam, Ibuprofen, Diclofenac, Nabumetone, Indomethacin, Naproxen,

Etodolac, Piroxicam and Famotidine from trustworthy original sources (Table 1) and performed

meticulous data preprocessing. Using established mathematical methods, particularly the edge par-

tition technique, we calculated the Sombor indices with the help of Maple software, resulting in a

set of descriptors. The dataset was then divided into subsets for testing, validation, and training in

order to aid in the creation and assessment of models. The QSPR models were built using regression

approach with speci�ed algorithms and executed with SPSS software. To verify the generalizability

of the models, we conducted external validation using an independent dataset. Our process included

a detailed interpretation of model results and comprehensive statistical analysis. To ensure repro-

ducibility, we provided access to the code and data. This meticulous approachensures the durability

of our QSPR models based on Sombor indices for NSAID drugs, focusing on chemical stability such

as boiling point (BP), refractivity (R), complexity (C), polarity (Pol), and molecular weight (MW).

Drugs Bp R Pol C MV MW

Ketorolac 493.2 70.19 26.67 376 198.2 83.1

Naproxen 403.9 64.85 24.81 277 195.3 72.1

Meloxicam 581.3 88.62 34.25 628 220.7 83.5

Indomethacin 499.4 94.81 36.64 506 275.6 83.3

Etodolac 507.9 80.46 31.66 400 248.3 84.9

Diclofenac 412 75.46 27.93 304 209.8 73.1

Ibuprofen 157 60.73 23.76 203 203.3 62.4

Nabumetone 372.3 68.43 26.17 262 213.5 64.3

Famotidine 662.4 80.46 31.66 469 191.7 100.3

Piroxicam 568.5 87.04 32.27 611 229.8 91.3

Table 1. Several NSAIDs and associated physical and chemical characteristics
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Fig. 1. Graphical representation of NASID

3. Graph Invariants and Computational Results

Many graph invariants based on degrees, often referred to as 'topological indices,' have been intro-

duced and extensively studied in both mathematical as well as in other related �elds [23, 17].

TI(G) =
∑

ij∈E(G)

F (di, dj). (1)

Here, F (a, b) is expressing a commutative function with attribute i, e F (a, b) = F (b, a) Sombor

and its reduced version [7] are

SO(G) =
∑

ij∈E(G)

√
d2i + d2j , (2)

SOred(G) =
∑

uvϵE(G)

√
(di − 1)2 + (dj − 1)2. (3)

Modi�ed Sombor is represented by Kulli and Gutman [12], as follow

mSOred(G) =
∑

uvϵE(G)

1√
d2i + d2j

.

Max and min Sombor invariants were presented by Mendez-Bermudez et al. in [14]

maxSO(G) =
∑

ijϵE(G)

max(di, dj),

minSO(G) =
∑

ijϵE(G)

min(di, dj).

Table 2 lists all the calculated values of NSAID for various types of Sombor invariants. Figures

2 and 3 show two and three dimensional representations of the computed topological indices for

di�erent NSAID.
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Chemical Compounds SO SOred mSO maxSO minSO

Ketorolac 73.53 44.87 6.148 57 45

Ibuprofen 48.48 28.61 4.73 27 39

Diclofenac 68.36 41.44 5.95 55 39

Meloxicam 92.2 58.90 6.96 75 51

Nabumetone 56.08 32.85 5.32 45 33

Naproxen 62.55 38.43 5.30 51 35

Indomethacin 95.89 59.64 7.79 77 55

Etodolac 82.99 53.39 5.26 68 46

Piroxicam 73.40 56.67 7.15 72 52

Famotidine 70.09 43.94 5.81 60 34

Table 2. Topological invariants of NSAID.

Fig. 2. 3D representation of NSAID via Sombor invariants

Fig. 3. 2D representation of NSAID via Sombor invariants

Table 2, represents the values of Sombor index (SO), reduce Sombor version (SOred), modi�ed

Sombor (mSO), maximum version of Sombor (maxSO) and minimum Sombor version (minSO),
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for above mentioned NSAIDs drugs. Figures 2 and 3, represents 2 and 3 dimensional graphical

representations of nine NSAIDs.

