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abstract

A proper coloring assigns distinct colors to the adjacent vertices of a graph. An equitable near proper

coloring of a graph G is an improper coloring in which neighbouring vertices are allowed to receive

the same color such that the cardinalities of two distinct color classes di�er by not more than one

and the number of monochromatic edges is minimised by giving certain restrictions on the number

of color classes that can have an edge between them. This paper discusses the equitable near proper

coloring of line, middle, and total graphs of certain graph classes, such as paths, cycles, sunlet graphs,

star graphs, and gear graphs.
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1. Introduction

All graphs considered in this paper are �nite, connected, simple, and undirected. For basic termi-

nologies and notations, we refer to [1, 10].

Graph coloring is an extensively studied area in graph theory. A proper vertex coloring is an

assignment of colors to the vertices of the graph in which neighbouring vertices receive distinct

colors. Equitable coloring of graphs was introduced in 1973 (see [9]) and de�ned as a proper vertex

coloring in which the cardinalities of the color classes di�er by not more than 1. The least integer

value k for which G is equitably k colorable is known as the equitable chromatic number denoted by
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χe(G).

An improper coloring or a defective coloring of G allows the adjacent vertices to receive the same

colors. The resulting monochromatic edges are also called bad edges. A near proper coloring of G is

a defective coloring in which the number of bad edges is minimised by restricting the adjacency of

elements within the color classes [8]. A defective coloring problem arises when there is a situation

that does not have enough resources. When there are insu�cient resources to color a graph, near

proper coloring plays an essential role in the literature. Motivated by the above studies, the notion

of equitable near proper coloring is introduced in [2] and stated as follows.

De�nition 1.1. [2] An equitable near proper coloring (or ENP k-coloring) of a graph G is a defective

coloring in which the set of vertices of G can be partitioned into k color classes V1, V2, . . . , Vk such

that ||Vi|−|Vj||≤ 1 for any 1 ≤ i ̸= j ≤ k and the number of bad edges is minimised by restricting

the number of color classes that can have adjacency among their elements.

De�nition 1.2. The minimum number of monochromatic edges or bad edges resulting from an

ENP k-coloring of G is de�ned as equitable defective number and is denoted by bkχe
(G).

In an ENP coloring, the vertex set is partitioned into k color classes by the integer partitioning of

n, the order of the graph such that n = a1 + a2 + . . . + ak where |ai − aj|≤ 1; 1 ≤ i ̸= j ≤ k and

ai is the cardinality of the i-th color class Vi of G. When the available number of colors increases,

the cardinality of each color class decreases to maintain the equitability constraint. The colors can

be suitably assigned to the vertices in such a manner that the number of resulting monochromatic

edges is minimum. This coloring technique is used for all graph classes under consideration to get

the minimum possible number of monochromatic edges in all cases. Integer partitioning technique is

used as the fundamental method in the study to suitably identifying the optimal coloring schema. To

ensure the optimality, the equitable integer partitioning technique is followed to decide the cardinality

of color classes.

Graphs with equitable chromatic number 2 are excluded from this discussion, as coloring a graph

with only one color makes all edges monochromatic. Hence, we consider the cases when χe(G) ≥ 3.

Throughout the discussion, {c1, c2, . . . , ck} be the k available colors, and {V1, V2, . . . , Vk} are the

corresponding color classes. In an ENP-coloring, all possible values for k where 2 ≤ k ≤ χe(G) − 1

are considered. The function c(vi) represents the color assigned to the vertex vi. The monochromatic

edges resulting from an ENP k-coloring are represented by dotted lines.

ENP coloring o�ers a broad scope of research. The studies in this direction can be viewed in [4,

3, 5].

2. ENP k-Coloring of Line graph, Middle graph and Total Graph

Let G be a graph with vertex set V (G) and edge set E(G). The line graph of G, denoted by L(G), is

the graph whose vertex set is the edge set of G with two vertices of L(G) that are adjacent whenever

the corresponding edges of G are adjacent.

The middle graph of G, denoted by M(G), is the graph whose vertex set is V (G) ∪ E(G), where

two vertices in M(G) are adjacent if and only if they are either adjacent edges of G or one is a vertex

and the other is an edge incident with it.

The total graph of G, denoted by T (G), has vertex set V (G)∪E(G), and the edges join all elements
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of this vertex set that are adjacent or incident in G.

This paper discusses the ENP k-coloring of the line, middle, and total graph of paths, cycles, sunlet

graphs, star graphs, and gear graphs and also investigates the corresponding equitable defective

number. Throughout the discussion, let {c1, c2, · · · , ck} be the available colors and {V1, V2, · · · , Vk}
be the corresponding color classes. In an ENP k-coloring, we consider all possible cases for k where

1 < k < χe(G). The bad edges resulting from an ENP k-coloring are represented by dotted lines.

2.1. ENP k-coloring of path graph families

The line graph of a path graph of order n is a path graph of order n − 1, and hence the equitable

chromatic number is 2. In an ENP k-coloring, we consider only the graphs with χe(G) ≥ 3, and thus

the line graph of paths is omitted from our study.

