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abstract

Total dominator total coloring of a graph is a total coloring of the graph such that each object of the

graph is adjacent or incident to every object of some color class. The minimum namber of the color

classes of a total dominator total coloring of a graph is called the total dominator total chromatic

number of the graph. Here, we will �nd the total dominator chromatic numbers of wheels, complete

bipartite graphs and complete graphs.

Keywords: Total dominator total coloring, Total dominator total chromatic number, Total domina-

tion number, Total mixed domination number, Total graph
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1. Introduction

Here, in a simple graph G = (V,E), while degG(v), NG(v) and NG[v] denote respectively the de-

gree, open and closed neighborhoods of a vertex v ∈ V , the minimum degree, maximum degree and

independence number of G are denoted by δ = δ(G), ∆ = ∆(G) and α = α(G), respectively. A

maximum independent set is an independent set of cardinality α(G). Also a mixed independent set

of G is a subset of V ∪ E, no two objects of which are adjacent or incident, and a maximum mixed

independent set is a mixed independent set of the largest cardinality in G. This cardinality is called

the mixed independence number of G, and is denoted by αmix(G). Two isomorphic graphs G and H

are shown by G ∼= H. We write Kn , Cn and Pn for a complete graph, a cycle and a path of order

n, respectively, while Wn, Km,n and G[S] denote a wheel of order n + 1, a complete bipartite graph
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of order m + n and the induced subgraph of G by a vertex set S, respectively. Also for any positive

integer k, we use [k] to denote the set {1, 2, · · · , k}.
The Cartesian product G□H of two graphs G and H is a graph with V (G)×V (H) and two vertices

(g1, h1) and (g2, h2) are adjacent if and only if either g1 = g2 and (h1, h2) ∈ E(H), or h1 = h2 and

(g1, g2) ∈ E(G).

While the line graph L(G) of G = (V,E) is a graph with the vertex set E in which two vertices are

adjacent when they are incident in G, the total graph T (G) of a graph G is the graph whose vertex

set is V ∪ E and two vertices are adjacent whenever they are either adjacent or incident in G. It is

obvious that if G has order n and size m, then T (G) has order n+m and size 3m+ |E(L(G))|, and
also T (G) contains both G and L(G) as two induced subgraphs and it is the largest graph formed

by adjacent and incidence relation between graph elements.

In this paper, by assumption V = {v1, v2, · · · , vn}, we use the notations V (T (G)) = V ∪ E where

E = {eij | vivj ∈ E}, and E(T (G)) = {vieij, vjeij | vivj ∈ E}∪E∪E(L(G)). Obviousely degT (G)(vi) =

2degG(vi) and degT (G)(eij) = degG(vi)+ degG(vj). So if G is k-regular, then T (G) is 2k-regular. Also

αmix(G) = α(T (G)). For an example, a graph G and its total graph are shown in Figure 1.

Fig. 1. The illustration of G (left) and T (G) (right)

1.1. Total mixed dominating set

Total domination in graphs is now well studied in graph theory and the literature on this subject

has been surveyed and detailed in the book [2]. A vertex subset of a graph with this property that

every vertex of the graph is adjacent to some vertex of the set is called a total dominating set, brie�y

TD-set, of the graph, and the minimum cardinality of a TD-set of a graph G is called the total

domination number γt(G) of G. In [8] the authors has de�ned total mixed dominating set of a graph

as follows.

De�nition 1.1. [8] A subset S ⊆ V ∪E of a graph G is called a total mixed dominating set, brie�y

TMD-set, of G if each object of V ∪E is either adjacent or incident to an object of S, and the total

mixed domination number γtm(G) of G is the minimum cardinality of a TMD-set.

A min-TD-set/min-TMD-set of G denotes a TD-set/TMD-set of G with minimum cardinality.

Also we agree that a vertex v dominates an edge e or an edge e dominates a vertex v mean v ∈ e.

Similarly, we agree that an edge dominates another edge means they have a common vertex.

1.2. TD-coloring and TDT-coloring of a graph

Graph coloring is used as a model for a vast number of practical problems involving allocation of

scarce resources (e.g., scheduling problems), and has played a key role in the development of graph

theory and, more generally, discrete mathematics and combinatorial optimization. Graph colorability

is NP-complete in the general case, although the problem is solvable in polynomial time for many

classes.
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If a function f : V → [k] from the vertex of a graph G to a k-set [k] of colors such that any

two adjacent vertices have di�erent colors, then f is called a proper k-coloring of G. The minimum

number k of colors needed in a proper coloring of a graph G is called the chromatic number of G

and denoted by χ(G). In a proper coloring of a graph, a set consisting of all those vertices assigned

the same color is called a color class. Trivially every color class contains at most α(G) vertices. For

simply, we denote a proper coloring f of a graph with ℓ color classes V1, · · ·, Vℓ by f = (V1, V2, · · · , Vℓ).

In a simlar way, a total coloring of G assigns a color to each vertex and to each edge so that colored

objects have di�erent colors when they are adjacent or incident, and the minimum number of colors

needed in a total coloring of a graph is called the total chromatic number χT (G) of G.

Motivated by the relation between coloring and total dominating, the concept of total dominator

coloring in graphs introduced in [5] by Kazemi, and extended in [1, 3, 4, 5, 6, 10, 7, 9, 11].

De�nition 1.2. [5] A total dominator coloring, brie�y TD-coloring, of a graph G with a possitive

minimum degree is a proper coloring of G in which each vertex of the graph is adjacent to every vertex

of some color class. The total dominator chromatic number χt
d(G) of G is the minimum number of

color classes in a TD-coloring of G.

In [9], the authors initiated studying of a new concept called total dominator total coloring in

graphs which is obtained from the concept of total dominator coloring of a graph by replacing total

coloring of a graph instead of coloring of it.

De�nition 1.3. [9] A total dominator total coloring, brie�y TDT-coloring, of a graph G with a

possitive minimum degree is a total coloring of G in which each object of the graph is adjacent or

incident to every object of some color class. The total dominator total chromatic number χtt
d (G) of

G is the minimum number of color classes in a TDT-coloring of G.

