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abstract

With the rapid development of wireless communication networks, it brings more and

more convenience to users. However, with the expansion of network size, the limitation of

channel resources in network communication is becoming more obvious. E�ective channel

assignment has a great impact on the quality of communication networks. However, in real

communication networks, underutilization of channels and excessive number of channels

produce large interference, so it is necessary to �nd a reasonable channel assignment

method. In this paper, we study the optimal channel assignment strategy for the Cartesian

product of an n-vertex complete bipartite graph and an m-order cycle, where m ≥ 5 is

odd. Determines the exact value and lower bound of its radio number.
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1. Introduction

In the era of rapid development of Internet, wireless communication has become an indis-

pensable part of communication network. However, with the increasing number of users,

the scale of the network has also expanded, which makes the limitations of the network
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become more obvious. With the rapid development of wireless communication networks

in recent years, it has changed the way people communicate. But wireless communica-

tion network still has many limitations, the limited channel resources in�uence the fairy

tale quality of communication network. Although many scholars continue to optimize the

channel assignment algorithm to solve the insu�cient utilization of channel resources in

wireless communication networks, as well as the in�uence of inter-channel interference on

the quality of communication. In 2024, Shin and Lee et al. [17] proposed an approximate

algorithm to improve the performance of multi-radio and multi-channel wireless mesh net-

works based on theoretical model drive. Skalli, Ghosh et al. [18] put forward the problem

and solution of channel allocation strategy for multi-channel wireless networks.

The optimal channel assignment strategy for wireless communication networks has at-

tracted the research interest of many scholars. Griggs [5] proposed in the 2-distance label

that the geographical location between sites will a�ect the degree of interference, and

strong interference will be generated when two sites are close to each other, so that the

distance between two adjacent vertices is at least 2. In fact, in 2001, Chartrand and

Erwin [3] proposed the de�nition of radio label. Radio label is also known as multi-level

distance label, which is a mapping function. In order to assign each endpoint of the graph

to di�erent vertex labels, the edge between any two adjacent vertices has the minimum

weight. Moreover, each vertex is assigned a unique label. The mapping function of the

radio label is as follows:

θ : V (G) → Z+ ∪ 0,

such that

|θ(x)− θ(y)|≥ diam(G) + 1− d(x, y), ∀x, y ∈ V (G).

|θ(x) − θ(y)| is the span of the radio label of vertex x and y in G, then the span of

the radio label of graph G is span(θ) = max|θ(x) − θ(y)|, and the number of radios in

G is represented by rn(G). The radio number of graph G is obtained from the span of

the radio label, denoted by rn(G) = min {span(θ)}, which is the minimum span of the

radio label. Hale �rst proposed the channel assignment problem in 1980 [6], and then

Roberts proposed to transform the channel assignment problem into the graph vertex

labeling problem [15]. According to the nature of the interconnection network, the graph

was used to simulate the network structure of wireless communication. The binary set

(V,E) of the graph represents the stations of the wireless communication network and the

relationships between the stations respectively, that is, the physical lines in the network.

The construction of large-scale network in wireless communication network is a com-

plicated and tedious work. When using graph to simulate the topology structure of

large-scale network, according to the knowledge of graph theory, product graph can be

used to simulate the topology structure of large-scale network. Let graph G be a binary

(V,E), where V is the vertex set of G and E is the edge set of G. If we take any two

vertices x, y ∈ V (G), then in the de�nition of radio label θ(x) is the multi-level distance

of vertex x, that is, the radio label, and d(x, y) is the shortest distance between vertex x

and vertex y in G, and diam(G) represents the diameter of G, which is the maximum of
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the shortest distance between any two vertices in the graph.

Sabidussi [16] proposed the concept of Cartesian product and several other products for

the �rst time. Let Q = {V1, E1} and H = {V2, E2} be two undirected graphs, then graph

G is the Cartesian product graph of Q and H, denoted as G = Q□H. The set of vertices

V (G) = V (Q)× V (H), take any two vertices xy ∈ V (Q) and ab ∈ V (H) in G, such that

the two vertices are adjacent if and only if x = a, yb ∈ E(H) or y = b, xa ∈ E(Q), and

graphs Q and H are called factor graphs of G.