The equitable coloring of the middle graph of a path contains three colors. The following theorem

describes the ENP k-coloring of the middle graph of a path graph.

Theorem 2.1. For a path Pn where n ≥ 3, b2χe
(M(Pn)) = n− 2.

Proof. Consider V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {e1, e2, . . . , en−1}. Then, V ((M(Pn)) =

V (Pn)∪E(Pn). Thus, M(Pn) contains 2n− 1 vertices, and observe that χe(M(Pn)) = 3. In an ENP

k-coloring, only one case k = 2 is to be considered.

It is possible to partition the vertex set into two subsets, V1 = {v1, v2, . . . , vn} and V2 = {e1, e2, . . . ,
en−1}. Now, assign the vertices in V1 with the color c1 and V2 with the color c2. Since ei ; 1 ≤ i ≤ n−1

forms a path of order n− 2, bkχe
(M(Pn)) = n− 2, as n− 2 monochromatic edges are formed among

the vertices ei.

Another possible way of an ENP k-coloring is de�ned as follows:

c(vi) =

{
c1, if i ≡ 1, 2mod4;

c2, if i ≡ 0, 3mod4.

This coloring results in n − 2 monochromatic edges of the form viei ; 1 ≤ i ≤ n − 1 or eivj ; 1 ≤
i ≤ n−1 , 1 ≤ j ≤ n. It also yields in n−2 monochromatic edges, and thus bkχe

(M(Pn)) = n−2.

Figure 1 depicts an ENP 2-coloring of the middle graph of paths.

c1

v1
c2
e1

c1

v2
c2
e2

c1

v3
c2
e3

c1

v4

Fig. 1. M(P4) with ENP 2-coloring

The total graph of a path contains 2n − 1 vertices and χe(T (Pn)) = 3. The succeeding theorem

addresses the ENP k-coloring of the total graph of paths when k = 2.

Theorem 2.2. For a path Pn where n ≥ 3, b2χe
(T (Pn)) = n− 1.

Proof. Let V ((T (Pn)) = {v1, v2, . . . , vn, e1, e2, . . . , en−1}, and in an ENP k-coloring, the below situ-

ations are investigated.

Case 1: When n is even, we partition the vertex set V (T (Pn)) as follows:
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V1 = {v1, e1, v3, e3, . . . , vn−1en−1} and V2 = {v2, e2, v4, e4, . . . , vn−2, en−2, vn}.
Case 2: When n is odd, V (T (Pn)) is partitioned as below:

V1 = {v1, e1, v3, e3, . . . , vn−2en−2, vn} and V2 = {v2, e2, v4, e4, . . . , vn−1, en−1}.
In both cases, it is evident that ||V1|−|V2||= 1. Now, assigning the vertices of V1 with the color c1

and V2 with the color c2, we observe that every edge viei ; 1 ≤ i ≤ n − 1 is a monochromatic edge,

and hence the equitable defective number is n− 1.

Figure 2 depicts an ENP 2-coloring of the total graph of paths.

c1

v1
c1
e1

c2

v2
c2
e2

c1

v3
c1
e3

c2

v4
c2
e4

c1

v5

Fig. 2. T (P5) with ENP 2-coloring

2.2. ENP k-coloring of cycle graph families

The line graph of a cycle Cn is the cycle Cn itself. Hence, the equitable chromatic number is 2 when

n is even and 3 when n is odd. When k = 2 and n is odd, the equitable defective number is 1.

The subsequent theorem examines the ENP k-coloring of the middle graph of cycles for k = 2.

Theorem 2.3. For a cycle Cn, b
k
χe
(M(Cn)) = n.

Proof. Let V (Cn) = {v1, v2, · · · , vn} and E(Cn) = {e1, e2, · · · , en}. Now,
V (M(Cn)) = V (Cn)∪E(Cn), and note that χe(M(Cn)) = 3, and thus the ENP k-coloring considers

only one case k = 2. In the �rst possible ENP k-coloring, assign all of the vertices vi and ei with

the colors c1 and c2 respectively, and it can be observed that every edge between the vertices ei is a

monochromatic edge, and thus the equitable defective number is n.

The second possible ENP k-coloring may be performed as in Theorem 2.1, and this coloring also

produces n monochromatic edges. Additionally, there are n monochromatic edges of the form viei ;

1 ≤ i ≤ n for even n; however, for odd n, there are n − 1 monochromatic edges of the form viei ;

1 ≤ i ≤ n− 1 and one en−1en monochromatic edge. Thus, b2χe
(M(Cn)) = n.

Figure 3 depicts an ENP 2-coloring of the middle graph of cycles.

The following theorem describes the ENP k-coloring of the total graph T (Cn) of a cycle.

Theorem 2.4. For T (Cn) where n ≥ 3,

bkχe
(T (Cn)) =


n; if k = 2, n is even,

n+ 1; if k = 2, n is odd,

1; if k = 3.