For any TD-coloring (TDT-coloring) f = (V1, V2, · · · , Vℓ) of a graph G, a vertex (an object) v is

called a common neighbor of Vi or we say Vi totally dominates v, and we write v ≻t Vi, if vertex

(object) v is adjacent (adjacent or incident) to every vertex (object) in Vi. Otherwise we write

v ̸≻t Vi. Also v is called a private neighbor of Vi with respect to f if v ≻t Vi and v ⊁t Vj for all j ̸= i.

The set of all common neighbors of Vi with respect to f is called the common neighborhood of Vi in

G and denoted by CNG,f (Vi) or simply by CN(Vi). Also every TD-coloring or TDT-coloring of G

with χt
d(G) or χtt

d (G) colors is called respectively a min-TD-coloring or a min-TDT-coloring.

Also for any TD-coloring (V1, V2, · · · , Vℓ) and any TDT-coloring (W1,W2, · · · ,Wℓ) of a graph G =

(V,E), we have
ℓ⋃

i=1

CN(Vi) = V and
ℓ⋃

i=1

CN(Wi) = V ∪ E. (1)

1.3. Goal of the paper

In [9], the authors initiated to study the TDT-coloring of a graph and found some useful results,

and presented some problems such as �nding the total dominator total chromatic numbers of wheels,

complete bipartite graphs and complete graphs, that we consider them here. For that we use the

following two theorems that state the total mixed domination and total dominator total chromatic

numbers of a graph are respectively the total domination and total dominator chromatic numbers of

the total of the graph.
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Theorem 1.4. [8] For any graph G without isolate vertex, γtm(G) = γt(T (G)).

Theorem 1.5. [9] For any graph G without isolate vertex, χtt
d (G) = χt

d(T (G)).

2. Wheels

Here, we calculate the total dominator total chromatic number of a wheel. First we calculate the

mixed indepence number of a wheel, and state some facts on the structure of a minimal TD-coloring

of the total of a wheel. But before that, we recall the following propositions which are needed in its

proof.

Proposition 2.1. [5] For any connected graph G with δ(G) ≥ 1,

χt
d(G) ≤ γt(G) + min

S
χ(G[V (G)− S]),

where S ⊆ V (G) is a min-TD-set of G. And so χt
d(G) ≤ γt(G) + χ(G).

Proposition 2.2. [8] For any wheel Wn of order n+ 1 ≥ 4, γtm(Wn) = ⌈n
2
⌉+ 1.

Proposition 2.3. [7] For any integer n ≥ 3, if G is a cycle or a path of order n, αmix(G) = ⌊2n
3
⌋+ ϵ

in which ϵ = 1 when G is the path Pn of order n ≡ 1 (mod 3), and ϵ = 0 otherwise.

Lemma 2.4. For any wheel Wn of order n+ 1 ≥ 4, αmix(Wn) = ⌈2n
3
⌉.

Proof. Let Wn = (V,E) be a wheel of order n + 1 ≥ 4 where V = {vi | 0 ≤ i ≤ n} and E =

{v0vi, vivi+1 | 1 ≤ i ≤ n}. Then V (T (Wn)) = V ∪ E when E = {e0i, ei(i+1) | 1 ≤ i ≤ n}. Let S be

an independent set of T (Wn). Since the subgraph induced by {e0i | 1 ≤ i ≤ n} ∪ {v0} is a complete

graph, we have |S ∩ ({e0i | 1 ≤ i ≤ n} ∪ {v0})|≤ 1. If |S ∩ ({e0i | 1 ≤ i ≤ n} ∪ {v0})|= 0, then

S ⊆ {vi, ei(i+1) | 1 ≤ i ≤ n}, and since the subgraph induced by {vi, ei(i+1) | 1 ≤ i ≤ n} is isomorphic

to T (Cn), Proposition 2.3 implies |S|≤ ⌊2n
3
⌋. If also v0 ∈ S, then S ⊆ {ei(i+1) | 1 ≤ i ≤ n}, and since

the subgraph induced by {ei(i+1) | 1 ≤ i ≤ n} is isomorphic to Cn, we have |S|≤ α(Cn)+1 = ⌊n
2
⌋+1.

Finally if e0i ∈ S for some 1 ≤ i ≤ n, then S ⊆ V ∪E −NT (Wn)(e0i), and since the subgraph induced

by V ∪ E − NT (Wn)(e0i) is isomorphic to T (Pn−1), Proposition 2.3 implies |S|≤ ⌈2n
3
⌉. Therefore

αmix(Wn) = α(T (Wn)) = max{⌊2n
3
⌋, ⌊n

2
⌋+ 1, ⌈2n

3
⌉} = ⌈2n

3
⌉.

Fact 2.5. Let f = (V1, V2, · · · , Vℓ) be a minimal TD-coloring of T (Wn) where n ≥ 3 and |V1|≥ · · · ≥
|Vℓ|, and let Bi = {Vk | ei(i+1) ≻t Vk and |Vk|= i for some ei(i+1) ∈ E1} and bi = |Bi| for 1 ≤ i ≤ ⌈2n

3
⌉.

Then the following facts are hold.

(1)
∑ℓ

i=1|Vi|= 3n+ 1, by |V |=
∑ℓ

i=1|Vi| and 3n+ 1 ≤ ℓ⌈2n
3
⌉.

(2) For any v ∈ E0 ∪ E1, if v ≻t Vk for some 1 ≤ k ≤ ℓ, then |Vk|≤ 2.

(3) If ei(i+1) ≻t Vk for some ei(i+1) ∈ E1 and some 1 ≤ k ≤ ℓ and |Vk|= 2, then CN(Vk) ∩ E1 =

{ei(i+1)}.

(4) If ei(i+1) ≻t Vk for some 1 ≤ k ≤ ℓ and |Vk|= 1, then |CN(Vk) ∩ E1|= 2.

(5) n ≤ 2b1 + b2 ≤ ℓ (by 3 and 4).

(6) For 1 ≤ i ≤ n, if vi ≻t Vk for some 1 ≤ k ≤ ℓ, then |Vk|≤ 3.
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(7) For 1 ≤ i ≤ n, if vi ≻t Vk for some 1 ≤ k ≤ ℓ and |Vk|= 3, then CN(Vk) = {v0}.

(8) If v0 ≻t Vk for some 1 ≤ k ≤ ℓ, then |Vk|≤ ⌊n
2
⌋+ 1.