When the properties of two graphs formed by a Cartesian product change, it becomes

di�cult to analyze the topology of the product graph, but its properties are relatively easy

to analyze for special graphs, so the radio number of the product graph of some special

graphs has been determined, such as Yenoke and Selvagopal et al. [22] have determined

the boundary of the radio number of the enhanced mesh; Yenoke and Kaabar [21] studied

the self-named nanostar tree dendrimers, and mainly obtained the distance 2 label and

radio number of the nanostar tree dendrimers. Rajan and Yenoke [14] studied hexagonal

mesh and obtained the span of its radio labels. Morris-Rivera and Tomova [12] studied

the radio number of the cycle itself and its Cartesian product on the basis of the radio

number of the cycle; ELrokh, Al-Shamiri [4] studied the radio numbers of graphs such

as paths, cycles, stars and double stars, and obtained a novel radio label of graphs, and

the upper limit of its radio geometric mean was obtained by a new algorithm. Arputha

Jose and Daniel Raj [1] found the span of quadrilateral snake families through the vertex

labeling problem of the graph; Khennoufa and Togni [9] determined the number of radios

for the hypercube; Radio numbers for other graphs have also been derived, such as cactus

graphs, splitting graphs, and certain sun�ower extended graphs etc, see [8, 2, 7, 10, 11,

23, 19, 13].

It is a challenging problem to �nd the optimal channel assignment strategy by simu-

lating the wireless communication network by the graph and using the vertex labeling

problem of the product and graph to assign channels to the large network. Therefore, the

channel assignment problem of communication network is studied by using the Cartesian

product. This paper focuses on the lower bound of the radio number of the Cartesian

product of a complete bipartite graph Ka,b and cycles of order m, where m ≥ 5 is odd

and a+ b = n.

2. Main Results

De�nition 2.1. Let G = (a ∪ b, E) be a complete bipartite graph if and only if every

vertex in a has an edge connected to a vertex in b, denoted Ka,b. In a graph, a closed

path consisting of distinct edges and vertices is called a cycle and is denoted Cm, where

m is the length of the cycle. According to the parity of m, the cycle can be divided into

odd cycle and even cycle.

De�nition 2.2. Let G = Ka,b□Cm be the Cartesian product of an n-vertex complete

bipartite graph and an m-order cycle, where a + b = n, 1 ≤ a, b ≤ n − 1, m ≥ 5

and odd. Take any i subgraph of G and denote it as t(i), i ∈ [1,m]. Its vertex set is



140 L. Cui and F. Li

V (t (i)) = V1 (i) , V2 (i) , . . . , Vm (i), which can be seen from the topology of G. The graph

G contains m t(i) subgraphs.

Lemma 2.3. [20] Let Gj be a connected graph, when the graph G obtained by the Carte-

sian product of n connected graphs Gj, and the order of the product factor graph Gj is nj,

1 ≤ j ≤ n, then the diameter of the Cartesian product graph G is:

diam(G) = diam(G1□G2□ . . .□Gm)

= diam(G1) + diam(G2) + . . .+ diam(Gm).
(1)

Corollary 2.4. Let G = Ka,b□Cm be the Cartesian product of an n-vertex complete

bipartite graph and an odd cycle of order m, where a+ b = n, 1 ≤ a, b ≤ n− 1, m ≥ 5

and is odd, then diam(G) = m−1
2

+ 2.

Proof. The diameter of Ka,b clearly is 2, and that of Cm is m−1
2
, m is odd. Hence diam(G)

is m−1
2

+ 2 by Lemma 2.3.

De�nition 2.5. Let G = Ka,b□Cm be the Cartesian product graph of a complete bi-

partite graph with n vertices and an odd cycle of order m. Choose three subgraphs

t(1), t(m+1
2

) and t(m) in G and denote them as G(∗), respectively. The vertices of

these three subgraphs are V (1), V (m+1
2

), and V (m). Let P ′(h) be a class of paths in

G(∗), and α and β be the shortest distances between two vertices on that path. Assum-

ing that P ′(h) = Vj(1)
α−→ Vk(

m+1
2

)
β−→ Vl(m), such that j ̸= k ̸= l, Vj(1) ∈ V (1),

Vk(
m+1
2

) ∈ V (m+1
2

), Vl(m) ∈ V (m), and 1 ≤ j, k, l ≤ n. It can be veri�ed that P ′(h)

contains three cases, de�ned as follows without loss of generality:
P ′
1(h) = {v1(1)

m+3
2−→ v3

(
m+1
2

) m+3
2−→ v2(m)};

P ′
2(h) = {v3(1)

m+3
2−→ v2

(
m+1
2

) m+1
2−→ v1(m), v2(1)

m+1
2−→ v1

(
m+1
2

) m+3
2−→ v3(m)};

P ′
3(h) = {va(1)

m+1
2−→ vb

(
m+1
2

) m+1
2−→ vc(m), a ̸= b ̸= c, 4 ≤ a, b, c ≤ n}.