Proof. Note that χe(T (Cn)) = 3 when n ≡ 0mod3 and 4 otherwise. Hence, the following cases need

to be addressed here.

Case 1: Assume that k = 2 and n is even. We partition the vertex set so that V1 = {v1, e1, v3, e3, . . .
vn−1, en−1} and V2 = {v2, e2, v4, e4, . . . vn, en}. Now, |V1|= |V2|, and every viei edge, where 1 ≤ i ≤ n,

is a monochromatic edge. Thus, the equitable defective number is n.
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(a) M(C5) with ENP 2-coloring
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(b) M(C6) with ENP 2-coloring

Fig. 3. An ENP 2-coloring of middle graph of cycles

Case 2: Assume that k = 2 and n is odd. Let us partition the vertex set such that V1 =

{v1, e1, v3, e3, . . . vn−2, en−2, vn} and V2 = {v2, e2, v4, e4, . . . vn−1, en−1, en}. Here, |V1|= |V2| and n − 1

monochromatic edges are obtained connecting vi and ei ; 1 ≤ i ≤ n− 1. Furthermore, another v1vn
and en−1en monochromatic edges are obtained. Thus, the equitable defective number, in this case,

is n+ 1 (see Figure 4 for illustration).

Case 3: When k = 3 and n ̸≡ 0mod3, assign the vertices with the three available colors in a cyclic

order by considering the equitability condition. Here, the equitable defective number is 1.

Figure 4 depicts an ENP 2-coloring of the total graph of cycles.

c1 v1

c2

e4
c2

v4

c1e3

c1v3

c2
e2

c2
v2

c1 e1

(a) T (C4) with ENP 2-coloring

c1 v1

c2 e5
c1

v5

c2

e4

c2v4

c1e3

c1v3
c2
e2

c2
v2

c1 e1

(b) T (C5) with ENP 2-coloring

Fig. 4. An ENP 2-coloring of total graph of cycles

2.3. ENP k-coloring of sunlet graph families

A sunlet graph denoted by Sln is obtained by attaching n pendant edges to a cycle Cn. ENP k-

coloring of sunlet graphs is discussed in [4]. In a sunlet graph, the vertices corresponding to Cn are

termed as rim vertices.

The following theorem investigates the ENP k-coloring of the line graph of a sunlet graph.
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Theorem 2.5. The equitable defective number of L(Sln), where n ≥ 3, is n.

Proof. Consider V (L(Sln)) = {v1, v2, . . . , vn, u1, u2, . . . , un}, where vi induces a cycle of order n, and
ui are the vertices that are adjacent with both vi and vi+1. The equitable coloring of L(Sln) contains

3 colors (see [7]), and thus, in an ENP k-coloring, only one case as k = 2 is considered. Let c1 and

c2 be the two available colors, and the following cases need to be considered.

Case 1: Let n be even. Then, the vi ; 1 ≤ i ≤ n vertices can be properly colored with the two avail-

able colors. When the remaining vertices are assigned the same colors equitably, n monochromatic

edges are obtained between vi and ui ; 1 ≤ i ≤ n.

Case 2: Let n be odd and follow the same coloring procedure as in Case 1. That is, assign v1
with the color c1, v2 with the color c2, and so on. Since n is odd, both v1 and vn receive the same

color, and thus there is a v1vn monochromatic edge on the rim. Now, the vertex adjacent to both v1
and vn receives an alternate color from the color assigned to both of them. Further, the remaining

vertices can be assigned in an equitable manner. Thus, n − 1 monochromatic edges are obtained

between the vertices vi and ui, and the equitable defective number is n.

Combining the above two cases, b2χe
(L(Sln)) = n.

An ENP 2-coloring of the line graph of sunlet graphs is illustrated in Figure 5.

c1
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c1
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c1
c2

c2

(a) ENP 2-coloring of L(Sl7)
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c1
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c1

c2
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c1

c2c1

c2

c1

c2 c1

c2

(b) ENP 2-coloring of L(Sl8)

Fig. 5. An ENP 2-coloring of sunlet graphs

An ENP k-coloring of the middle graph of a sunlet graph for distinct values of n is discussed in

the next theorem.

Theorem 2.6. For a sunlet graph Sln, where n ≥ 3,

bkχe
(M(Sln)) =

{
2n; if k = 2,

n; if k = 3.

Proof. Consider V (M(Sln)) = {v1, v2, . . . , vn, u1, u2, . . . , un, v
′
1, v

′
2, . . . , v

′
n, u

′
1, u

′
2, . . . , u

′
n}. Here, the

vertices v1, u1, v2, u2, . . . , vn, un forms an inner 2n - cycle termed as the rim vertices of M(Sln), and

each v′i; 1 ≤ i ≤ n is connected to the corresponding vi; 1 ≤ i ≤ n forms an outer n - cycle. Again, u′
i;

1 ≤ i ≤ n are the pendant vertices connected to the corresponding v′i. Recall that χe(M(Sln)) = 4

(see [7]), and in an ENP k-coloring, two cases are to be considered as k = 2 and k = 3.
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Case 1: Assume k = 2 and we partition the vertex set as follows.