Proposition 2.6. For any wheel Wn of order n+ 1 ≥ 4,

χtt
d (Wn) =

{
n+ 2 if 3 ≤ n ≤ 7,

n+ 1 if n ≥ 8.

Proof. Let Wn = (V,E) be a wheel of order n + 1 ≥ 4 where V = {vi | 0 ≤ i ≤ n} and E =

{v0vi, vivi+1 | 1 ≤ i ≤ n}. Then V (T (Wn)) = V ∪ E0 ∪ E1 when E0 = {e0i | 1 ≤ i ≤ n} and

E1 = {ei(i+1) | 1 ≤ i ≤ n}. Let f = (V1, · · · , Vℓ) be a minimal TD-coloring of T (Wn) where n ≥ 3 and

|V1|≥ · · · ≥ |Vℓ|, and let Bi = {Vk | ei(i+1) ≻t Vk and |Vk|= i for some ei(i+1) ∈ E1} and bi = |Bi| for
1 ≤ i ≤ ⌈2n

3
⌉. we continue our proof in the following cases.

� n = 3. Then |Vi|≤ α = 2 for each i, and so ℓ ≥ 5, by Fact 2.5 (1). Now since the coloring

function ({e12, e03}, {v1, e23}, {v0, e13}, {v2, e01}, {v3, e02}) is a TD-coloring of T (W3), we have

χtt
d (W3) = 5.

� n = 4. Then |Vi|≤ α = 3 for each i, and so ℓ ≥ 5, Fact 2.5 (1). If ℓ = 5, then (|V1|, |V2|, · · · , |V5|) =
(3, 3, 3, 3, 1) which contradicts the Fact 2.5 (2,4), or (|V1|, |V2|, · · · , |V5|) = (3, 3, 3, 2, 2) which

contradicts the Fact 2.5 (2,3). So ℓ ≥ 6, and since (V1, · · · , V6) is a TD-coloring of T (W4) where

Vi = {e0i, vi+1} for 1 ≤ i ≤ 3, V4 = {e04, v1}, V5 = {e12, e34}∪{v0} and V6 = {e23, e45}, we have
χtt
d (W4) = 6.

� n = 5. By the contrary, let ℓ = 6. Then 2b1 + b2 ≥ 5 (by Fact 2.5 (5)) and (V1, · · · , V6) =

(4, 4, 4, 2, 1, 1) (by Fact 2.5 (1)). But by considering the proof of Lemma 2.4, we know that all

of the maximum independent sets in T (W5) are the sets {e0i, vi+1, e(i+2)(i+3), vi+5} for 1 ≤ i ≤ 5,

which only two of them are disjoint. Thus Vi ∩ Vj ̸= ∅ for some 1 ≤ i < j ≤ 3, a contradiction.

So ℓ ≥ 7, and since (V1, · · · , V7) is a TD-coloring of T (W5) where V1 = {v1, v3, e02, e45}, V2 =

{v2, e34, e05}, V3 = {e03, v4}, V4 = {e01, e23}, V5 = {e04, v5}, V6 = {v0, e15}, V7 = {e12}, we have
χtt
d (W5) = 7.

� n = 6. By the contrary, let ℓ = 7. Then 6 ≤ 2b1 + b2 ≤ 7 by Fact 2.5 (5). Since obviousely

b1 ≥ 4 implies |V1|> α = 4, we assume b1 ≤ 3, and so (b1, b2) = (3, 0), (3, 1), (3, 2), (3, 3),

(3, 4), (2, 2), (2, 3), (2, 4), (2, 5), (1, 4), (1, 5), (1, 6), (0, 7). Since (b1, b2) = (3, 4), (2, 5), (1, 6),

(0, 7) imply
∑7

i=1|Vi|≠ 3n + 1, and (b1, b2) = (3, 1), (3, 2), (3, 3), (2, 2), (2, 3), (2, 4), (1, 4),

(1, 5) imply |V1|> α = 4, which contradict Fact 2.5 (1), we may assume (b1, b2) = (3, 0). But

this implies (|V1|, · · · , |V7|) = (4, 4, 4, 4, 1, 1, 1) (by Fact 2.5 (1)) which is not possible. Because,

by considering the proof of Lemma 2.4, the number of disjoint maximum independent sets in

T (W6) is at most three. So ℓ ≥ 8, and since the coloring function (V1, · · · , V8) is a TD-coloring

of T (W6) where V1 = {e12, e34, e56, v0}, V2 = {e23, e45, e16}, V3 = {e01, v2}, V4 = {e02, v3},
V5 = {e03, v4}, V6 = {e04, v5}, V7 = {e05, v6}, V8 = {e06, v1}, we have χtt

d (W6) = 8.

� n = 7. By the contrary, let ℓ = 8. Then 7 ≤ 2b1+b2 ≤ 8 by Fact 2.5 (5). Since |V1|> α = 5 when

b1 ≥ 5, we have b1 ≤ 4, and so (b1, b2) = (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (3, 1), (3, 2), (3, 3),

(3, 4), (3, 5), (2, 3), (2, 4), (2, 5), (2, 6), (1, 5), (1, 6), (1, 7), (0, 8). Since (b1, b2) = (4, 4), (3, 5),

(2, 6), (1, 7), (0, 8) imply
∑8

i=1|Vi|≠ 3n + 1 and (b1, b2) = (4, 1), (4, 2), (4, 3), (3, 3), (3, 4),

(2, 4), (2, 5), (1, 5), (1, 6) imply |V1|> α = 5 which contradict Fact 2.5 (1), we may assume

(b1, b2) = (4, 0), (3, 1), (3, 2) or (2, 3). But then we have 4 ≤ |V3|≤ |V2|≤ |V1|≤ 5, which is not
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possible. Because, by considering the proof of Lemma 2.4, the number of disjoint independent

sets of cardinalities four or �ve in T (W6) is at most two. So ℓ ≥ 9, and since the coloring function

(V1, · · · , V9) is a TD-coloring of T (W7) where V1 = {e01, e34, e56, v2, v7}, V3 = {e12, e45, e67, e03},
V5 = {e23, e05, v1, v4, v6}, V7 = {e17, v3, v5}, V2i = {e0(2i)} (for 1 ≤ i ≤ 3), V8 = {v0}, V9 = {e07},
we have χtt

d (W7) = 9.

