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abstract

Let G be a connected graph and let dG be the geodesic distance on V (G). The metric spaces

(V (G), dG) were characterized up to isometry for all �nite connected G by David C. Kay and Gary

Chartrand in 1965. The main result of this paper expands this characterization on in�nite connected

graphs. We also prove that every metric space with integer distances between its points admits an

isometric embedding in (V (G), dG) for suitable G.

Keywords: Connected graph, geodesic distance on graphs, in�nite graph, isometric embedding, metric

betweenness

1. Introduction

Let u, v ∈ V (G) be vertices of a connected graph G. Then the geodesic distance dG(u, v) is the

minimum size of paths joining u and v in G. There are some important interconnections between

metric properties of the space (V (G), dG) and combinatorial properties of G, [7, 14]. It should be

noted here that almost all of these interconnections were found for �nite graphs. In particular, the

following theorem was proved by David C. Kay and Gary Chartrand in [8].

Theorem 1.1. Let (M,d) be a �nite metric space. Then (M,d) is isometric to the space (V (G), dG)

for some �nite connected G if and only if the distance between every two points of M is an integer

and, for arbitrary x, z ∈ M with d(x, z) ⩾ 2, there is y ∈ M such that y lies between x and z.

The initial goal of the paper is to extend the above theorem to connected graphs of arbitrary

in�nite order.

The paper is organized as follows. Section 2 contains some de�nitions and facts from the theory

of metric spaces and graph theory.
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The main results are given in Section 3. In Theorem 3.1, an extension of Theorem 1.1 to arbitrary

in�nite graphs is proved.

In Theorem 3.3, we prove that each metric space with integer distances between points admits an

isometric embedding into (V (G), dG) for some connected G. A weak version of Theorem 3.3 is given

in Corollary 3.5 for metric spaces with arbitrary distances between points.

A graph-theoretical reformulation of Menger's results on isometric embeddings in the real line is

given in Conjecture 4.2 of Section 4. An extremal property of pseudo-linear quadruples is presented

as a property of induced cycles in Conjecture 4.4.

2. Initial de�nitions and facts

Let us recall some concepts from the theory of metric spaces and graph theory.

De�nition 2.1. Let X be a nonempty set. A metric on X is a function d : X × X → R+,

R+ = [0,∞), such that for all x, y, z ∈ X:

(i) d(x, y) = d(y, x), symmetry;

(ii) (d(x, y) = 0) ⇔ (x = y), non-negativity;

(iii) d(x, y) ⩽ d(x, z) + d(z, y), triangle inequality.

The main isomorphisms of metric spaces are the so-called isometries of such spaces.

De�nition 2.2. The metric spaces (X, d) and (Y, ρ) are isometric if there is a bijective mapping

Φ : X → Y such that

d(x, y) = ρ(Φ(x),Φ(y)), (1)

for all x, y ∈ X. In this case, we say that Φ is an isometry of (X, d) and (Y, ρ).

Let (X, d) and (Y, ρ) be metric spaces. Recall that Φ : X → Y is an isometric embedding of (X, d)

in (Y, ρ) if (1) holds for all x, y ∈ X. We say that (X, d) is isometrically embedded in (Y, ρ) if there

exists an isometric embedding X → Y .

We will also use the concept of �metric betweenness�. In the theory of metric spaces, the notion

of �metric betweenness�, �rst appeared in Menger's paper [11].

De�nition 2.3. Let (X, d) be a metric space and let x, y, z be points of (X, d). One says that y lies

between x and z if x ̸= y ̸= z and

d(x, z) = d(x, y) + d(y, z).