V1 = {u1, u2, . . . , un, u
′
1, u

′
2, . . . , u

′
n} and V2 = {v1, v2, . . . , vn, v′1, v′2, . . . , v′n}. Assign the vertices in

V1 with the color c1 and V2 with the color c2. Now, |V1|= |V2|, and n monochromatic edges generated

among the vertices ui. Additionally, the vertices vi and v′i have n monochromatic edges connecting

them, where 1 ≤ i ≤ n. Thus, the equitable defective number is 2n.

Case 2: Let k = 3. Among the 4n vertices of M(Sln), 2n vertices are on the rim. Assign all the

rim vertices with the three available colors, say c1, c2, and c3, in a cyclic order, and consider the

following three subcases.

Subcase 2.1: When n ≡ 0mod3, 2n ≡ 0mod3, and assign the rim vertices with the three colors in a

cyclic order such that each color repeats exactly 2n
3
times without creating any monochromatic edges.

Now, assign the vertices v′i with the same color received by the vertices vi, and n monochromatic

edges are obtained in between the vertices vi and v′i ; 1 ≤ i ≤ n. Further, the vertices u′
i can

be equitably assigned these three colors without creating monochromatic edges. Thus, there are n

monochromatic edges.

Subcase 2.2: When n ≡ 1mod3, 2n ≡ 2mod3, follow the same coloring procedure for the rim

vertices vi and ui where 1 ≤ i ≤ n creates a u1un monochromatic edge. Since 2n ≡ 2mod3, to attain

the equitability, color c3 can be assigned to v′1. The remaining v′i; (2 ≤ i ≤ n) can receive the same

color received by vi to obtain n− 1 monochromatic edges of the form viv
′
i (2 ≤ i ≤ n). Further, each

u′
i; (1 ≤ i ≤ n) can be received any of the three colors equitably with the condition that v′i and the

corresponding u′
i receive di�erent colors leading to the equitable defective number as n.

Subcase 2.3: When n ≡ 2mod3, 2n ≡ 1mod3, and the rim vertices follow the same coloring

pattern as in the previous subcases leads to a v1un monochromatic edge. Further, the remaining

vertices v′i and u′
i can receive any of the three colors by considering the equitability condition, creates

n− 1 monochromatic edges as in Subcase 2.2. Hence, the equitable defective number in this case is

n.

Thus, combining the above three subcases, b3χe
(M(Sln)) = n.

An ENP 2-coloring of the middle graph of the sunlet graphs is illustrated in Figure 6.
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Fig. 6. An ENP 2-coloring of middle graph of sunlet graphs
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The following theorem discusses the ENP k-coloring of the total graph of sunlet graphs for di�erent

parities of n and for k = 2, 3.

Theorem 2.7. For T (Sln) where n ≥ 3,

bkχe
(T (Sln)) =


3n; if k = 2,

n; if k = 3, n ≡ 0, 2mod3,

n+ 1; if k = 3, n ≡ 1mod3.

Proof. Consider the vertex sets and the adjacencies as in Theorem 2.6. Observe that χe(T (Sln)) = 4

(see [7]); thus, in an ENP k-coloring, the following cases need to be considered.

Case 1: When k = 2, repeat the same coloring procedure as in Case-1 of Theorem 2.6, and we

obtain the equitable defective number as 3n.

Case 2: When k = 3, follow the same coloring pattern as in Case-2 of Theorem 2.6 by considering

the equitability condition and maximising the properness of the coloring, there are the following

observations.

Subcase 2.1: When n ≡ 0modk, n monochromatic edges are obtained of the form viv
′
i ; 1 ≤ i ≤ n

as in Theorem 2.6.

Subcase 2.2: When n ≡ 1modk, two monochromatic edges are obtained, one among the vertices

vi and one among the vertices ui. Apart from that, the vertices vi and v′i ; 2 ≤ i ≤ n− 1 have n− 1

monochromatic edges connecting them. Thus, the equitable defective number is n + 1. (See Figure

7 for reference.)

Subcase 2.3: When n ≡ 2modk, we get the same n− 1 monochromatic edges as in Subcase 2.2

and an additional monochromatic edge v1un. Thus, the equitable defective number is n. (refer to

Figure 7 for illustration.)

An ENP 3-coloring of the total graph of sunlet graphs is illustrated in Figure 7.
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(a) T (Sl4) with ENP 3-coloring
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(b) T (Sl5) with ENP 3-coloring

Fig. 7. An ENP 3-coloring of total graph of sunlet graphs
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2.4. ENP k-coloring of star graph families

The line graph of a star graph K1,n is a complete graph of order n. The ENP k-coloring and the

corresponding equitable defective number of complete graphs are discussed in [2] and as follows.