� n ≥ 8. Since the subgraph of T (Wn) induced by E0 ∪{v0} is isomorphic to a complete graph of

order n+ 1, we have χt
d(T (Wn)) ≥ n+ 1. Since the sets Se = {e0(2i) | 1 ≤ i ≤ ⌊n

2
⌋} ∪ {v0} for

even n, and So = {e0(2i) | 1 ≤ i ≤ ⌊n
2
⌋} ∪ {v0, e0n} for odd n, are two min-TD-sets of T (Wn) of

cardinality ⌈n
2
⌉+ 1 by Proposition 2.2, we have

χtt
d (Wn) ≤ ⌈n

2
⌉+ 1 + χ(G[V (T (Wn))− S]),

by Proposition 2.1 in which S = Se for even n and S = So for odd n. So it is su�cient to

prove χ(G[V (T (Wn)) − S]) = ⌊n
2
⌋. Since the subgraph induced by {e0(2i−1) | 1 ≤ i ≤ ⌊n

2
⌋} is

a complete graph, we have χ(G[V (T (Wn)) − S]) ≥ ⌊n
2
⌋. On the other hand, since, for even n

the coloring function fe with the criterion

fe(w) ≡


i (mod ⌊n

2
⌋) if w = e0(2i+1),

i+ 1 (mod ⌊n
2
⌋) if w = e(2i+1)(2i+2) or v2i+3,

i+ 2 (mod ⌊n
2
⌋) if w = v2i+2,

i+ 3 (mod ⌊n
2
⌋) if w = e(2i+2)(2i+3),

when 0 ≤ i ≤ ⌊n
2
⌋ − 1 is a proper coloring of G[V (T (Wn)) − Se, and for odd n the coloring

function fo with the criterion

fo(w) ≡



i (mod ⌊n
2
⌋) if w = e0(2i+1),

i+ 1 (mod ⌊n
2
⌋) if w = e(2i+1)(2i+2) or v2i+3,

i+ 2 (mod ⌊n
2
⌋) if w = v2i+2,

i+ 3 (mod ⌊n
2
⌋) if w = e(2i+2)(2i+3),

2 if w = e(n−1)n,

3 if w = vn,

when 0 ≤ i ≤ ⌊n
2
⌋−1 is a proper coloring of G[V (T (Wn))−So, we have χ(G[V (T (Wn))−S]) =

⌊n
2
⌋.

Proposition 2.6 shows that the upper bound given in Proposition 2.1 is tight for wheels of order

more than 8. Figure 2 shows a min-TDT-coloring of W5 (left) and its corresponding min-TD-coloring

of T (W5) (right) as an example.

3. Complete Bipartite Graphs

Here, we calculate the total dominator total chromatic number of a complete bipartite graph Km,n =

(V ∪U,E) in which V ∪U is the partition of its vertex set to the independent sets V = {vi : 1 ≤ i ≤ m},
U = {uj : 1 ≤ j ≤ n} and E = {eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is its edge set.

Proposition 3.1. For any complete bipartite graph Km,n in which n ≥ m ≥ 1,

χtt
d (Km,n) =

{
m+ n if m = 1, 2 and (m,n) ̸= (1, 1),

m+ n+ 1 if m ≥ 3 or (m,n) = (1, 1).
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Fig. 2. A min-TDT-coloring (V1, · · · , V7) of W5 (left) and its corresponding min-TD-coloring of T (W5) (right) where

V1 = {v1, v3, e02, e45}, V2 = {v2, e34, e05}, V3 = {v0, e15}, V4 = {v4, e03}, V5 = {v5, e04}, V6 = {e01, e23} and V3 =

{e12})

Proof. Let Km,n be the complete bipartite graph (V ∪U,E) of order n+m ≥ 2. Hence V ∪U ∪E is

a partition of the vertex set T (Km,n) where E = {eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Since T (K1,1) ∼= K3

implies χtt
d (K1,1) = 3, we assume n > m = 1. Let f = (V1, V2, · · · , Vℓ) be a minimal TD-coloring of

T (Km,n). Since the subgraph of T (Km,n) induced by {v1, e11, · · · , e1n} is a complete graph of order

n + 1, we have χt
d(T (Km,n) ≥ n + 1. Since (V1, V2, · · · , Vn+1) is a TD-coloring of T (K1,n) where

V1 = {e11, un}, Vi = {e1i, ui−1} for 2 ≤ i ≤ n, Vn+1 = {v1}, which implies χtt
d (K1,n) = n + 1, we

continue our proof in the following two cases.

Case 1. n ≥ m = 2. Let χtt
d (Km,n) = n + 1, and let Ei = {eij | 1 ≤ j ≤ n} for i = 1, 2. Since

T (Km,n)[E1] ∼= T (Km,n)[E2] ∼= Kn we have to color the vertices in E1 (and also in E2) by n di�erent

colors. On the other hand, since T (Km,n)[E1 ∪ E2] ∼= Kn□K2 we conclude that e1j and e2j are not

in a same color class when 1 ≤ j ≤ n. Without loss of generality, we may assume e1j ∈ Vj for

1 ≤ j ≤ n and v1 ∈ Vn+1. If f(E2) = {1, 2, · · · , n}, then v1 ⊁t Vk for each 1 ≤ k ≤ n, because

NT (Km,n)(v1) ∩ E2 = ∅ and |Vk|≥ 2 for each 1 ≤ k ≤ n. So n+ 1 ∈ f(E2), and a color, say 1, is not in

f(E2). This implies f(v2) = 1 and so v1 ⊁t Vk for each 1 ≤ k ≤ n + 1. So ℓ ≥ n + 2 = n +m, and

since, by assumptions V1 = {e11, e2n}, Vi = {e1i, e2(i−1)} for 2 ≤ i ≤ n, Vn+1 = V and Vn+2 = U , the

coloring function (V1, V2, · · · , Vn+2) is a TD-coloring of T (Km,n), we have χtt
d (Km,n) = n+ 2.