The relation �betweenness� is fundamental for the theory of geodesics on metric spaces (see, e.g.,

[13]). Characteristic properties of the ternary relations that are �metric betweenness� relations for

(real-valued) metrics were determined by Wald in [16]. Later, the problem of �metrization� of be-

tweenness relations (not necessarily by real-valued metrics) was considered in [10, 12] and [15]. An

in�nitesimal version of the metric betweenness was studied in [1] and [6]. Paper [2] contains an

explicit construction of a minimal metric space (Y, ρ) such that a metric space (X, d) is isometrically

embedded in (Y, ρ) if, among any three distinct points of X, there is one that lies between the others.

An elementary proof of some Menger's results was given in [5].

A graph is a pair (V,E) consisting of a nonempty set V and a (possibly empty) set E whose
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elements are unordered pairs of di�erent points from V . For a graph G = (V,E), the sets V = V (G)

and E = E(G) are called the set of vertices and the set of edges, respectively. We say that G is

nonempty if E(G) ̸= ∅. If {x, y} ∈ E(G), then the vertices x and y are adjacent. Recall that a path

is a nonempty graph P whose vertices can be numbered so that

V (P ) = {x0, x1, . . . , xk}, E(P ) = {{x0, x1}, . . . , {xk−1, xk}},

where k ⩾ 1. In this case, we say that P is a path joining x0 and xk and write

P = (x0, x1, . . . , xk).

A graph G is �nite if V (G) is a �nite set, |V (G)|< ∞. The cardinal number |V (G)| is called order

of G. In this paper, we consider graphs with arbitrary �nite or in�nite order.

A �nite graph of order n ⩾ 3 is called the cycle Cn if there exists an enumeration v1, v2, . . . , vn of

its vertices such that

({vi, vj} ∈ E(Cn)) ⇔ (|i− j|= 1 or |i− j|= n− 1).

In this case, we write Cn = (v1, . . . , vn, v1).

A graph H is a subgraph of a graph G if

V (H) ⊆ V (G) and E(H) ⊆ E(G).

We write H ⊆ G if H is a subgraph of G.

If H1 and H2 are subgraphs of G, then the union H1 ∪H2 is a subgraph of G such that

V (H1 ∪H2) = V (H1) ∪ V (H2) and E(H1 ∪H2) = E(H1) ∪ E(H2).

A graph G is connected if for every two distinct u, v ∈ V (G) there is a path P ⊆ G joining u and

v.

The following lemma is well-known.

Lemma 2.4. Let G1 and G2 be connected subgraphs of a graph G. If

V (G1) ∩ V (G2) ̸= ∅,

holds, then the union G1 ∪G2 also is a connected subgraph of G.

Let us now recall the concept of geodesic distance on graphs.

De�nition 2.5. Let G be a connected graph. For each two vertices u, v ∈ V (G) we de�ne the

geodesic distance dG(u, v) as

dG(u, v) =

{
0, if u = v,

|E(P )|, otherwise,
(2)

where P is a shortest path joining u and v in G.

The following proposition is well-known but is usually formulated without any proof. See, for

example, [14, p. 3] or Remark 1.16 in [9].
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Proposition 2.6. Let G be a connected graph. Then the geodesic distance dG is a metric on V (G).

Proof. It follows directly from (2) that the function dG is symmetric and, moreover, dG(u, v) = 0

holds i� u = v. Thus, by De�nition 2.1, the function dG is a metric on V (G) i� the triangle inequality

dG(u, v) ⩽ dG(u,w) + dG(w, v), (3)

holds for all u, v, w ∈ V (G).

Inequality (3) is trivially valid if u = v, u = w, or w = v. Suppose that u, v and w are pairwise

distinct.

Let us consider two paths Pu,w ⊆ G and Pw,v ⊆ G such that: Pu,w connects u and w; Pw,v connects

w and v;

dG(u,w) = |E(Pu,w)|, (4)

and

dG(w, v) = |E(Pw,v)|. (5)

Write

G1 := Pu,w ∪ Pw,v. (6)

Then w ∈ V (Pu,w) ∩ V (Pw,v) and, consequently, G1 is a connected subgraph of G by Lemma 2.4.