Theorem 2.8. [2] For a complete graph Kn, the equitable defective number is given by

bkχe
(Kn) =

1

2

{
r
⌈n
k

⌉ ⌈n
k
− 1

⌉
+ (k − r)

⌊n
k

⌋ ⌊n
k
− 1

⌋}
;

where n ≡ rmodk and r is the number of color classes with maximum cardinality.

The following theorem describes the ENP k-coloring of the middle graph of star graphs.

Theorem 2.9. For M(K1,n),

bkχe
(M(K1,n)) =

{
bkχe

(Kn+1); if k ≥ 2; k ̸= n,

1; if k = n.

Proof. Consider V (K1,n) = {v, v1, v2, . . . , vn} and E(K1,n) = {e1, e2, . . . , en}. Consider u1, u2, . . . , un

as the corresponding vertex set of E(K1,n). These edges form a clique of order n in M(K1,n), and

hence χe(M(K1,n)) = n + 1 as the vertices v, u1, u2, . . . , un induce a complete graph of order n + 1.

Thus, in an ENP k-coloring, 2 ≤ k ≤ n and the following cases need to be considered.

Case 1: When k ≥ 2 and k ̸= n, assign the k available colors, say c1, c2, . . . , ck alternately to the

vertices ui ; 1 ≤ i ≤ n. Now, color the vi vertices so that each ui and the corresponding vi receive

di�erent colors in an equitable manner. Also, assign the vertex v with any available colors such that

v receives the least used color assigned to the vertices ui. Since, {v, u1, u2, . . . , un} induces a clique

of order n+ 1, the equitable defective number in this case is bkχe
(Kn+1).

Case 2: When k = n, assign the vertices ui using the k colors, and the corresponding vertices vi
can be assigned using the same colors such that both ui and the corresponding vi receive di�erent

colors, and as a result of this assignment no monochromatic edges obtained. Further, assign the

vertex v with any available colors; only one vui monochromatic edge is obtained, and thus the

equitable defective number is 1.

Figure 8 depicts an ENP 2-coloring of the middle graph of star graphs.

The subsequent theorem determines the equitable defective number of the total graph of star

graphs for distinct values of n and for various values of k.

Theorem 2.10. For the total graph T (K1,n) of a star graph where n ≥ 3,

bkχe
(T (K1,n)) =


bkχe

(Kn) + n; if k = 2,

bkχe
(Kn) + ⌊2n+1

k
⌋ − 1; if k ≥ 3; k ̸= n,

2; if k = n.

Proof. Consider the vertices as in Theorem 2.9. Note that χe(T (K1,n)) = n+1 as {v, u1, u2, . . . , un}
induces a clique of order n + 1. The vertices u1, u2, . . . , un induce a clique of order n, and let

v1, v2, . . . , vn be the vertices that are adjacent to u1, u2, . . . , un, respectively. In T (K1,n), the vertex

v is adjacent to all the vertices ui and vi (1 ≤ i ≤ n). The ENP k-coloring of complete graphs is

discussed in Theorem 2.8. Hence, the following cases need to be addressed here.
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c1

c1 c2 c1 c2

c2 c1 c2 c1

(a) M(K1,4) with ENP 2-coloring

c2

c1 c2 c1 c2 c1

c2 c1 c2 c1 c2

(b) M(K1,5) with ENP 2-coloring

Fig. 8. An ENP 2-coloring of middle graph of star graphs

Case 1: When k = 2, assign the two available colors, say c1 and c2, for every alternate vertex of

the complete graph. Further, if c(ui) = c1 (or c2), then assign c(vi) = c2 (or c1). Now, c(v) = c1 or

c2, and based on this assignment, the following observations are to be noted.

When n is even, n
2
monochromatic edges of the form vui and n

2
monochromatic edges of the

form vvi are obtained. When n is odd, we get ⌊n
2
⌋ monochromatic edges of the form vui and ⌈n

2
⌉

monochromatic edges of the form vvi. Consequently, in both cases, the equitable defective number

is bkχe
(Kn) + n.

Case 2: When k ≥ 3 and k ̸= n, we can assign all the vertices with the k available colors in an

equitable manner as follows. When the vertex set is partitioned into k color classes, each color class

consists of either ⌊2n+1
k

⌋ vertices or ⌈2n+1
k

⌉ vertices. If the vertex v is placed in the color class with

minimum cardinality ⌊2n+1
k

⌋, we obtain ⌊2n+1
k

⌋ − 1 monochromatic edges. Hence, together with the

monochromatic edges from Kn, the equitable defective number is bkχe
(Kn) + ⌊2n+1

k
⌋ − 1.

Case 3: When k = n, we can properly color the complete graph of order n with the k available

colors, and the vertices v1, v2, . . . , vn can also be properly colored with these k colors. Further, assign

the vertex v with any of the k available colors, from which we obtain two monochromatic edges.