Case 2. n ≥ m ≥ 3. For 1 ≤ i ≤ m let Ei = {eij | 1 ≤ j ≤ n}, and for 1 ≤ j ≤ n let

E ′
j = {eij | 1 ≤ i ≤ m}. It can be easily veri�ed that T (Km,n)[Ei] ∼= Kn, T (Km,n)[E ′

j]
∼= Km,

T (Km,n)[E1 ∪ E2 ∪ · · · ∪ Em] ∼= T (Km,n)[E ′
1 ∪ E ′

2 ∪ · · · ∪ E ′
n]

∼= Kn□Km and T (Km,n)[Ei ∪ {vi}] ∼= Kn+1,

T (Km,n)[E ′
j ∪ {uj}] ∼= Km+1. By proving ℓ ≥ n + m + 1 in the following two subcases, and by

considering this fact that the coloring function g with the criterion

g(eij) ≡ j − i+ 1 (mod n) if 1 ≤ i ≤ m and 1 ≤ j ≤ n,

g(vi) = n+ i if 1 ≤ i ≤ m, and

g(ui) = n+m+ 1 if 1 ≤ i ≤ n,

is a TD-coloring of T (Km,n) with m+ n+ 1 color classes, we have χtt
d (Km,n) = m+ n+ 1.

� 2.1. f(E1 ∪ E2 ∪ · · · ∪ Em) = {1, 2, . . . , n}. Since for each 1 ≤ i ≤ m, vi ≻t Vki implies

f(Vki) ∩ {1, 2, . . . , n} = ∅ (because every color 1 ≤ i ≤ n appears m ≥ 2 times) and Vki ⊆ U ,

we have ℓ ≥ n + 1. On the other hand, we see that for each 1 ≤ i ≤ m and 1 ≤ j ≤ n,

eij ≻t Vkij implies Vkij ⊂ {vi, uj}. Then, by the minimality of f , n ≥ m implies Vkij = {vi} for

each 1 ≤ i ≤ m. Now since f(V ) ∩ f(U) = ∅, we have ℓ ≥ n+m+ 1.

� 2.2. {1, 2, · · · , n+1} ⊆ f(E1∪E2∪· · ·∪Em). We assume the minimal TD-coloring f of T (Km,n)



98 L. Vusuqi, A. P. Kazemi and F. Kazemnejad

is best in this meaning that for every minimal TD-coloring g of T (Km,n), |f(E1∪E2∪· · ·∪Em)|≤
|g(E1 ∪ E2 ∪ · · · ∪ Em)|. Then for each 1 ≤ i ≤ m, vi ≻t Vki implies Vki ⊆ U ∪ Ei and specially

if also eij ∈ Vki for some 1 ≤ i ≤ n, then uj /∈ Vki and f(eij) /∈ f(E1 ∪ E2 ∪ · · · ∪ Em) − f(Ei),
that is, the color of eij does not appear in the other vertices in E1 ∪ E2 ∪ · · · ∪ Em −Ei. If every
color in f(E1 ∪E2 ∪ · · · ∪ Em) is appear at least two times, then similar to Case 1, we can prove

that at least m + 1 new color are needed for coloring of V ∪ U , which implies ℓ ≥ n +m + 1.

Therefore, we assume there exists at least one color which is used for coloring of only one vertex

in E1 ∪ E2 ∪ · · · ∪ Em. For 1 ≤ i ≤ m let ri be the number of colors which are used only for

coloring of one vertex from Ei − (E1 ∪ · · · ∪ Ei−1). Without loss of generality, we may assume

r1 ≥ r2 ≥ · · · ≥ rm. We know |f(Ei)|= n for each i. Since |f(E2) ∩ f(E1)|≤ n − r1, we have

|f(E2) − f(E1)|≥ r1. In a similar way, we have |f(Ek) − ∪k−1
i=1 f(Ei)|≥

∑k−1
i=1 ri for 3 ≤ k ≤ m.

By summing this inequalities, we obtain

|f(E1 ∪ E2 ∪ · · · ∪ Em)|≥ n+ (m− 1)r1 + (m− 2)r2 + · · ·+ rm−1. (2)

Since (2) implies ℓ ≥ n + m + 1 when r1 ≥ 2, we may assume r1 = 1. If r1 = r2 = r3 = 1,

then m ≥ 4 and again (2) implies ℓ ≥ n + m + 1. Otherwise, there exists at least a vertex

eij ∈ Ei for some 3 ≤ i ≤ m such that if eij ≻t Vkij , then Vkij ∩ f(E1 ∪ E2 ∪ · · · ∪ Em) = ∅,
that is, at least a new color is needed, and Vkij ⊂ {vi, uj}. Since f(V ) ∩ f(U) = ∅, Vkij = {vi}
implies at least one new color is used to color some vertex in U , and similarly Vkij = {uj}
implies that at least one new color is used to color some vertex in V . Therefore (2) implies

ℓ ≥ (n+m− 1) + 1 + 1 ≥ n+m+ 1.

Since χtt
d (G) = n when G is a wheel of order n ≥ 9 (by Proposition 2.6) or G is K1,q or K2,q of

order n ≥ 3 (by Proposition 3.1), we have the following theorem.

Theorem 3.2. For any n ≥ 3, there exists a graph G of order n with χtt
d (G) = n.

4. Complete Graphs

From [9], we know that for any complete graph Kn of order n ≥ 2,

χtt
d (Kn) ≤ ⌈5n

3
⌉. (3)

Here, we show that the upper bound in (3) is tight when 11 ̸= n ≥ 9. Here, we assume the vertex

set of the complete graph Kn is the set V = {vi | 1 ≤ i ≤ n}, and the vertex set of the total of it is

V (T (Kn)) = V ∪ E where E = {eij | 1 ≤ i < j ≤ n}. First we clarify more details on the total of a

complete graph in the next observation. To more underestanding the observation, T (K5) is shown

in Figure 3 as an example.

Observation 4.1. Let T (Kn) be the total of a complete graph Kn of order n ≥ 2 with the vertex set

V = {vi | 1 ≤ i ≤ n}. Then the following states are hold.

(1) T (Kn) is 2(n − 1)-regular and T (Kn) = Kv0
n ∪ Kv1

n ∪ · · · ∪ Kvn
n is the partition of T (Kn) to

n + 1 edge-disjoint copies of Kn where Kv0
n = Kn and V (Kvi

n ) = {vi} ∪ {eij | 1 ≤ j ̸= i ≤ n}
for 1 ≤ i ≤ n.
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Fig. 3. T (K5) and its six edge-disjoint copies of K5

(2) L(Kn) = T (Kn)−Kn = (Kv1
n − {v1}) ∪ · · · ∪ (Kvn

n − {vn}) is the partition of the line graph of

Kn to n edge-disjoint copies of Kn−1.