It follows from (6) that

u, v ∈ V (G1).

Hence, the geodesic distance dG1(u, v) is correctly de�ned, and, by De�nition 2.5, the inequality

dG(u, v) ⩽ dG1(u,w), (7)

holds.

Inequality (7) implies that (3) holds if

dG1(u, v) ⩽ dG(u,w) + dG(w, v).

Let P 1
u,v be a path joining u and v in G1 such that

dG(u, v) = |E(P 1
u,v)|.

It follows directly from the de�nition of paths that

|E(Pu,w)|= |V (Pu,w)|−1, (8)

|E(Pw,v)|= |V (Pw,v)|−1, (9)

and

|E(P 1
u,v)|= |V (P 1

u,v)|−1. (10)

Now, using (4)�(5), (6), and (8)�(9) we obtain

dG(u,w) + dG(w, v) = |V (Pu,w)|+|V (Pw,v)|−2

= |V (G1)|+|V (Pu,w) ∩ V (Pw,v)|−2.
(11)

Since w belongs to V (Pu,w) ∩ V (Pw,v), (11) implies

dG(u,w) + dG(w, v) ⩾ |V (G1)|−1. (12)
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Similarly, it follows from P 1
u,v ⊆ G1 and (10) that

dG1(u, v) = |V (P 1
u,v)|−1 ⩽ |V (G1)|−1. (13)

Inequality (3) follows from (7), (12) and (13).

The proof is completed.

The following simple lemmas will be used in the next section of the paper.

Lemma 2.7. Let G be a connected graph and let u, v ∈ V (G). Then the vertices u and v are adjacent

if and only if the equality

dG(u, v) = 1,

holds.

Lemma 2.8. Let G be a connected graph, let x and z be di�erent vertices of G, and let P be a

shortest path joining x and z. Then every y ∈ V (P ) lies between x and z, whenever x ̸= y ̸= z.

3. Metric betweennes and geodesic distance on graphs

The following theorem shows that the Kay�Chartrand characterization of spaces (V (G), dG) is valid

for connected graphs G of arbitrary order.

In what follows, we denote by N0 the set of all nonnegative integers, N0 = {0, 1, 2, . . .}.

Theorem 3.1. Let (X, d) be a metric space. Then the following statements are equivalent.

(i) There exists a connected graph G such that the metric spaces (X, d) and (V (G), dG) are iso-

metric.

(ii) The inclusion

{d(p, q): p, q ∈ X} ⊆ N0, (14)

holds and, for any two points x, z ∈ X satisfying the inequality d(x, z) ⩾ 2, there is y ∈ X that lies

between x and z.

Proof. (i) ⇒ (ii). Let G be a connected graph such that (X, d) and (V (G), dG) are isometric. Then

inclusion (14) follows from De�nitions 2.2 and 2.5.

Let us consider arbitrary x, z ∈ X such that d(x, z) ⩾ 2. We need to show that there exists a

point y ∈ X such that

x ̸= y ̸= z, (15)

and

d(x, z) = d(x, y) + d(y, z). (16)

Let Φ:X → V (G) be an isometry between the metric spaces (X, d) and (V (G), dG). Then the

inequality

dG(Φ(x),Φ(z)) ⩾ 2, (17)

holds by De�nition 2.2. Let P be a path in G joining Φ(x) and Φ(z) such that

dG(Φ(x),Φ(z)) = |E(P )|.
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Inequality (17) implies |E(P )|⩾ 2. Consequently, there is w ∈ V (P ) such that

Φ(x) ̸= w ̸= Φ(z). (18)

Now, using Lemma 2.8 we obtain

dG(Φ(x),Φ(z)) = dG(Φ(x), w) + dG(w,Φ(z)). (19)