Figure 9 depicts the ENP 3-coloring of the total graph of star graphs.

c3

c1 c2 c3 c1

c2 c3 c1 c2

(a) T (K1,4)with ENP 3-coloring

c3

c1 c2 c3 c1 c2

c2 c3 c1 c2 c1

(b) T (K1,5) with ENP 3-coloring

Fig. 9. An ENP 3-coloring of total graph of star graphs



Equitable Coloring of Derived Graphs 63

2.5. ENP k-coloring of gear graph families

A gear graph G1,n, which is a bipartite wheel graph, is obtained from a wheel graph by inserting a

vertex between the rim vertices. That is, a gear graph is formed by adding a vertex between each

pair of adjacent vertices of the outer cycle.

The subsequent theorem examines the ENP k-coloring of the line graph of a gear graph for di�erent

parities of n.

Theorem 2.11. For L(G1,n),

bkχe
((L(G1,n)) =

{
bkχe

(Kn) + n; if k = 2,

bkχe
(Kn); if k ≥ 3.

Proof. Let V (G1,n) = {v, v1, v2, . . . , v2n} and E(G1,n) = {e1, e2, . . . , en, e′1, e′2 . . . ,
e′2n} such that ei = vv2i−1 ; 1 ≤ i ≤ n, e′i = vivi+1 ; 1 ≤ i ≤ 2n− 1, and e′2n = v2nv1. Consequently,

V (L(G1,n)) = {e1, e2, . . . , en, e′1, e′2 . . . , e′2n}. Since ei ; 1 ≤ i ≤ n form a clique of order n in L(G1,n),

χe(L(G1,n)) = n. Subsequently, in an ENP k-coloring, consider 2 ≤ k ≤ n − 1 and address the

following cases.

Case 1: Assume k = 2 and assign the vertices ei with the two available colors, say c1 and c2
alternately. This assignment yields the same amount of monochromatic edges as in the equitable

defective number of a complete graph, that is stated in Theorem 2.8. Further, assign the vertices e′j
with the same available colors in a cyclic order satisfying the equitability condition, and we obtain

n monochromatic edges in between the vertices ei and e′j ; 1 ≤ i, j′ ≤ n. Thus, bkχe
(Kn)+n gives the

equitable defective number in this case.

Case 2: When k ≥ 3, assign the vertices ei with the k available colors, bkχe
(Kn) monochromatic

edges are obtained. By the de�nition of L(G1,n), each ei is adjacent to two distinct vertices e
′
j, which

forms a K3 that can be colored properly using the three available colors such that each vertex of

K3 receives di�erent color. This assignment of colors does not create any additional monochromatic

edges; therefore, the equitable defective number is bkχe
(Kn).

An ENP k-coloring of the line graph of gear graphs is illustrated in Figure 10.

c1

c2
c1

c2
c1

c1

c2

c1

c2

c1

c2

c1
c2

c1

c2

(a) L(G1,5) with ENP 2-coloring

c1

c2c3

c1

c2 c3

c3

c1

c3c2

c1

c2

c3

c1

c3 c2

c1

c2

(b) L(G1,6) with ENP 3-coloring

Fig. 10. An ENP k-coloring of line graph of gear graphs

For various parities of n and distinct values of k, the theorem below discusses the ENP k-coloring
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of the middle graph of gear graphs.

Theorem 2.12. For M(G1,n),

bkχe
(M(G1,n)) =


bkχe

(Kn+1) + 3n; if k = 2,

bkχe
(Kn+1) + n; if k = 3, n ≡ 0, 1modk,

bkχe
(Kn+1) + n+ 1; if k = 3, n ≡ 2modk,

bkχe
(Kn+1); if k ≥ 4.

Proof. Consider V (G1,n) = {v, v1, v2, . . . , v2n}. Let E(G1,n) = {e1, e2, . . . , e2n} ∪ {e′i, e′2, . . . , e′n}
such that ei = vivi+1 ; 1 ≤ i ≤ 2n − 1, e2n = v2nv1 and e′i = vv2i−1 ; 1 ≤ i ≤ n. Consequently,

V (M(G1,n)) = {v, v1, v2, . . . , v2n, e1, e2, . . . , e2n, e′1, e′2,
e′3, . . . , e

′
n}. It is evident that the edges ve′i ; 1 ≤ i ≤ n, along with the vertex v form a clique of

order n+ 1, and thus χe(M(G1,n)) = n+ 1 (see [6]). In an ENP k-coloring, consider 2 ≤ k ≤ n and

address the following cases.

Case 1: Let k = 2 and consider the subcases as given below.

Subcase 1.1: When n is even, partition the vertex set into two subsets as follows.