(3) V (Kvi
n ) ∩ V (K

vj
n ) = {eij} for each 1 ≤ i < j ≤ n.

(4) V (Kvi
n ) ∩ V (Kv0

n ) = {vi} for each 1 ≤ i ≤ n.

(5) For every x ∈ V (T (Kn)), N(x) = V (Kvi
n ) ∪ V (K

vj
n )− {x} for some 0 ≤ i < j ≤ n.

(6) For each 1 ≤ i ≤ n, the function ϕi on V (T (Kn)) with the criterion

ϕi(x) =


vi if x = vi,

vj if x = eij,

eij if x = vj,

x otherwise,

is an authomorsim of T (Kn) which replaces Kn with Kvi
n . And so ϕj ◦ ϕ−1

i is an authomorsim

of T (Kn) which replaces Kvi
n with K

vj
n .

We recall a needed proposition from [8].

Proposition 4.2. [8] For any complete graph Kn of order n ≥ 2,

(1) γtm(Kn) = γt(T (Kn)) = ⌈5n
3
⌉ − n,

(2) αmix(Kn) = α(T (Kn)) = ⌈n
2
⌉.

Some facts on a minimal TD-coloring of T (Kn) are listed here.

Fact 4.3. Let f = (V1, V2, · · · , Vℓ) be a minimal TD-coloring of T (Kn) in which |V1|≥ |V2|≥ · · · ≥
|Vℓ|, and let Ai = {Vk | v ≻t Vk and |Vk|= i for some v ∈ V ∪ E} be a set of cardinality ai for

1 ≤ i ≤ α = ⌈n
2
⌉. Then the following facts are hold.

(1)
∑ℓ

i=1|Vi|= n(n+1)
2

and
∑ℓ

i=1|CN(Vi)|≥ n(n+1)
2

by |V |=
∑ℓ

i=1|Vi| and (1), respectively. Also

|Vk|≤ ⌈n
2
⌉ for each 1 ≤ k ≤ ℓ.

(2) For any v ∈ V ∪ E, if v ≻t Vk for some 1 ≤ k ≤ ℓ, then |Vk|≤ 2. Because N(v) = V (Kvi
n ) ∪

V (K
vj
n )−{v}, for some 0 ≤ i < j ≤ n (by Observation 4.1 (5)), implies |Vk ∩V (Kvi

n )|≤ 1 and

|Vk ∩ V (K
vj
n )|≤ 1.

(3) If Vk = {vi, epq} for di�erent indices i, p, q, then CN(Vk) = {vp, vq, eip, eiq}, and if Vk =

{ers, epq} for di�erent indices p, q, r, s, then CN(Vk) = {erp, erq, esp, esq}.
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(4) If Vk = {vi} for some i, then CN(Vk) = V ∪ {eij | 1 ≤ j ̸= i ≤ n} − {vi}, and if Vk = {epq}
for some p ̸= q, then CN(Vk) = {eij | |{p, q} ∩ {i, j}|= 1} ∪ {vp, vq}.

(5) (2n− 2)a1 + 4a2 ≥ n(n+1)
2

. Because

n(n+1)
2

= |V ∪ E|
≤ Σ|Vk|≤2|CN(Vk)| (by (2))

= Σ|Vk|=1|CN(Vk)|+Σ|Vk|=2|CN(Vk)|
≤ (2n− 2)a1 + 4a2.

(6) ⌈5n
3
⌉−n ≤ a1+a2 ≤ ℓ. Because the set S with this property that |S∩Vi|= 1 for each Vi ∈ A1∪A2

is a TD-set of T (Kn) (by (2) and Proposition 4.2 (2) for left), and a1+ · · ·+aα = ℓ (for right).

(7) ⌈n(n+1)/2−4(⌈5n/3⌉−n)
2n−6

⌉ ≤ a1 ≤ ⌊αℓ−n(n+1)/2
α−1

⌋. Because the lower bound can be obtained by (5, 6),

and the upper bound can be obtained by

n(n+1)
2

− a1 = |V (T (Kn))|−|A1|
= Σ|Vi|≥2|Vi|
≤ (ℓ− a1)α.

(8) ⌈ (2n−2)(⌈5n/3⌉−n)−n(n+1)/2
2n−6

⌉ ≤ a2 ≤ ℓ− a1 (by (5, 6, 7)).

(9) For any Vi = {ers}, Vj = {epq} ∈ A1,

|CN(Vi) ∩ CN(Vj)|=
{

4 if {r, s} ∩ {p, q} = ∅,
n− 1 if {r, s} ∩ {p, q} ≠ ∅.

Notice eii is the same vi.

Theorem 4.4. For any complete graph Kn of order n ≥ 2,

χtt
d (Kn) =


⌈5n

3
⌉ − 2 if n = 3, 4, 5,

⌈5n
3
⌉ − 1 if n = 2, 6, 7, 8, 11

⌈5n
3
⌉ if n ≥ 9 and n ̸= 11.

Proof. Since the result holds for 2 ≤ n ≤ 4 by Proposition 2.6 and some results in [8], we may assume

n ≥ 5. We recall from Proposition 4.2 that αmix(Kn) = α(T (Kn)) = ⌈n
2
⌉. Let f = (V1, V2, · · · , Vℓ)

be a minimal TD-coloring of T (Kn) in which |V1|≥ |V2|≥ · · · ≥ |Vℓ|, and let Ai = {Vk | v ≻t

Vk and |Vk|= i for some v ∈ V ∪E} be a set of cardinality ai for 1 ≤ i ≤ ⌈n
2
⌉. We continue our proof

in the following cases.

Case 1. 5 ≤ n ≤ 8 or n = 11.

1.1. n = 5. Let ℓ = 6. Then (a1, a2) = (0, 5), (0, 6), (1, 5). Because 0 ≤ a1 ≤ 1 and 5 ≤ a2 ≤ 6

by Fact 4.3 (7,8). Since (a1, a2) = (0, 6), (1, 5) imply
∑6

i=1|Vi|≠ n(n+1)
2

, and (a1, a2) = (0, 5)

implies |V1|> ⌈n
2
⌉ = 3, which contradict Fact 4.3 (1), we have ℓ ≥ 7. Now since (V1, · · · , V7)

is a TD-coloring of T (K5) where V1 = {v3, e12, e45}, V2 = {v4, e23, e15}, V3 = {v5, e13, e24},
V4 = {e25, e34}, V5 = {e35, e14}, V6 = {v1}, V7 = {v2}, we have χtt

d (K5) = 7 = ⌈5n
3
⌉ − 2.

