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abstract

MacMahon extensively studied integer compositions, including the notion of conjugation. More re-

cently, Agarwal introduced n-color compositions and their cyclic versions were considered by Gibson,

Gray, and Wang. In this paper, we develop and study a conjugation rule for cyclic n-color composi-

tions. Also, for �xed ℓ, we identify and enumerate the subset of self-conjugate compositions of ℓ, as

well as establish a bijection between these and the set of cyclic regular compositions of ℓ with only

odd parts.
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1. Introduction

A composition is an ordered list of positive integers υ = (p1, . . . , pm). Each of the numbers pi in the

list is called a part of size pi of the composition. The sum of all the parts is called the weight of the

composition, and the number of parts (denoted |υ|) is called its length. We say υ is a composition of

ℓ (with m parts) if it has weight ℓ and length m. For any ℓ, we use C(ℓ) to refer to the set of regular

compositions of ℓ, writing C(ℓ, k) if we also want to specify the number of parts.

Agarwal [1] introduced the concept of n-color compositions. An n-color composition is a compo-

sition in which a part of size s can be in one of s di�erent colors, which are usually represented by

numbered subscripts. For example, (32, 43, 11) is a n-color composition of 8 with 3 parts. We de�ne

CC(ℓ) and CC(ℓ, k) analogously to the sets for regular compositions.

A well-known graphical representation of compositions is through tilings. The scheme of spotted
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tilings for n-color compositions was introduced by the �rst named author [8]. A part ki is represented

by a 1 × k tile with a spot marked on the ith square, as shown in Figure 1. This di�ers from the

spotless tiling that is used for regular compositions.

Fig. 1. Tiling representation of the regular composition (3, 2, 2, 1), and spotted tiling representation of the n-color

composition (32, 21, 22, 11).

For both cases, we also have the notion of cyclic compositions, in which we consider the parts as

being arranged around a circle, considering two arrangements the same if one can be obtained by

rotating the other. Regular cyclic compositions were introduced by Sommerville [12] in 1909, while

the n-color case was treated by Gibson, Gray, and the third named author [6] in 2018. If υ is a

composition, then the cyclic composition corresponding to it is denoted by [υ]. The sets of regular

and n-color cyclic compositions are denoted, respectively, by [C(ℓ)] and [CC(ℓ)]. The graphical tilings
can be easily extended to represent these cyclic arrangements, as shown in Figure 2.

Fig. 2. Tilings for the cyclic compositions [(3, 2, 2, 1)] and [(32, 21, 22, 11)].

MacMahon [10] introduced conjugation for regular compositions. We will present alternative rep-

resentations of n-color compositions and cyclic n-color compositions that will allow us to de�ne

conjugations on the cyclic version of these compositions, and address related combinatorial ques-

tions. An equivalent transformation was recently studied by Bowman [4] as a consequence of certain

bijections between di�erent sets of compositions. Our approach builds this map from the context of

conjugation and helps to better understand that transformation.

The spotted tilings will be helpful for visualizing connections between regular and n-color com-

positions. In Section 2, we introduce three elementary transformations on compositions and study

the relationships between them. In Section 3, we de�ne the conjugation map and also count the

number of self-conjugate cyclic n-color compositions. In Section 4, we highlight two properties of

the sequence counting these compositions and establish a connection to certain regular cyclic com-

positions. Section 5 brie�y discusses the limitations of expanding this conjugation of cyclic n-color

compositions to standard n-color compositions. This work is largely from the undergraduate honors

thesis of the second named author [2].
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2. Preliminaries

2.1. A connection with regular compositions

We associate to an n-color composition σ a length 2|σ| regular composition which we call the expanded

form of the composition. These expanded forms can be visualized through their corresponding tilings,

as follows:

(a) Starting with an spotted tiling, replace every spotted cell with a pair of consecutive spotted

cells.

(b) Next, in each of these pairs, remove the spots and add a barrier in the middle.

This results in the tiling of a valid regular composition. An example is given in Figure 3. To

reverse this process, simply add a spot to the cells adjacent to every other barrier (starting with the

second one) and then merge each pair of adjacent spotted cells into one, removing the barriers in the

process.