(2)

Theorem 2.6. Let θ be the radio label of G = Ka,b□Cm, where a+b = n, 1 ≤ a, b ≤ n−1,

m ≥ 5 and odd. Choosing any vertex v ∈ V (m+1
2

), if θ is the maximum vertex label, then

θ(v) =



m+ 3

2
, if v ∈

{
v1

(
m+ 1

2

)
, v2

(
m+ 1

2

)}
,

m+ 1

2
, if v ∈ v3

(
m+ 1

2

)
,

m+ 5

2
, otherwise.

(3)

Proof. Let P ′(h) ⊂ Ka,b□Cm, that any vertex on V (P ′ (h) has a radio label based on

diam (Ka,b□Cm), and for u, v ∈ V (P ′ (h)), the distance between the vertices u and v is

denoted as k, that is, d (u, v) = k, then the three cases of P ′(h) are discussed respectively.
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Fig. 1. A description of case 1 and 3

Case 1: For P ′
1(h) = v1(1)

m+3
2−→ v3(

m+1
2

)
m+3

2−→ v2(m), its path is shown in red in Figure

1. Let V1 (1) be the central vertex of t(1), and satisfy θ (V1 (1)) = 0. According to the

topology of the Cartesian product graph, V1 (1) and V2 (m) are in the same part, and the

path between them is: V1 (1) → V2 (1) → V2 (i) → V2 (m), from the de�nition of complete

bipartite graph, If V2 (i) and V2 (m) are not in the same part, then

d(V1 (1) , V2 (m)) = 3. (4)

According to the de�nition of radio labeling and Eq. (5), we can get

θ (V2 (m)) ≥ θ (V1 (1)) + diam (G) + 1− d(V1 (1) , V2 (m)) ≥ m− 1

2
. (5)

Similarly, by the topology of the G is d(V2(m), V3(
m+1
2

)) = m+3
2
, then

θ

(
V3

(
m+ 1

2

))
≥ θ (V2 (m)) + diam (G) + 1 − d

(
V2 (m) , V3

(
m+ 1

2

))
≥ m+ 1

2
. (6)

Case 2(a): For P ′
2(h) = v3(1)

m+3
2−→ v2(

m+1
2

)
m+1

2−→ v1(m), let V3(1) be the center vertex of

t(1), and satisfy θ(V3(1)) = 0. According to the de�nition of a complete bipartite graph,

d(V3(1), V1(m)) = 3. Its path is shown in red in Figure 2. De�ned by radio labels:

θ (V1 (m)) ≥ θ (V3 (1)) + diam (G) + 1− d(V3 (1) , V1(m)) ≥ m− 1

2
. (7)

Similarly, by the topological structure of G, d(V1(m), V2(
m+1
2

)) = m+1
2
, then

θ

(
V2

(
m+ 1

2

))
≥ θ (V1 (m)) + diam (G) + 1− d

(
V1 (m) , V2

(
m+ 1

2

))
≥ m+ 3

2
. (8)
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Case 2(b): For P ′
2(h) = v2(1)

m+1
2−→ v1(

m+1
2

)
m+3

2−→ v3(m), let V2(1) be the center vertex

of t(1), and θ(V2(1)) = 0. According to the de�nition of a complete bipartite graph,

d(V2(1), V3(m)) = 2. Its path is shown in blue in Figure 2. De�ned by radio labels:

Fig. 2. A description of case 2(a) and (b)

θ (V3 (m)) ≥ θ (V2 (1)) + diam (G) + 1− d(V2 (1) , V3 (m)) ≥ m+ 1

2
. (9)

Similarly, by the topological of G, d(V3(m), V1(
m+1
2

)) = m+3
2
, then

θ

(
V1

(
m+ 1

2

))
≥ θ (V3 (m)) + diam (G) + 1− d

(
V3 (m) , V1

(
m+ 1

2

))
≥ m+ 3

2
. (10)

Case 3: For P ′
3(h) = {va(1)

m+1
2−→ vb

m+1
2

)
m+1

2−→ vc(m), 4 ≤ a, b, c ≤ n}. Its path is shown

in blue in Figure 1. Let Va(1) be the central vertex of t(1) and satisfy θ(Va(1)) = 0.