1.2. n = 6. Let ℓ = 8. Then (a1, a2) = (1, 4), (1, 5), (1, 6), (1, 7). Because a1 = 1 and 4 ≤ a2 ≤ 7 by

Fact 4.3 (7,8). Since (a1, a2) = (1, 7) implies
∑8

i=1|Vi|≠ n(n+1)
2

, and (a1, a2) = (1, 4), (1, 5), (1, 6)

imply |V1|> ⌈n
2
⌉ = 3, which contradict Fact 4.3 (1), we have ℓ ≥ 9. Now since (V1, · · · , V9)
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is a TD-coloring of T (K6) where V1 = {v3, e12, e45}, V2 = {v4, e13, e26}, V3 = {v5, e16, e23},
V4 = {v6, e14, e25}, V5 = {e36, e15, e24}, V6 = {e34, e56}, V7 = {e35, e46}, V8 = {v1}, V9 = {v2},
we have χtt

d (K6) = 9 = ⌈5n
3
⌉ − 1.

1.3. n = 7. Let ℓ = 10. Then (a1, a2) = (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 4), (2, 5), (2, 6),

(2, 7), (2, 8), (3, 4), (3, 5), (3, 6), (3, 7), (4, 4), (4, 5), (4, 6). Because 1 ≤ a1 ≤ 4 and 4 ≤ a2 ≤
10−a1 by Fact 4.3 (7,8). Since (a1, a2) = (1, 9), (2, 8), (3, 7), (4, 6) imply

∑10
i=1|Vi|≠ n(n+1)

2
, and

(a1, a2) = (1, 5), (1, 6), (1, 7), (1, 8), (2, 4), (2, 5), (2, 6), (2, 7), (3, 4), (3, 5), (3, 6), (4, 4), (4, 5)

imply |V1|> ⌈n
2
⌉ = 4, which contradict Fact 4.3 (1), we have (a1, a2) = (1, 4). By Observation

4.1(6), we may assume V10 = {vi} for some 1 ≤ i ≤ n. Then vi ≻t Vk for some k ̸= 10 implies

Vk = {vp, eiq} for some three di�erent indices i, p, q. Since

|CN(Vk) ∪ CN(V10)| = |CN(Vk)|+|CN(V10)|−|CN(Vk) ∩ CN(V10)|
= 4 + 12− 4

= 12

by Fact 4.3 (3,4), we reach to the contradiction

28 = n(n+1)
2

≤ Σ10
i=6|CN(Vk)|

≤ Σ9
k ̸=i=6|CN(Vk)|+Σi=k,10|CN(Vi)|

≤ 3× 4 + 12 (by Fact 4.3 (3))

= 24.

Thus ℓ ≥ 11, and since (V1, · · · , V11) is a TD-coloring of T (K7) where V1 = {v4, e16, e25, e37},
V2 = {v5, e67, e13, e24}, V3 = {v6, e15, e23, e47}, V4 = {v7, e35, e26, e14}, V5 = {v3, e46, e57},
V6 = {v1, e27, e36}, V7 = {v2, e34}, V8 = {e12}, V9 = {e45}, V10 = {e56}, V11 = {e17}, we have
χtt
d (K7) = 11 = ⌈5n

3
⌉ − 1.

1.4. n = 8. Let ℓ = 12. Then (a1, a2) = (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10), (3, 5), (3, 6), (3, 7),

(3, 8), (3, 9), (4, 5), (4, 6), (4, 7), (4, 8). Because 2 ≤ a1 ≤ 4 and 5 ≤ a2 ≤ 12 − a1 by Fact 4.3

(7,8). Since (a1, a2) = (2, 10), (3, 9), (4, 8) imply
∑12

i=1|Vi|≠ n(n+1)
2

, and (a1, a2) = (2, 5),(2, 6),

(2, 7), (2, 8), (2, 9), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7) imply |V1|> ⌈n
2
⌉ = 4, which

contradict Fact 4.3 (1), we have ℓ ≥ 13. Now since (V1, · · · , V13) is a TD-coloring of T (K8) where

V1 = {v8, e13, e24, e56}, V2 = {v7, e25, e36, e48}, V3 = {v6, e18, e27, e34}, V4 = {v5, e16, e28, e37},
V5 = {v4, e17, e26, e35}, V6 = {v2, e15, e47, e38}, V7 = {e57, e68}, V8 = {e46, e58}, V9 = {e45, e67},
V10 = {e14, e78}, V11 = {v3, e12}, V12 = {e23}, V13 = {v1}, we have χtt

d (K8) = 13 = ⌈5n
3
⌉ − 1.

1.5. n = 11. Let ℓ = ⌈5n
3
⌉−2 = 17. Then (a1, a2) = (3, 6), (3, 7), (3, 8), (3, 9), (3, 10), (3, 11), (3, 12),

(3, 13), (3, 14), (4, 6), (4, 7), (4, 8), (4, 9), (4, 10), (4, 11), (4, 12), (4, 13), (5, 6), (5, 7), (5, 8),

(5, 9), (5, 10), (5, 11), (5, 12), (6, 6), (6, 7), (6, 8), (6, 9), (6, 10), (6, 11), (7, 6), (7, 7), (7, 8), (7, 9),

(7, 10). Because 3 ≤ a1 ≤ 7 and 6 ≤ a2 ≤ 17 − a1 by Fact 4.3 (7,8). Since
∑17

i=1|Vi|≠ n(n+1)
2

when (a1, a2) = (3, 14), (4, 13), (5, 12),(6, 11), (7, 10) and |V1|> ⌈n
2
⌉ = 6 in the other cases,

which contradict Fact 4.3 (1), we have ℓ ≥ 18. Now since (V1, · · · , V18) is a TD-coloring

of T (K11) where V1 = {v11, e1(10), e26, e37, e48, e59}, V2 = {v10, e19, e28, e35, e46, e7(11)}, V3 =