↓

↓

Fig. 3. The expanded form of (32, 54, 11) is (2, 2, 4, 2, 1, 1).

Similar representations have been studied in previous work: This a slight modi�cation from the

c-blocks and tails introduced by the �rst and third named authors [7], but here we do not allow

the tails to be empty. It is easy to see that the above map introduces a bijection between these

compositions, formally stated in Lemma 2.1.

Lemma 2.1. There is a one-to-one correspondence between the n-color compositions of ℓ with m

parts and the regular compositions of ℓ+m with 2m parts.

Proof. The result is vacuously true when ℓ < m since both sets are empty. If ℓ ≥ m, for any n-color

composition σ ∈ CC(ℓ,m), consider the transformation E that turns each of the colored parts sc
(where 1 ≤ c ≤ s) into ordered pairs of numbers (c, s + 1 − c). The resulting list, obtained by

concatenating each of the pairs (in the same order), is a valid regular composition, because both c

and s + 1 − c are positive integers. Furthermore, the length of the new list is double that of the

original. And since c+ (s+ 1− c) = s+ 1, the weight of the resulting composition will be ℓ+m.

The map E is a bijection because it has a straightforward inverse E−1: Starting with a composition

υ ∈ C(ℓ+m, 2m), we generate an n-color composition by turning each successive pair of parts (a, b)

into a colored part Sa where S = a+ b− 1.

It is natural to wonder about the expanded form of cyclic n-color compositions. To answer this,

we study another transformation on compositions.
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2.2. The shifts of a composition

If υ = (p1, p2, . . . , pk) we de�ne its shift S(υ), as the composition (pk, p1, . . . , pk−1). We use exponent

notation Sr(υ) to denote repeated shifts. This map is invertible, so the notation makes sense for any

integer r. For example, given σ = (2, 3, 5, 2, 2), we have

S(σ) = (2, 2, 3, 5, 2), S−1(σ) = (3, 5, 2, 2, 2) = S4(σ), S3(σ) = (5, 2, 2, 2, 3).

The interaction between S and E is straightforward. Because each part in the n-color composition

corresponds to two parts in the expanded form, we have the following.

Proposition 2.2. Let σ be an n-color composition. Then E(S(σ)) = S2(E(σ)).

Proof. Let PC be the last part of σ and let ω be the composition left after removing this last part

from σ, i.e., σ = (ω, PC) and S(σ) = (PC ,ω). The respective expansions are

E(σ) = (E(ω), C, P − C + 1) and E(S(σ)) = (C,P − C + 1,E(ω)),

thus E(S(σ)) = S2(E(σ)).

Shifts provide a formal way to work with cyclic compositions. We consider υ and τ to be related

(written υ ∼ τ ) if there is an integer r such that υ = Sr(τ ). It is easy to verify that this is an

equivalence relation and cyclic compositions formally correspond to equivalence classes. In a similar

fashion, we say υ
2∼ τ if there is an integer r such that υ = S2r(τ ) (that is, if υ can be obtained by

shifting τ an even number of times). Once again, this is an equivalence relationship. We denote the

corresponding equivalence classes by 2-cyclic compositions, writing [υ]2 for the 2-cyclic composition

that contains υ.

From Proposition 2.2 we deduce that a cyclic n-color composition [σ] corresponds exactly to

[E(σ)]2, a 2-cyclic composition of expanded forms, which we call the cyclic expanded form of [σ].

Lemma 2.3. Let σ,ω be n-color compositions. Then, σ ∼ ω if and only if E(σ)
2∼ E(ω).

Proof. The assertion σ ∼ ω is true if and only if σ = Sr(ω) for some integer r, which in turn occurs

if and only if E(σ) = S2r(E(ω)). That is, if and only if E(σ)
2∼ E(ω).

←→

Fig. 4. The expanded form of a cyclic n-color composition is a regular 2-cyclic composition.