Let Φ−1 : V (G) → X be the inverse of the mapping Φ : X → V (G). Then Φ and Φ−1 are

isometries and, consequently, we have

d(x, z) = dG(Φ(x),Φ(z)),

and

dG(Φ(x), w) = d(Φ−1 (Φ(x)) ,Φ−1(w)) = d(x,Φ−1(w)),

and

dG(w,Φ(z)) = d(Φ−1(w),Φ−1(Φ(z))) = d(Φ−1(w), z). (20)

Equalities (19)�(20) imply

d(x, z) = d(x,Φ−1(w)) + d(Φ−1(w), z), (21)

and, in addition we have

x ̸= Φ−1(w) ̸= z, (22)

by (18). Now, (15) and (16) follow from (22) and (21) with y = Φ−1(w).

(ii) ⇒ (i). Let statement (ii) be valid. Then we consider a graph G such that

V (G) = X, (23)

and

({p, q} ∈ E(G)) ⇐⇒ (d(p, q) = 1), (24)

for all p, q ∈ X.

We claim that G is a connected graph and that the equality

d = dG, (25)

is satis�ed, which obviously implies (i).

It su�ces to show that if x, z ∈ V (G) are distinct, then there is a connected subgraph Gx,z of G

such that x ∈ V (Gx,z) and z ∈ V (Gx,z). Let us consider arbitrary di�erent x, z ∈ V (G). Write

n := d(x, z).

It follows from (14) and (23) that n is a positive integer. We construct the required Gx,z ⊆ G by

induction on n.

If n = 1, then x and z adjacent in G by (24). So we can de�ne Gx,z by

V (Gx,z) := {x, z} and E(Gx,z) := {{x, z}}.

Suppose that we can construct Gx,z for all n < n1, where n1 ⩾ 2 and that

d(x, z) = n1,
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holds. Then using (ii) we can �nd y ∈ V (G) satisfying (15) and (16).

Now, (15) and (16) give us

1 ⩽ d(x, y) ⩽ n1 − 1,

and

1 ⩽ d(y, z) ⩽ n1 − 1.

Consequently, by induction hypothesis, there are connected Gx,y ⊆ G and Gy,z ⊆ G such that

x, y ∈ V (Gx,y) and y, z ∈ V (Gy,z). Since y ∈ V (Gx,y)∩ V (Gy,z), the union Gx,y ∪Gy,z is a connected

subgraph of G by Lemma 2.4.

Write

Gx,z := Gx,y ∪Gy,z,

then Gx,z is connected and x, z ∈ Gx,z.

Thus, G is a connected graph, and, consequently, the geodesic distance dG is a correctly de�ned

metric on V (G) by Proposition 2.6.

To complete the proof, we must show that (25) holds. Let x and z be di�erent points of X. Assume

�rst that d(x, z) = 1. Then x and y are adjacent in G. Hence, by Lemma 2.7, we obtain

dG(x, z) = 1.

Thus, the equality

d(x, z) = dG(x, z), (26)

holds if d(x, z) = 1. Moreover, equality (26) holds by De�nition 2.1 when x = z.

Suppose now that

d(x, z) = n ⩾ 2. (27)

Then using statement (ii) we can �nd some points y1, . . . , yn+1 ∈ X such that

y1 = x1, yn+1 = z,

and

d(yi, yi+1) = 1, (28)

for every i ∈ {i, . . . , n}, and

d(x, z) =
n∑

i=1

d(yi, yi+1). (29)

It was noted above that (28) implies

d(yi, yi+1) = dG(yi, yi+1), i = 1, . . . , n.

Therefore, we can rewrite (29) in the form

d(x, z) = dG(x, y1) + dG(y1, y2) + . . .+ dG(yn−1, yn) + dG(yn, z).

The last equality and the triangle inequality give us the inequality

d(x, z) ⩾ dG(x, z). (30)

Let P be a shortest path joining x and z in G,

V (P ) = {x0, x1, . . . , xk}, k ⩽ 1, and E(P ) = {{x0, x1}, . . . , {xk−1, xk}},
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where x0 = x and xn = z. It follows from (27) that

dG(x, z) ⩾ 2,

since otherwise dG(x, z) = d(x, z) = 1 contrary to (27). Thus, k ⩾ 2 holds.