{v9, e1(11), e27, e34, e8(10), e56}, V4 = {v8, e14, e2(11), e39, e6(10), e57}, V5 = {v7, e18, e29, e36, e4(10), e5(11)},
V6 = {v4, e15, e2(10), e3(11), e68, e79}, V7 = {v5, e16, e24, e3(10), e9(11)}, V8 = {v6, e17, e25, e38, e49},
V9 = {v3, e12, e4(11), e58, e7(10)}, V10 = {e6(11), e9(10)}, V11 = {e47, e5(10)}, V12 = {e89, e(10)(11)},
V13 = {v2, e13}, V14 = {e67, e8(11)}, V15 = {e69, e78}, V16 = {v1}, V17 = {e23}, V18 = {e45}, we
have χtt

d (K11) = 18 = ⌈5n
3
⌉ − 1.
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Case 2. n ≥ 9 and n ̸= 11. Let ℓ = ⌈5n
3
⌉ − 1, and let

m1 = ⌈n(n+1)/2−4(⌈5n/3⌉−n)
2n−6

⌉, M1 = ⌊αℓ−n(n+1)/2
α−1

⌋,
m2 = ⌈ (2n−2)(⌈5n/3⌉−n)−n(n+1)/2

2n−6
⌉, M2 = ℓ− a1.

Then (a1, a2) = (x1 + i, x2 + j) for some 0 ≤ i ≤ M1 − m1 and some 0 ≤ j ≤ M2 − m2. In the

following subcases, we show that ℓ = ⌈5n
3
⌉ − 1 leads us to a contrdiction.

2.1. Either n is even or n is odd and (a1, a2) ̸= (m1,m2). Then, by Fact 4.3 (1), we must have

a1 + a2 ≤ ℓ− 1 and |V1|≤ ⌈n
2
⌉, and so by assumptions a1 = m1 + i and a2 = m2 + j for some

0 ≤ i ≤ M1 −m1 and some 0 ≤ j ≤ M2 −m2, we have∑ℓ
i=1|Vi| =

∑ℓ−(a1+a2)
i=1 |Vi|+

∑ℓ
i=ℓ−(a1+a2)+1|Vi|

≤ (ℓ− a1 − a2)⌈n
2
⌉+ a1 + 2a2

= (ℓ−m1 −m2)⌈n
2
⌉+ (m1 + 2m2) + (1− ⌈n

2
⌉)i+ (2− ⌈n

2
⌉)j

≤ (ℓ−m1 −m2)⌈n
2
⌉+ (m1 + 2m2)− (4i+ 3j) (because n ≥ 9)

≤ (ℓ−m1 −m2 − ϵ)⌈n
2
⌉+ (m1 + 2m2 + 2ϵ)

< n(n+1)
2

,

which contradicts Fact 4.3 (1) (where ϵ is 0 when n is even and is 1 otherwise).

2.2. n ≥ 13 is odd and (a1, a2) = (m1,m2). Then a1 = ⌊n+1
4
⌋ ≥ 3 and

a2 =

{
⌈5n
12
⌉ if n ≡ 3 (mod 12),

⌈5n
12
⌉+ 1 if n ̸≡ 3 (mod 12).

Let A1 = {Vi | i ∈ I} where I = {ℓ − i | | 0 ≤ i ≤ ℓ − a1 + 1}. Let z =
∑

i,j∈I−{t}|CN(Vi) ∩
CN(Vi)| for some t ∈ I. Since |CN(Vt) ∩ CN(Vi)|≥ 4 for each i ∈ I − {t} (by Fact 4.3 (9))

and CN(Vt) ∩ CN(Vi) ∩ CN(Vj) = ∅ for each 2-subset {i, j} ⊆ I − {t}, we conclude∑
i,j∈I |CN(Vi) ∩ CN(Vj)| = z + Σi,j∈I−{t}|CN(Vi) ∩ CN(Vj)|

≥ z + 4(a1 − 1)

= z + 4
(
a1−1
1

)
.

(4)

Since z = 4
(
3
2

)
when a1 = 3, by induction on a1 ≥ 3 and (4), we will have∑

i,j∈I |CN(Vi) ∩ CN(Vj)| ≥ 4
(
a1−1
2

)
+ 4

(
a1−1
1

)
= 4

(
a1
2

)
.

Hence

∑ℓ
i=1|CN(Vi)| =

∑
Vi∈A2

|CN(Vi)|+
∑

Vi∈A1
|CN(Vi)|

≤ 4a2 + (2n− 2)a1 − 4
(
a1
2

)
< n(n+1)

2
,

which contradicts Fact 4.3 (1).

2.3. n = 9 and (a1, a2) = (2, 5). Then ℓ = 14, A1 = {V13, V14} and A2 = {Vi | 8 ≤ i ≤ 12}. If

T (Kn)[V13 ∪ V14] ∼= K2, then, by |CN(V13) ∪ CN(V14)|= 3n − 3 = 24 and Fact 4.3 (2,3), we
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have
|
⋃ℓ

i=1CN(Vi)| = |
⋃

i∈A1∪A2
CN(Vi)|

≤ |
⋃

i∈A1
CN(Vi)|+|

⋃
i∈A2

CN(Vi)|
≤ 24 + 4a2
= 44

< 45

= n(n+1)
2

,

which contradicts Fact 4.3 (1). So V13 ∪ V14 is an independent set, and by Obsevation 4.1(6),

we may assume V13 = {v1} and V14 = {e23}, which implies |CN(V13) ∪ CN(V14)|= 28. Then

the assumption v1 ≻t V12 implies V12 = {vp, e1q} for some p ̸= q by Obsevation 4.1(6). If

{p, q} ∩ {2, 3} = ∅, then each of the six numbers 4, 5, 6, 7, 8, 9 must be appeared three times

in the indices of the elements of V8 ∪ · · · ∪ V11, which is not possible. Because the number

of indices in the elements of each Vi ∈ A2, is at most four. So, we have {p, q} ∩ {2, 3} ≠ ∅.
Then the number of appearing all of the six numbers 4, 5, 6, 7, 8, 9 (by allowing repeating

numbers) as indices of the elements of V8 ∪ · · · ∪ V11 can be reduced to 16. But then we have

the contradiction e23 ⊁t Vk for each k.

Therefore ℓ ≥ ⌈5n
3
⌉, and in fact χt

d(T (Kn)) = ⌈5n
3
⌉ by (3).
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