4. Regression Model and Structure Analysis

Regression models (RMs) are statistical methods employed to examine and illustrate the association

between a dependent variable and one or more independent variables [24]. Typical RMs consist of

linear RM, logistic RM, and polynomial RM, each appropriate for di�erent data types and research

questions. In this study, we will employ a linear regression model, as represented by equation 4, to

investigate the bonds between TIs and the physiochemical characteristics of NSAIDs.

P = α + β(TI). (4)

NSAID's characteristic are represented by C. TI is refer as independent variable, two regression

con�dent are a and b, we will use SPSS to �nd these constants. A �ve TIs for NSAID and their

attributes are analyzed using a linear regression model.

This section comprises of �ve subsections. Subsection 4.1, represents the linear regression model

of Sombor index with di�erent physicochemical properties of NSAIDs drugs. Similarly, Subsections

4.2 - 4.5, are for reduce, modi�ed, maximum and minimum Sombor indices, respectively.

4.1. Regression models for SO

BP = 6.416(SO) + 1.480,

POL = 0.266(SO) + 10.803,

C = 7.734(SO)− 156.10,

R = 0.660(SO) + 29.043,

MW = 0.471(SO)45.776,

MV = 1.482(SO) + 116.383.

4.2. Regression models for SOred

BP = 9.476(SOred) + 31.066,

POL = 0.361(SOred) + 13.043,

C = 12.166(SOred)− 154.500,

R = 0.945(SOred) + 33.736,

MW = 0.746(SOred) + 45.621,

MV = 1.641(SOred) + 143.342.
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4.3. Regression models for mSO

BP = 84.433(mSO)− 44.356,

POL = 3.5997(mSO) + 7.832,

C = 124.118(mSO)− 346.319,

R = 9.924(mSO) + 17.141,

MW = 6.301(mSO) + 41.759,

MV = 11.336(mSO) + 155.129.

4.4. Regression models for maxSO

BP = 7.5955(maxSO) + 76.044,

POL = 0.207(maxSO) + 14.796,

C = 8.4489(maxSO)− 92.3505,

R = 0.6698(maxSO) + 37.7846,

MW = 0.5594(maxSO) + 46.9939,

MV = 1.2811(maxSO) + 148.4177.

4.5. Regression models for minSO

BP = 6.1216(minSO) + 203.1737,

POL = 0.3975(minSO) + 12.5278,

C = 13.5871(minSO)− 179.2887,

R = 1.0657(minSO) + 31.3886,

MW = 0.5623(minSO) + 55.7063,

MV = 106.4717(minSO) + 2.7307.

5. Comparative Analysis of Predictive and Experimental Data

This section will discuss the comparison of experimental data to observed values derived from a

well-designed linear regression model. Values for the variables being considered are projected by

applying the predictive capability of the linear regression model. These projected values are then

carefully compared with the experimental data to ascertain how accurate the model is. A custom

Python application is developed to achieve this comparison and estimate the level of accuracy. This

application is written with precision in calculating the percentage error between the experimental

data and the expected values, which is indicative of how well the model captures the subtleties and

underlying trends seen in the empirical data. This approach will help better our knowledge of the

capabilities of statistical modeling techniques toward prediction power by identifying pros and cons

in the linear regression model with regards to approximating occurrences in the real world by this

systematic review.
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5.1. Analysis of Ketorolac drug

This subsection compares the exact value of the drug ketorolac with the values calculated from a

linear regression model from Sombor. An extensive Table 3 is shown which presents the comparison

between the calculated and actual values. Moreover, the corresponding Figures 4-9 illustrate the

accuracy of each value (B.P, Pol, C, R, MW, MV) along with their error, thus visually describing

the accuracy and reliability of the measurements.