Using De�nition 2.5 we obtain the equality

dG(x, z) = dG(x, x1) + dG(x1, x2) + . . .+ dG(xk−2, xk−1) + dG(xk−1, z).

Now, we can rewrite it as

dG(x, z) = d(x, x1) + d(x1, x2) + . . .+ d(xk−2, xk−1) + d(xk−1, z), (31)

because, for every j ∈ {0, . . . , k−1}, the vertices xj and xj+1 are adjecent that implies dG(xj, xj+1) =

d(xj, xj+1). Equality (31) and the triangle inequality imply

dG(x, z) ⩾ d(x, z).

The last inequality and (30) give us

d(x, z) = dG(x, z).

Equality (25) follows.

The proof is completed.

Analyzing the above proof, we obtain the following clari�cation of Theorem 3.1.

Theorem 3.2. Let (X, d) be a metric space and let

{d(p, q): p, q ∈ X} ⊆ N0.

If, for any x, z ∈ X satisfying d(x, z) ⩾ 2, there is y ∈ X such that y lies between x and z, then

the graph G de�ned by V (G) = X and

({x, y} ∈ E(G)) ⇐⇒ (d(x, y) = 1),

is connected and the geodesic distance dG satis�es the equality d = dG.

The following theorem shows that metric spaces with integer distances between points are sub-

spaces of the spaces (V (G), dG).

Theorem 3.3. Let (X, d) be a metric space. Then the following statements are equivalent.

(i) There is a connected graph G such that (X, d) is isometric to a subspace of (V (G), dG).

(ii) The inclusion

{d(p, q): p, q ∈ X} ⊆ N0, (32)

holds.

Proof. (i) =⇒ (ii). Let (i) hold. Then (ii) directly follows from De�nition 2.5.

(ii) =⇒ (i). Suppose that inclusion (32) holds. Let us de�ne a set X2 of two-point subsets of X

by the rule: {x, y} ∈ X2 i�

d(x, y) ⩾ 2,
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and, for every z ∈ X,

d(x, y) < d(x, z) + d(z, y),

whenever

x ̸= y ̸= z.

If X2 = ∅, then (i) follows from Theorem 3.1.

Let us consider the case when X2 ̸= ∅. For each {x, y} ∈ X2 we de�ne a path Px,y = (v0, . . . , vk)

such that:

(1) (i1) v0 = x, vk = y and vi /∈ X for any i ∈ {1, . . . , k − 1};
(2) (i2) The equality k = d(x, y) holds;

(3) (i3) If {x1, y1} ∈ X2, {x2, y2} ∈ X2 and {x1, y1} ≠ {x2, y2}, then the intersection of the sets

{u ∈ V (Px1,y1):x1 ̸= u ̸= y1},

and

{u ∈ V (Px2,y2):x2 ̸= u ̸= y2},

is empty.

Let us now de�ne a graph G as follows:

V (G) = X ∪
(
∪{x,y}∈X2V (Px,y)

)
, (33)

and, for all u, v ∈ V (G), u and v are adjacent i� either u, v ∈ X and d(u, v) = 1, or {u, v} ∈ E(Px,y)

for some {x, y} ∈ X2.

We claim that G is a connected graph.

Let us consider two arbitrary distinct u, v ∈ V (G). It is enough to show that there is a connected

subgraph Gu,v of G such that u ∈ V (Gu,v) and v ∈ V (Gu,v) if u ∈ X and v ∈ X.

Indeed, if u /∈ X and v /∈ X, then, by (33), there are {x1, y1} ∈ X2 and {x2, y2} ∈ X2 such that

u ∈ V (Px1,y1), and v ∈ V (Px2,y2), and

x1, x2, y1, y2 ∈ X.