According to the de�nition of a complete bipartite graph, Va(1) and Vc(m) are not in the

same part, so d(Va(1), Vc(m)) = 2. De�ned by radio labels:

θ (Vc (m)) ≥ θ (Va (1)) + diam (G) + 1− d(Va (1) , Vb (m)) ≥ m+ 1

2
. (11)

Also, according to the de�nition of a complete bipartite graph, V3(m) and V1(
m+1
2

) are

not in the same part, so, d(Vc(m), Vb(
m+1
2

)) = m+1
2
. According to radio labellings, then

θ

(
Vb

(
m+ 1

2

))
≥ θ (Vc (m)) + diam (G) + 1− d

(
Vc (m) , Vb

(
m+ 1

2

))
≥ m+ 5

2
. (12)
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Corollary 2.7. For n paths on P ′(h)(h ∈ [1, n]), then the span of all vertices of f at the

central vertex of P ′(h) is span(θ) = mn+5n−8
2

.

Proof. From the result of Theorem 2.6 we can get that the span of radio labels in Case

1 is

span (θ1) =
m+ 1

2
. (13)

The number of radios in the Case 2(a) and Case 2(b) is

span (θ2) = 2× m+ 3

2
= m+ 3. (14)

According to Case 3, the sum of the radio labels can be obtained as

span(θ3) = (n− 3)× m+ 5

2
=

mn− 15 + 5n− 3m

2
. (15)

Without loss of generality, the span of all vertices of θ at the center vertex of P ′(h) is

span (θ4) = span (θ1) + span (θ2) + span (θ3) =
mn+ 5n− 8

2
. (16)

De�nition 2.8. Let G = Ka,b□Cm be the Cartesian product of a complete bipartite

graph of n vertices and an odd cycle of order m, where a+ b = n, 1 ≤ a, b ≤ n− 1, m ≥ 5

is odd. Subgraph t(i) and t(i + m+1
2

) is made up of V (i) and V (i + m+1
2

) of the vertex

set of induced subgraph, subgraph t(i) and t(i + m+1
2

) remember to G′′(i) ⊆ G, where

i /∈
{
1, m+1

2
,m

}
. When m is odd, the graph G has m−3

2
G′′(i) subgraphs and the diameter

of G′′ (i) is m+3
2
.

Theorem 2.9. Let G(∗) be a subgraph induced by all endpoints and central vertices in

P ′(h) and be a subgraph of G = Ka,b□Cm, that is, t (1) , t
(
m+1
2

)
, t(m), then the radio

number of G(∗) in G is rn(G (∗)) ≥ 2mn+6n−a×(m+1)−8
2

.

Proof. Let the central vertices all lie in part a of the complete bipartite graph, and let the

vertices Vp and Vq be the central vertices of t(1) and t(m), respectively, where 1 ≤ p, q ≤ a,

exist vertices uα, uβ ∈ t(m+1
2

), α ̸= β, and alphabeta is not completely two parts graph

Ka,b, in a part of the d(Vp, uα) = d(Vq, uβ) =
m+1
2
. In addition, in t(1) and t(m) subset

in A = Xr, making |A|= n˘a, and t(m+1
2

) exist in the subset B = Ys, makes |B|= n˘a,

r ̸= s, d (Xr, Ys) =
m+3
2
. Now, for all the vertices of Xr, Ys, we can obtain

span (θ5) = (n− a)× m+ 1

2
=

mn− am+ n− a

2
. (17)

Therefore, the radio number of G(∗) in G is

rn (G (∗)) ≥span (θ4) + span (θ5)

=
mn− am+ n− a

2
+

mn+ 5n− 8

2

=
2mn+ 6n− a× (m+ 1)− 8

2
. (18)
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De�nition 2.10. Let G = Ka,b□Cm be the Cartesian product of a complete bipartite

graph of n vertices and an odd cycle of order m, where a+ b = n, 1 ≤ a, b ≤ n− 1, m ≥ 5

is odd, and likewise, we de�ne G(∗∗) as a subgraph induced by t(i), where i ∈ [2,m− 1],

i /∈ m+1
2
, and G(∗∗) = G\G(∗).