Let V1 = {vi : 1 ≤ i ≤ 2n− 3 ; i ≡ 1mod4} ∪ {vj : 2 ≤ j ≤ 2n− 2 ; j ≡ 2mod4} ∪ {e′k : 1 ≤ k ≤
n− 1 ; k ≡ 1mod2} ∪ {el : 3 ≤ l ≤ 2n− 1 ; l ≡ 3mod4} ∪ {em : 4 ≤ m ≤ 2n ; m ≡ 0mod4}.
V2 = {vi : 3 ≤ i ≤ 2n− 1 ; i ≡ 3mod4} ∪ {vj : 4 ≤ j ≤ 2n ; j ≡ 0mod4} ∪ {e′k : 2 ≤ k ≤ n ; k ≡

0mod2} ∪ {el : 1 ≤ l ≤ 2n− 3 ; l ≡ 1mod4} ∪ {em : 2 ≤ m ≤ 2n− 2 ; m ≡ 2mod4}.
Now, |V1|= |V2|= ⌊5n+1

2
⌋. Hence, the central vertex v can be placed into any one of the color

classes, resulting in ||V1|−|V2||= 1. Further, assign the vertices in the set V1 with the color c1 and

V2 with the color c2. As a result of this assignment of colors, we obtain n monochromatic edges of

the form e′ivj ; 1 ≤ i ≤ n and 1 ≤ j ≤ 2n − 1 ; j ≡ 1mod2. Also, the vertices vi and ei have n − 1

monochromatic edges connecting them, of the form viei+1, where 2 ≤ i ≤ 2n − 2 ; i ≡ 0mod2 and

there is a monochromatic edge e1v2n. Further, n monochromatic edges are obtained in between the

vertices ei of the form eiei+1, where 1 ≤ i ≤ 2n − 1 ; ≡ 1mod2. Furthermore, together with the

monochromatic edges from the complete graph that is investigated in Theorem 2.8, the equitable

defective number is bkχe
(Kn+1) + 3n.

Subcase 1.2: When n is odd, let us partition the vertex set as follows.

Let V1 = {vi : 1 ≤ i ≤ 2n− 1 ; i ≡ 1mod4} ∪ {vj : 2 ≤ j ≤ 2n ; j ≡ 2mod4} ∪ {e′k : 1 ≤ k ≤
n ; k ≡ 1mod2} ∪ {el : 3 ≤ l ≤ 2n− 3 ; l ≡ 3mod4} ∪ {em : 4 ≤ m ≤ 2n− 2 ; m ≡ 0mod4}.
V2 = {v} ∪ {vi : 3 ≤ i ≤ 2n− 3 ; i ≡ 3mod4} ∪ {vj : 4 ≤ j ≤ 2n− 2 ; j ≡ 0mod4} ∪ {e′k : 2 ≤

k ≤ n− 1 ; k ≡ 0mod2} ∪ {el : 1 ≤ l ≤ 2n− 1 ; l ≡ 1mod4} ∪ {em : 2 ≤ m ≤ 2n ; m ≡ 2mod4}.
Assign the vertices in V1 with the color c1 and V2 with the color c2. Now, |V1|= |V2|= 5n+1

2

and the vertices vi and ei have n− 1 monochromatic edges connecting them, of the form viei, where

2 ≤ i ≤ 2n−2 ; i ≡ 0mod2. Moreover, the vertices e′i and vj have n monochromatic edges connecting

them of the form e′ivj ; 1 ≤ i ≤ n and 1 ≤ j ≤ 2n− 1 ; j ≡ 1mod2. Furthermore, a monochromatic

edge e1e2n and n monochromatic edges among the vertices ei of the form eiei+1 are generated, where

1 ≤ i ≤ 2n − 1 ; i ≡ 1mod2. Now, along with the monochromatic edges obtained in the ENP

k-coloring of complete graphs, the equitable defective number is bkχe
(Kn+1) + 3n.

Case 2: When k = 3, the following subcases are to be addressed.

Subcase 2.1: Let n ≡ 0mod3. Assign the 4n vertices on the outer rim (vi ; 1 ≤ i ≤ 2n and ei ;

1 ≤ i ≤ 2n) using the three available colors in a cyclic order. Further, color the inner rim vertices
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(e′i ; 1 ≤ i ≤ n) in the same cyclic order using the three colors such that both e′1 and e1 receive

the same color. Then, assign v with any one of the three colors. It can be observed that along

with the monochromatic edges obtained from the complete graph, the vertices e′i and vi generate n

monochromatic edges of the form e′ivj ; 1 ≤ i ≤ n and 1 ≤ j ≤ 2n ; j ≡ 1mod2. Thus, the equitable

defective number is bkχe
(Kn+1) + n (see Figure 11 for illustration).

Subcase 2.2: Let n ≡ 1mod3. Repeat the same coloring procedure as in Subcase 2.1 for the outer

rim vertices vi and ei where 1 ≤ i ≤ 2n, except for one vertex. Since 4n ≡ 1mod3, the additional

vertex on the outer rim can be assigned the color c2. Further, the inner rim vertices can also be

assigned as in Subcase 2.1, and since n ≡ 1mod3, the additional vertex on the inner rim can be

received the color c3. Further, the vertex v can receive the color c1 to maintain the equitability

constraint. Here, we obtain the same number of monochromatic edges as compared to Subcase 2.1,

and the equitable defective number is bkχe
(Kn+1) + n.