Without less of generality we may assume that x1 ̸= y2. Suppose that there is a connected subgraph

of Gx1,y2 such that

x1, y2 ∈ V (Gx1,y2).

Then Lemma 2.4 implies that the union Px1,y1 ∪ Px2,y2 ∪Gx1,y2 also is a connected subgraph of G.

The cases u ∈ X, v /∈ X and u /∈ X, v ∈ X can be treated similarly, so we omit the details here.

Suppose now that u, v ∈ X and u ̸= v. If d(u, v) = 1, then, by de�nition, u and v are adjacent in

G and, consequently, we may take Gu,v with

V (Gu,v) = {u, v} and E(Gu,v) = {{u, v}}.

If

d(u, v) ⩾ 2, (34)

holds and {u, v} ∈ X2, then the path Pu,v de�ned as in (i1)− (i3) is a connected subgraph of G, and

u, v ∈ Pu,v, so we can set Gu,v := Pu,v.
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Let us consider now the case when (34) is valid but {u, v} /∈ X2. Then, by de�nition of X2, there

exist some points p0, p1, . . . , pn+1 such that

p0 = u and pn+1 = v, (35)

d(u, v) =
n∑

i=0

d(pi, pi+1), (36)

and, for each i ∈ {0, 1, . . . , n+ 1}, we have

either d(pi, pi+1) = 1 or {pi, pi+1} ∈ X2. (37)

The paths Pp0,p1 , Pp1,p2 , . . . , Ppn,pn+1 are connected subgraphs of G. Consequently,

Gu,v :=
n⋃

i=0

Ppi,pi+1
,

also is a connected subgraph of G by Lemma 2.4, and u, v ∈ V (Gu,v) holds by de�nition of Gu,v.

Thus, G is connected. To complete the proof we must show that the equality

dG(u, v) = d(u, v), (38)

holds for all u, v ∈ X.

Equality (38) holds if and only if we have

d(u, v) ⩾ dG(u, v), (39)

and

d(u, v) ⩽ dG(u, v). (40)

Let us prove (39).

If u = v holds, then inequality (39) directly follows from De�nition 2.1.

Let

d(u, v) = 1, (41)

hold. Then, by the de�nition of the graph G, we obtain

{u, v} ∈ E(G).

Hence, by Lemma 2.7 the equality

dG(u, v) = 1, (42)

holds. Now, (39) follows from (41) and (42).

Let us consider now the case when u, v ∈ X and

d(u, v) ⩾ 2,

holds.

Suppose that {u, v} ∈ X2, and consider the path Pu,v satisfying conditions (i1)− (i3) with x = u

and y = v. Then we have

Pu,v ⊆ G,
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by de�nition of G and

d(u, v) = |E(Pu,v)|, (43)

by (i2). De�nition 2.5 and equality (43) now imply (39).

If {u, v} /∈ X2, then there exist some points p0, . . . , pn+1 ∈ X such that (35), (36) and (37) are

valid. Using (37) we obtain

d(u, p1) ⩾ dG(u, p), d(p1, p2) ⩾ dG(p1, p2), . . . , d(pn, v) ⩾ dG(pn, v). (44)

Moreover, we have

dG(u, v) ⩽ dG(u, p1) + dG(p1, p2) + . . .+ dG(pn, v), (45)

by triangle inequality. Hence,

d(u, v) ⩾ dG(u, p1) + dG(p1, p2) + . . .+ dG(pn, v) ⩾ dG(u, v),

holds by (36), (44) and (45). Thus inequality (39) is valid for all u, v ∈ X.

Let us prove (40) for all u, v ∈ X. Reasoning as above we see that dG(u, v) = d(u, v) holds if

dG(u, v) ⩽ 1. Thus if there are u, v ∈ X such that (40) does not hold then there are u∗, v∗ ∈ X such

that

d(u∗, v∗) > dG(u
∗, v∗), (46)

but we have

d(u, v) ⩽ dG(u, v),

whenever

dG(u, v) < dG(u
∗, v∗).