Graphically, the cyclic expanded forms can be understood as cyclic tilings in which there are two

types of alternating barriers between the parts, as shown on Figure 4. One of these types corresponds

to the usual barriers, but the second type arises from the spotted squares.
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2.3. On primitive compositions

In this section, we review properties of primitive compositions studied by Lothaire [9]. Primitive

compositions prove to be a useful tool when studying cyclic compositions. These results are used by

Flajolet and Soria [5] to obtain generating functions for general classes of cyclic compositions. Most

of the statements shown here apply to both regular and n-color compositions.

We say a composition is primitive if it is not the repeated self-concatenation of another composition.

That is, υ is primitive if and only if υ ̸= τ t for some other composition τ and an integer t > 1. For

example, the composition (1, 2, 3, 2) is primitive, but the composition (1, 2, 1, 2, 1, 2) = (1, 2)3 is not.

For every υ, there is exactly one primitive composition τ such that υ = τ t, called the primitive of

υ, and denoted by prim(υ). In this case, we have prim(1, 2, 1, 2, 1, 2) = (1, 2). Notice that, while

(1, 2) is a composition of 3 with 2 parts, the list (1, 2, 1, 2, 1, 2) is a composition of 9 with 6 parts. In

general, we have the following.

Proposition 2.4. Let υ, τ be compositions such that υ = τ t for some positive integer t. The weight

and length of υ are, respectively, t times the weight and length of τ .

In particular, for any composition υ, the weight and length of prim(υ) are divisors of the respective

quantities in υ. Now, notice that for all υ we have S|υ|(υ) = υ. For example, the length of (1, 2, 3)

is 3, and indeed S3((1, 2, 3)) = (1, 2, 3). We have υ is primitive if and only if |υ| is the smallest

positive integer that satis�es this.

Proposition 2.5 (Prop. 1.3.2, [9]). Let r be an integer. A composition υ is primitive if and only if

Sr(υ) = υ implies r ≡ 0 (mod |υ|).

How does the map sending compositions to their primitives interact with the expanding and shifting

transformations? First, if υ, τ are compositions, then υ = τ t if and only if for any integer r we have

Sr(υ) = (Sr(τ ))t. In particular, we have the following.

Proposition 2.6 (Prop. 1.3.3, [9]). If υ = Sr(τ ), then prim(υ) = Sr(prim(τ )).

Second, the expansion map E (only de�ned for n-color compositions) commutes with the process

of self-concatenation.

Proposition 2.7. Let σ,ω be n-color compositions. We have σ = ωt if and only if E(σ) = (E(ω))t.

Proof. The result is trivial when t = 1 since then σ = ω. The rest of the proof follows by

induction. Namely, if this is true for a given t, we must have σ = ωt+1 = (ωt,ω) if and only if

E(σ) = (E(ω)t,E(ω)) = (E(ω))t+1. As a corollary, if an expanded form E(σ) is primitive, then

the original composition σ must be primitive as well.

3. A conjugation map

From the graphical depiction of the cyclic expanded forms, we deduce a straightforward conjugation

rule that works for all cyclic n-color compositions. Namely, �ipping the roles of the alternating types

of barriers produces the diagram of another cyclic expanded form, which corresponds to a cyclic

composition of the same weight.

This can also be described directly from the spotted tilings. In Figure 6, observe that the number

of barriers is exactly the same as the amount of marked spots: There is exactly one marked spot
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between two consecutive barriers, and vice versa. Thus, interchanging the marked spots and the

barriers will produce the diagram of another valid cyclic n-color composition. Moreover, doing this

process twice returns the original composition. This interpretation was concurrently developed by

Bowman [4].

Fig. 5. A conjugation on the expanded forms of cyclic n-color compositions extends to a conjugation on the cyclic

compositions themselves.

Fig. 6. The conjugate of [11, 32, 54] is the composition [22, 21, 52].

Formally, this is just the map C = E−1 ◦ S ◦ E that transforms cyclic n-color compositions by

expanding, shifting (thus inverting the roles of all barriers), and contracting the n-color composition

back into another of the same weight. Recall that [CC(ℓ)] is the set of cyclic n-color compositions of

weight ℓ.