Property Exact Value
Observed values

SO SOred mSO maxSO minSO

B.P 493.2 473.21 456.25 474.91 436.11 478.65

Pol 26.67 29.92 29.24 29.97 28.60 30.42

C 376 412.66 391.39 417 373.08 432.13

R 70.19 77.58 76.14 78.17 74.52 79.35

MW 83.1 80.41 79.09 80.51 78.23 81.01

MV 198.2 225.37 216.97 224.85 218.22 229.35

Table 3. Actual and observed values of Ketorolac

Fig. 4. Accuracy and error comparison for Ketorolac's B.P

Fig. 5. Accuracy and error comparison for Ketorolac's Pol
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Fig. 6. Accuracy and error comparison for Ketorolac's C

Fig. 7. Accuracy and error comparison for Ketorolac's R

Fig. 8. Accuracy and error comparison for Ketorolac's MW
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Fig. 9. Accuracy and error comparison for Ketorolac's MV

5.2. Analysis of diclofenac drug

Here, we initiate a comparative analysis between the actual value of Diclofenac drug and the noted

values garnered from our algorithm. An informative Table 4 is designed, de�ning the alignment of

the data points that are observed and real. There are companion graphs that show each value's

accuracy alongside the associated inaccuracy, o�ering a visual representation of the reliability and

�delity of the measurements in Figures 10-15

Property Exact Value
Observed values

SO SOred mSO maxSO minSO

B.P 412 440.08 423.75 458.02 423.48 441.92

Pol 27.93 28.58 28 29.25 28.18 28.03

C 304 372.60 349.66 392.18 360.09 350.61

R 75.46 74.16 72.90 76.19 73.41 72.95

MW 73.1 77.97 76.54 79.25 77.53 77.64

MV 209.8 217.69 211.35 225.58 215.93 212.97

Table 4. Actual and observed values of diclofenac

Fig. 10. Accuracy and error comparison for diclofenac's B.P
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Fig. 11. Accuracy and error comparison for diclofenac's Pol

Fig. 12. Accuracy and error comparison for diclofenac's C

Fig. 13. Accuracy and error comparison for diclofenac's R
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Fig. 14. Accuracy and error comparison for diclofenac's MW

Fig. 15. Accuracy and error comparison for diclofenac's MV

5.3. Analysis of naproxen drug

This section presents a comparison study of the exact value of Naproxen Drug and the observable

values that come from sombor based linear regression model. A detailed Table 5 that shows the

comparison of observed and real values is provided. In addition, Figures 16-21 that explain each

value's accuracy and associated error are included, providing a visual depiction of the measurements'

dependability and consistency.

Property Exact Value
Observed values

SO SOred mSO maxSO minSO

B.P 403.9 402.80 395.23 403.14 398.21 417.43

Pol 24.81 27.07 26.92 26.91 27.35 26.44

C 277 327.66 313.04 312.51 334.11 296.26

R 64.85 70.33 70.05 69.74 71.21 68.68

MW 72.1 75.24 74.29 75.15 76.165 75.38

MV 195.3 209.08 206.41 215.21 211.35 202.04

Table 5. Actual and Observed values of Naproxen
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Fig. 16. Accuracy and error comparison for naproxen's B.P

Fig. 17. Accuracy and error comparison for naproxen's Pol

Fig. 18. Accuracy and error comparison for naproxen's C
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Fig. 19. Accuracy and error comparison for naproxen's R

Fig. 20. Accuracy and error comparison for naproxen's MW

Fig. 21. Accuracy and error comparison for naproxen's MV

5.4. Analysis of meloxican drug

In this subsection, we compare the exact value of the drug Meloxicam with the observed values that

were discovered with the help of Smbor indices and linear regression model. Table 6, illustrates the
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alignment of observed and real data points is created. Furthermore, complimentary graphs 22-27 are

supplied to illustrate the precision and accuracy of each result in conjunction with the associated

error, allowing for a thorough comprehension of the measures' dependability and accuracy.

Property Exact Value
Observed values

SO SOred mSO maxSO minSO

B.P 581.3 593.48 589.20 543.30 549.82 515.38

Pol 34.25 34.79 34.31 32.89 32.321 32.80

C 628 557.52 562.08 517.54 489.99 513.65

R 88.62 89.94 89.40 86.21 83.43 83.45

MW 83.5 89.24 89.44 85.61 84.39 84.38

MV 220.7 253.13 239.50 234.03 238.83 245.74

Table 6. Actual and observed values of meloxican

Fig. 22. Accuracy and error comparison for meloxican's B.P

Fig. 23. Accuracy and error comparison for meloxican's Pol
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Fig. 24. Accuracy and error comparison for meloxican's C

Fig. 25. Accuracy and error comparison for meloxican's R

Fig. 26. Accuracy and error comparison for meloxican's MW
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Fig. 27. Accuracy and error comparison for meloxican's MV

5.5. Analysis of nabumetone drug

We compare the exact value of the medication naproxenone with the observed values derived from

empirical analysis in this subsection. A comprehensive Table 7 is created, showing the agreement

between observed and real data points. Furthermore, graphical depictions 28-33 are incorporated to

illustrate the precision of every number in conjunction with its associated error, providing valuable

perspectives on the dependability and uniformity of the measurements.