Let u∗ and v∗ satisfy the above conditions, and let P ∗
u∗,v∗ = {w0, . . . , wm} be a path in G such that

w0 = u∗, . . . , wm = v∗ and

dG(u
∗, v∗) = |E(P ∗

u∗,v∗)|. (47)

The following two cases are possible:

We have

wi /∈ X, (48)

whenever i ∈ {1, . . . ,m− 1};
There is wi0 ∈ V (P ∗

u∗,v∗) such that

wi0 ∈ X, (49)

and i0 ∈ {1, . . . ,m− 1}.
In the �rst case it follows from (33) and (48) that there is a path Px,y satisfying conditions (i1)−(i3)

such that

w1 ∈ V (Px,y).

Conditions (i1) and (i3) imply the equality

V (Px,y) = V (P ∗
u∗,v∗).

Now, using (i2) we see that (49) implies

|E(Px,y)|= d(x, y) = d(u∗, v∗) = |E(P ∗
u∗,v∗)|. (50)
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Equalities (50) and (47) give us

dG(u
∗, v∗) = d(u∗, v∗),

contrary to (46).

Let us consider the case when there is wi0 ∈ V (P ∗
u∗,v∗) such that (49) holds and

i0 ∈ {1, . . . ,m− 1}. (51)

By Lemma 2.8 we have

dG(u
∗, v∗) = dG(u

∗, wi0) + dG(wi0 , v
∗). (52)

Moreover, (51) implies that

u∗ ̸= wi0 ̸= v∗. (53)

Now, it follows from (52) and (53) that

dG(u
∗, wi0) < dG(u

∗, v∗),

and

dG(wi0 , v
∗) < dG(u

∗, v∗).

Hence, by de�nition of the points u∗, v∗, the equalities

dG(u
∗, wi0) = d(u∗, wi0), (54)

dG(wi0 , v
∗) = d(wi0 , v

∗), (55)

hold. Now, using (52), the triangle inequality in (X, d), and equalities (54)�(55) we obtain

dG(u
∗, v∗) = d(u∗, wi0) + d(wi0 , v

∗) ⩾ d(u∗, v∗),

which contradicts (46). Thus, (40) holds for all u, v ∈ X.

The proof is completed.

Corollary 3.4. Let (X, d) be a metric space. Then the following statements are equivalent.

(i) There is a connected graph G such that (X, d) is isometrically embedded in (V (G), dG).

(ii) The distance between any two points of X is an integer number.

X = {x1, x2, x3}

x1

x2

x34

5
3

G = C12

x1

x2

x3

Fig. 1. The Egyptian triangle {x1, x2, x3} is isometrically embedded in the cycle C12 endowed with the geodesic

distance
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Corollary 3.5. For every metric space (X, d) there exists a connected graph G and an injective

mapping Φ : X → V (G) such that

d(x, y) ⩽ dG(Φ(x),Φ(y)) < d(x, y) + 1, (56)

for all x, y ∈ X.

Proof. Let R+ ∋ t 7→ ⌈t⌉ ∈ N0 be the sailing function,

⌈t⌉ = min{n ∈ N0 : n ⩾ t}, (57)

for each t ∈ R+. It is known that, for each metric space (X, d), the function

X ×X ∋ (x, y) 7→ ⌈d(x, y)⌉ ∈ R+, (58)

remains a metric on X. (See, for example, [3, Corollary 1, p. 6]). Write ⌈d⌉ for the metric on X

de�ned by (58). Since ⌈t⌉ is integer for every t ∈ R+, Corollary 3.4 implies that the metric space

(X, ⌈d⌉) is isometrically embedded in (V (G), dG) for some connected graph G. Let Φ : X → V (G)

be an isometric embedding of (X, ⌈d⌉) in (V (G), dG). Then

⌈d(x, y)⌉ = ⌈d⌉(x, y) = dG(Φ(x),Φ(y)),

holds for all x, y ∈ X. Moreover, we have

t ⩽ ⌈t⌉ < t+ 1, (59)

for every t ∈ R+ by (57). Now, (56) follows from (58)�(59).