Subcase 2.3: Let n ≡ 2mod3. We follow the same coloring procedure as in Subcase 2.1 for the

outer rim vertices, and the last two vertices of the outer rim receive the colors c1 and c2 respectively.

Further, the inner rim vertices can also be assigned in the same cyclic order as in the above two

subcases, and the last two inner rim vertices can be assigned the colors c1 and c3 respectively.

Finally, the vertex v can receive the color c2 to maintain the equitability constraint. In comparison

with Subcase 2.1, we get an additional monochromatic edge of the form eiej. Therefore, the equitable

defective number is bkχe
(Kn+1) + n+ 1 (see Figure 11).

Case 3: When k ≥ 4, the vertices vi ; 1 ≤ i ≤ 2n, ei ; 1 ≤ i ≤ 2n and e′i ; 1 ≤ i ≤ n can

be assigned properly using the k available colors. Now the vertex v can also be received any of the

available colors equitably, the resulting monochromatic edges are only from the clique. Thus, the

equitable defective number is bkχe
(Kn+1).

Figure 11 represents the ENP k-coloring of the middle graph of gear graphs.
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(a) M(G1,5) with ENP 3-coloring
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Fig. 11. An ENP 3-coloring of middle graph of gear graphs

The subsequent theorem examines the ENP k-coloring of the total graph of gear graphs for di�erent

parities of n and various values of k.
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Theorem 2.13. For the total graph of a gear graph G1,n,

bkχe
(T (G1,n)) =



bkχe
(Kn+1) +

9n
2
; if k = 2, n even,

bkχe
(Kn+1) +

9n+1
2

; if k = 2, n odd,

bkχe
(Kn+1) + n+ n

3
; if k = 3, n ≡ 0modk

bkχe
(Kn+1) + n+ ⌊n

3
⌋+ 2; if k = 3, n ≡ 1, 2mod3

bkχe
(Kn+1); if k ≥ 4.

Proof. Note that V (T (G1,n)) = V (M(G1,n)) and χe(T (G1,n)) = n + 1 (see [6]). The following

observations are made when the same coloring procedure is followed, as in Theorem 2.12.

Case 1: When k = 2 and n is even, apart from the monochromatic edges obtained as in Subcase-

1.1 of Theorem 2.12, n − 1 monochromatic edges are obtained of the form vivi+1, where 1 ≤ i ≤
2n − 2 ; i ≡ 0mod2 along with a monochromatic edge v1v2n. Further, there are n

2
monochromatic

edges connecting vi and v. Thus, the equitable defective number is bkχe
(Kn+1) +

9n
2
.

Case 2: When k = 2 and n is odd, along with the monochromatic edges obtained as in Subcase-

1.2 of Theorem 2.12, we may obtain n monochromatic edges of the form vivi+1, where 2 ≤ i ≤
2n − 2 ; i ≡ 0mod2 and another monochromatic edge v1v2n also obtained. Further, there are ⌊n

2
⌋

monochromatic edges connecting the vertices vi and v. Hence, the equitable defective number is

bkχe
(Kn+1) +

9n+1
2

.

Case 3: When k = 3, we have the below observations.

Subcase 3.1: When n ≡ 0mod3, apart from the monochromatic edges obtained as in Subcase 2.1

of Theorem 2.12, we obtain n
3
additional monochromatic edges of the form vvi. Hence, the equitable

defective number is bkχe
(Kn+1) + n+ n

3
.

Subcase 3.2: When n ≡ 1mod3, apart from the monochromatic edges obtained as in Subcase

2.2 of Theorem 2.12, we obtain ⌊n
3
⌋ monochromatic edges of the form vvi. Further, there are two

additional monochromatic edges of the form vivj, and hence, the equitable defective number is

bkχe
(Kn+1) + n+ ⌊n

3
⌋+ 2.

Subcase 3.3: When n ≡ 2mod3, along with the monochromatic edges obtained as in Subcase 2.3

of Theorem 2.12, we obtain ⌊n
3
⌋ monochromatic edges of the form vvi and one monochromatic edge

of the form vivj. Hence, the equitable defective number is bkχe
(Kn+1) + n+ ⌊n

3
⌋+ 2.

Case 4: When k ≥ 4, follow the same coloring procedure as in Case-3 of Theorem 2.12 by

considering the equitability condition, which is illustrated in Figure 12. We observe that the resulting

monochromatic edges are only from the clique. Hence, the equitable defective number is bkχe
(Kn+1).

Figure 12 illustrates the ENP k-coloring of the total graph of gear graphs.

3. Conclusion

In this paper, we explored the ENP k-coloring of the line, middle, and total graph of some graph

classes and investigated the equitable defective number with respect to the ENP k-coloring. This

study can be extended to di�erent graph classes and many other derived graphs. Moreover, the

central graph of all these graph classes can also be discussed. Further investigations can be done in

powers of graphs and di�erent graph products.
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Fig. 12. An ENP 4-coloring of total graph of gear graphs
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