Property Exact Value
Observed values

SO SOred mSO maxSO minSO

B.P 372.3 361.29 342.35 404.83 360.31 405.19

Pol 26.17 25.38 24.90 26.98 27.35 25.65

C 262 277.62 245.15 313.99 334.11 269.09

R 68.43 66.06 64.78 69.94 71.21 66.56

MW 64.3 72.19 70.13 75.28 76.16 74.26

MV 213.5 199.49 197.25 215.44 211.35 196.58

Table 7. Actual and observed values of nabumetone

Fig. 28. Accuracy and error comparison for nabumetone's B.P
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Fig. 29. Accuracy and error comparison for nabumetone's Pol

Fig. 30. Accuracy and error comparison for nabumetone's C

Fig. 31. Accuracy and error comparison for nabumetone's R
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Fig. 32. Accuracy and error comparison for nabumetone's MW

Fig. 33. Accuracy and error comparison for nabumetone's MV

5.6. Analysis of indomethanic drug

Here, we will compare the exact value of the medication indomethacin with the observed values

obtained from empirical research in this subsection. A detailed Table 8 is shown that shows how the

observed and real data points line up. In addition, graphs 34-39 that show each value's accuracy and

related error are included, providing a visual depiction of the measures' dependability and precision.

Property Exact Value
Observed values

SO SOred mSO maxSO minSO

B.P 499.4 616.71 596.21 613.38 562.45 539.86

Pol 36.4 35.73 34.57 35.87 32.74 34.39

C 506 585.51 571.08 620.56 502.98 568

R 94.81 125.59 90.10 94.45 85.34 90

MW 83.3 90.94 90.11 90.84 85.08 86.63

MV 275.6 258.49 241.21 243.44 241.12 256,66

Table 8. Actual and observed values of indomethanic



124 A. R. Virk I. Ahmed and M. Cancan

Fig. 34. Accuracy and error comparison for indomethanic's B.P

Fig. 35. Accuracy and error comparison for indomethanic's Pol

Fig. 36. Accuracy and error comparison for indomethanic's C



Employing Machine Learning 125

Fig. 37. Accuracy and error comparison for indomethanic's R

Fig. 38. Accuracy and error comparison for indomethanic's MW

Fig. 39. Accuracy and error comparison for indomethanic's MV

5.7. Analysis of famotidine Drug

This subsection compares the exact value of the medication famotidine with the observed values with

the help of linear regression model. A comprehensive Table 9 is created, showing the alliance between
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observed and real data points. Moreover, Figures 40-45 are included to demonstrate the precision

and accuracy of every result in conjunction with the corresponding error percentage, so enabling a

thorough comprehension of the dependability and accuracy of the measurements.

Property Exact Value
Observed values

SO SOred mSO maxSO minSO

B.P 662.4 451.18 447.44 446.20 455.06 411.31

Pol 31.66 29.03 28.91 28.75 29.22 26.04

C 469 385.98 380.07 374.81 392.57 282.67

R 80.46 75.30 75.26 74.80 76.17 67.62

MW 100.3 78.79 78.40 78.37 79.25 74.82

MV 191.7 220.26 215.45 221 221.65 199.32

Table 9. Actual and observed values of famotidine

Fig. 40. Accuracy and error comparison for famotidine's B.P

Fig. 41. Accuracy and error comparison for famotidine's Pol
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Fig. 42. Accuracy and error comparison for famotidine's C

Fig. 43. Accuracy and error comparison for famotidine's R

Fig. 44. Accuracy and error comparison for famotidine's MW
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Fig. 45. Accuracy and error comparison for famotidine's MV

5.8. Analysis of etodolac drug

This subsection presents a comparative study between the exact value of the medication etodolac

and the observed values derived from empirical research. A detailed table 10 that shows how the

observed and real data points line up is provided. Furthermore, Figures 46-51 show each value's

accuracy together with the corresponding error percentage are included, providing information about

the consistency and dependability of the measurements.