4. Conclusion. Expected results

Let us denote by MB the class of all metric spaces (X, d) such that the equality

d(x, z) = d(x, y) + d(y, z),

holds whenever d(x, z) ⩾ max{d(x, y), d(y, z)} .

The following is the particular case of the classical Menger's result on the isometric embeddings

into Euclidean spaces.

Theorem 4.1. [11] Let (Y, ρ) ∈ MB be a metric space with |Y |⩾ 5. Then (Y, ρ) is isometric to

some subspace of R.

It was also proved by K. Menger in [11], that a four-point metric space (X, d) ∈ MB cannot be

isometrically embedded in R if and only if the points of X can be labelled x1, x2, x3, x4 such that

d(x1, x2) = d(x3, x4) = s, d(x2, x3) = d(x1, x4) = t,

d(x1, x3) = d(x2, x4) = s+ t, (60)

where s and t are some positive constants.
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The ordered four-point metric spaces {x1, x2, x3, x4} satisfying (60) are sometimes referred as

pseudo-linear quadruples. If (60) holds with s = t, then we say that the corresponding {x1, x2, x3, x4}
is an equilateral pseudo-linear quadruple.

Recall that an in�nite graph R of the form

V (R) = {v1, v2, . . . , vn, vn+1, . . .},
E(R) = {{v1, v2}, . . . , {vn, vn+1}, . . .},

is called a ray.

Moreover, a graph DR is called a double ray if

V (DR) = {. . . , v−2, v−1, v0, v1, v2, . . .},

and

E(DR) = {. . . , {v−2, v−1}, {v−1, v0}, {v0, v1}, {v1, v2}, . . .}.
The following conjecture presents a reformulation of the above-mentioned Menger's result in the

language of graph theory. This conjecture should be proved, at least partially.

Conjecture 4.2. Let G be a nonempty connected graph. Then (V (G), dG) ∈ MB if and only if one

of the following statements holds.

(i) G is isomorphic to a path.

(ii) G is isomorphic to the cycle C4.

(iii) G is isomorphic to a ray R.

(iv) G is isomorphic to a double ray DR.

The following theorem is a special case of Theorem 1 of paper [4].

Theorem 4.3. Let (X, d) be a metric space, and {x1, x2, x3, x4} be an ordered four-point subspace

of (X, d). Write

p = d(x1, x2) + d(x2, x3) + d(x3, x4) + d(x4, x1).

Then we have

d(x1, x3)d(x2, x4)− d(x1, x2)d(x3, x4)− d(x4, x1)d(x2, x3) ⩽
p2

8
. (61)

The equality in (61) is attained if and only if {x1, x2, x3, x4} is an equilateral pseudo-linear quadru-

ple.

Recall that a subgraph H of a graph G is called an induced subgraph of G if any two vertices u, v

of H are adjacent in H whenever these vertices are adjacent in G,

({u, v} ∈ E(H)) ⇐⇒ ({u, v} ∈ E(G)) .

The next conjecture is a reformulation of the second path of Theorem 4.3 for the case of geodesic

distances on graphs.

Conjecture 4.4. Let G be a nonempty connected graph and let X be a four-point subspace of

(V (G), dG). Then the following statements are equivalent.

(i) If H is the induced subgraph of G and V (H) = X, then H is a cycle.

(ii) The points of X can be ordered such that the ordered four-point subspace X = {x1, x2, x3, x4}
of (V (G), dG) is an equilateral pseudo-linear quadruple.
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