De�nition 2.11. Let G′′(i) ⊆ G(∗∗) be a subgraph of Ka,b□Cm, where a + b = n,

1 ≤ a, b ≤ n − 1, m ≥ 5 and is odd. Such that G′′(i) is a subgraph induced by t(j) and

t(j + m+1
2

), and G(∗∗) ⊂ Ka,b□Cm contains m−3
2

G′′(i) subgraphs.

Corollary 2.12. Let G′′(i) ⊂ Ka,b□Cm be a subgraph of G, then rn(G′′(i)) ≥ 2n+m−1.

Proof. Let the central vertices be in the a part of the complete bipartite graph, and let

the vertices Vp, Vq be the central vertices of t(j) and t(j + m+1
2

), 1 ≤ p, q ≤ a, d(Vp, uα) =

d(Vq, uβ) = m+1
2
. Without loss of generality, let θ (Vp) = 0, by de�nition of a complete

bipartite graph, uα lies in the b part of the complete bipartite graph Ka,b. Then we can

obtain

d (Vp, uα) =
m+ 1

2
. (19)

When α = 2, it follows from Corollary 2.4 that Vp and u2 are in the same part and

d (Vp, u2) =
m+3
2
, then the multilevel distance of u2 is

θ (u2) ≥ θ (Vp) + diam (G) + 1− d (Vp, u2) =
m− 1

2
− m− 3

2
. (20)

When β = 3, it follows from Corollary 2.4 that V3 and uq are not in the same part and

d (V3, uq) =
m+1
2
, then

θ (V3) ≥ θ (uq) + diam (G) + 1− d (V3, uq) = 2× m− 1

2
− m− 2

2
− m− 5

2
. (21)

When α = 4, it follows from Corollary 2.4 that V3 and u4 are not in the same part and

d (V3, u4) =
m+1
2
, then the multilevel distance of u4 is

θ (u4) ≥ θ (V3) + diam (G) + 1− d (V3, u4) = 3× m− 1

2
− m− 3

2
− 2× m− 5

2
. (22)

When β = n, it follows from Corollary 2.4 that Vn−1 and un−2 are in the same part,

d (Vn−1, un−2) =
m+1
2
, then

θ (Vn−1) ≥ θ (un−2) + diam (G) + 1− d (Vn−1, un−2)

= (n− 2)× m− 1

2
− m− 2

2
− (n− 3)× m− 5

2
. (23)

When α = n, it follows from Corollary 2.4 that Vn−1 and un are not in the same part,

and d (Vn−1, un) =
m+1
2
, then the multilevel distance of un is
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θ (un) ≥ θ (Vn−1) + diam (G) + 1− d (Vn−1, un)

= (n− 1)× m− 1

2
+

m+ 3

2
− (n− 2)× m− 5

2

= 2n+m− 3. (24)

Finally, the radio number θmax = θ(uq) of G
′′(j) is

θ (uq) ≥ 2n+m− 3 +
m− 1

2
− m− 5

2
≥ 2n+m− 1. (25)

An important result of this paper is given below, which is the lower bound of the radio

number of the Cartesian product graph of a complete bipartite graph with n vertices an

odd cycle of order m.

Theorem 2.13. Let G = Ka,b□Cm be the Cartesian product of an n-vertex complete

bipartite graph and an odd cycle of order m, where a + b = n, 1 ≤ a, b ≤ n − 1, m ≥ 5

and is odd. Then rn(G) ≥ 1
2
(m2 + 4mn− 2m− a× (m+ 1)− 14).

Proof. By the Theorem 2.6 and Theorem 2.9, we can obtain rn(G(∗∗)) ≥ 1
2
(m2 − 7) +

mn−m− 3n and rn(G(∗)) ≥ mn− 4 + 3n− a×(m+1)
2

. Because G = G(∗) ∪G(∗∗). Now,
let part a be the central vertex in the graph, and let one of the vertices in part a, vi
(1 ≤ i ≤ a), be the central vertex of t(m−1

2
), and yi ∈ t(m), be the central vertex of t(m).

d(xi, yj) =
m+3
2
, take θ(xi) = θmax, in G(∗∗), we can obtain

θ(xi) ≥
1

2
(m2 − 2mn− 2m− 6n− 7). (26)