Property Exact Value
Observed values

SO SOred mSO maxSO minSO

B.P 507.9 533.94 536.99 399.76 505.6 484.77

Pol 31.66 32.38 32.32 26.77 30.87 30.81

C 400 485.74 495.04 306.54 444.53 445.72

R 80.46 83.82 84.19 69.34 80.58 80.41

MW 84.9 84.86 85.45 74.90 81.99 81.57

MV 248.3 239.37 230.95 214.76 230.81 232.08

Table 10. Actual and observed values of etodolac

Fig. 46. Accuracy and error comparison for etodolac's B.P
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Fig. 47. Accuracy and error comparison for etodolac's Pol

Fig. 48. Accuracy and error comparison for etodolac's C

Fig. 49. Accuracy and error comparison for etodolac's R
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Fig. 50. Accuracy and error comparison for etodolac's MW

Fig. 51. Accuracy and error comparison for etodolac's MV

5.9. Analysis of piroxicam drug

We start a comparative analysis in this sub section between the theoretical value of Piroxicam Drug

and the observed values obtained from empirical study. A detailed Table 11 is prepared, which shows

the observed and actual data points alignment. Figures 52-57 give the correctness of each value with

the corresponding error percentage, thereby giving a detailed assessment of the measures' reliability

and accuracy.

Property Exact Value
Observed values

SO SOred mSO maxSO minSO

B.P 568.5 472.41 568.07 559.34 530.87 521.50

Pol 32.27 29.89 33.50 33.57 31.7 33.20

C 611 411.58 534.95 541.12 470.51 527.24

R 87.04 77.49 87.29 88.10 82.78 86.81

MW 91.3 80.35 87.90 86.81 83.36 84.85

MV 229.8 225.16 236.34 236.18 235.39 248.47

Table 11. Actual and observed values of piroxicam
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Fig. 52. Accuracy and error comparison for piroxicam's B.P

Fig. 53. Accuracy and error comparison for piroxicam's Pol

Fig. 54. Accuracy and error comparison for piroxicam's C
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Fig. 55. Accuracy and error comparison for piroxicam's R

Fig. 56. Accuracy and error comparison for piroxicam's MW

Fig. 57. Accuracy and error comparison for piroxicam's MV

6. Conclusion

The topological index allows for the assignment of a single number to a structure. To understand

the connection between property and quantitative structure activity, topological indices need to be
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known. Our work shed light on the connections of physicochemical properties of NSAIDs with various

Sombor index versions, thereby showing the complex interrelation between these variables. We have

ascertained the direction and strength of correlations between speci�c pharmacological properties

and the generated topological indices by using machine learning techniques to compute and analyze

the observed values. The following numbers indicate the underlying drugs' best accuracy rate.

Drug Sombor Verson Property Accuracy Error

Ketorolac maxSO C 99.22% 0.78%

Diclofenac minSO Pol 99.64% 0.36%

Naproxen mSO B.P 99.81% 0.19%

Meloxicam Sored R 99.12% 0.88%

Nabumetone maxSO MV 99.09% 0.88%

Indomethacin mSO R 99.62% 0.38%

Famotidine minSO MV 96.03% 3.97%

Etodolac minSO R 99.94% 0.05%

Piroxicam SOred B.P 99.92% 0.08%

These results are, therefore, very important in our understanding of how physicochemical prop-

erties of drugs play a role in the molecular structure and behavior of drugs in biological systems.

The results have very practical applications for optimization purposes, medication development, and

pharmacological outcome prediction and are, therefore, very important contributions to the phar-

maceutical research �eld. These results can be expanded upon by additional study to improve drug

development techniques and the pharmaceutical industry's capacity to provide stronger and more

e�ective medications

Data Availability

Physicochemical properties of drugs have been taken from ChemSpider. research data repositories

can be found at www.chemspider.com
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