Then, according to the de�nition of radio labeling and Eq. (26) it follows that

θ (yj) ≥ θ (xi) + diam (G) + 1− m+ 3

2

=
1

2
(m2 − 2mn− 2m− 6n− 5). (27)

For G(∗), let θ(yj) = θmin, then rn(G) ≥ θ(yj) + rn(G(∗)), therefore

rn (G) ≥ 1

2
(2mn+ 6n− a× (m+ 1)− 8)

+
1

2
(m2 + 2mn− 2m− 6n− 5)

=
1

2
(m2 + 4mn− 2m− a× (m+ 1)− 14). (28)
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3. Application and Numerical Simulation

In wireless communication networks, radio antennas use radio labels in di�erent bands of

the spectrum to switch signals so that each station is assigned a unique number. However,

the problem of limited resources and insu�cient utilization in network communication

leads to signal transmission interference. Many scholars solve this problem by optimizing

algorithms constantly to reduce the interference in the communication process as much as

possible. There are also many people using machine learning methods, neural networks

and other advanced technologies to achieve the optimization of channel assignment.

Fig. 3. The Cartesian product graph of 8-vertex completely bipartite graphs K5,3 and 7-order cycles

Fig. 4. The Cartesian product graph of 8-vertex completely bipartite graphs K2,6 and 7-order cycles

Example 3.1. There are 56 stations in the two regions of the city for information trans-

mission, and the Cartesian product graph of 8 vertices K5,3 and the 7-order cycle C7 is

used to simulate the channel assignment problem between network stations and realize

the information transmission in the state of minimum interference. From the result of
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Fig. 5. The Cartesian product of complete bipartite graphs K20,b and odd cycles of order m

Theorem 2.12, a channel assignment strategy is obtained, and then the number of radios

in this communication network is 102, as shown in Figure 3.

Example 3.2. There are 56 stations in the two regions of the city for information trans-

mission. And the Cartesian product graph of 8 vertices K5,3 and the 7-order cycle C7 is

used to simulate the channel assignment problem between network stations and realize

the information transmission in the state of minimum interference. From the result of

Theorem 2.12, a channel assignment strategy is obtained, and then the number of radios

in this communication network is 114, as shown in Figure 4.

According to the above two examples, we can clearly see that when the city adopts

the same topology structure for channel assignment, the channel assignment strategy is

di�erent when the number of stations in the two areas is di�erent. When the number of

stations in part a is larger, the channel assignment will use smaller channels; conversely,

when the number of channel stations in area a is smaller, the channel allocation strat-

egy will be di�erent. The more the number of channels used for channel assignment.

Therefore, in the case of limited channel resources, as far as possible to reduce the use of

channels, we can increase the number of sites in part a and reduce the number of sites

in part b, so as to achieve the lowest interference, so as to achieve signal transmission

quality and improve network performance. According to simulation Figures 5 and 6, it

can be seen that the more stations in region a, the less channel assignment. Although

the di�erence between the two is not too large, the less channel usage in the process of

network communication can not only reduce the cost but also reduce the interference.

Channel interference refers to the mutual interference between di�erent channels due

to the overlap in frequency or time, which will reduce the performance of the network

and a�ect the quality and e�ciency of communication. In order to reduce the in�uence

of channel interference, a variety of technical means can be adopted. For example, a
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Fig. 6. The Cartesian product of complete bipartite graphs K2,b and odd cycles of order m

channel assignment policy can be used to assign di�erent channels to di�erent users and

avoid interference between channels. In addition, interference cancellation technology can

also be used to eliminate or reduce channel interference through speci�c algorithms. In

practical application, the in�uence of channel interference on network can be evaluated

by network simulation and test. For example, network simulation software can be used to

simulate channel interference and evaluate network performance under di�erent interfer-

ence conditions. In addition, �eld tests can be conducted to assess the impact of channel

interference on the actual network and optimize the network design based on the test

results.

4. Conclusion

In this paper, we mainly determine the lower bounds of the radio number of Cartesian

products of complete bipartite graphs and odd cycles, where m ≥ 5. From the analysis

of the number of stations in two parts of a complete bipartite graph, the stations in part

a serve as the central vertex, and the more the number in part a, the greater the number

of radios. However, in this paper, we only study the lower bound of the radio number of

the Cartesian product of this topology, but the radio number of the even cycle as well as

its upper bound is still not further investigated.
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