Theorem 3.1. The map C is an involution on [CC(ℓ)].

Proof. Notice that applying C twice to an n-color composition σ returns the n-color composition

σ′ = E−1 ◦ S2 ◦ E(σ), whose expanded form is E(σ′) = S2(E(σ)). From here, E(σ′)
2∼ E(σ), and

thus [σ′] = [σ] as guaranteed by Lemma 2.3.

A natural question now is whether there are compositions for which the conjugation C acts as the

identity map. That is, whether there are self-conjugate cyclic n-color compositions. In this section,

we characterize and count such compositions of a �xed weight.

We begin by noting that, when �xing the weight, there is a one-to-one correspondence between

2-cyclic compositions and their primitives:

Proposition 3.2. Let υ, τ be two compositions of equal weight. Then, υ
2∼ τ if and only if prim(υ)

2∼
prim(τ ).
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This follows from Proposition 2.6.

We are now able to characterize the set of self-conjugate cyclic n-color compositions.

Theorem 3.3. A cyclic n-color composition [σ] is self-conjugate if and only if prim(E(σ)) has odd

length.

Proof. Assume �rst that [σ] is self-conjugate. That is, σ ∼ E−1 ◦ S ◦ E(σ). From the relationship

between n-color compositions and their expanded forms given by Lemma 2.3, E(σ)
2∼ S(E(σ)). In

turn, prim(E(σ))
2∼ prim(S(E(σ))) by Proposition 3.2. But by Proposition 2.6, prim(S(E(σ))) =

S(prim(E(σ))), so prim(E(σ))
2∼ S(prim(E(σ))). Thus, there is an integer r such that

prim(E(σ)) = S2r(S(prim(E(σ)))) = S2r+1(prim(E(σ))).

By Proposition 2.5, 2r+1 ≡ 0 mod |prim(E(σ))| since prim(E(σ)) is primitive by de�nition. Since

2r + 1 is odd, its divisor |prim(E(σ))| must also be odd.

For the other direction, assume L = |prim(E(σ))| is odd. We can �split� the shift prim(E(σ)) =

SL(prim(E(σ))) in two:

prim(E(σ)) = SL−1(S(prim(E(σ)))).

Because L− 1 is even, prim(E(σ))
2∼ S(prim(E(σ))). Equivalently, by Proposition 2.6,

prim(E(σ))
2∼ prim(S(E(σ))).

Finally, from Proposition 3.2, E(σ)
2∼ S(E(σ)) and then Lemma 2.3 implies σ ∼ E−1 ◦ S ◦E(σ),

i.e., [σ] is self-conjugate.

For example, consider the cyclic n-color composition ρ = [(41, 62, 33, 54, 75)]. Note that

E(ρ) = (1, 4, 2, 5, 3, 1, 4, 2, 5, 3) = (1, 4, 2, 5, 3)2.

Since prim(ρ) has odd length, ρ is self-conjugate by Theorem 3.3; see Figure 7.

←→

Fig. 7. An example of a self-conjugate cyclic n-color composition.

By the de�nition of primitive composition, any n-color composition σ has σ = prim(σ)s for some

integer s. Applying Proposition 2.7 to σ and prim(σ)s shows E(σ) = E(prim(σ))t for some integer t.

As powers of the same word, prim(E(σ)) = prim(E(prim(σ)). We record these ideas in the following

corollary.

Corollary 3.4. If [σ] is self-conjugate, then [prim(σ)] is also self-conjugate, and so is any compo-

sition of the form [prim(σ)t], where t is an integer.
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Our next goal is enumerating self-conjugate cyclic n-color compositions. It is actually easier to

count the complementary set, the compositions whose expanded form has even length (i.e., those

that are not self-conjugate).

We �rst analyze the case of primitive compositions, and then extrapolate to non-primitive cases.

In the next lemma we show that being both primitive and self-conjugate determines the behavior of

the expanded form.

Lemma 3.5. Let σ be a primitive n-color composition. The primitive of E(σ) is either E(σ) itself

or its exact half, that is, E(σ) = prim(E(σ))2. Moreover, the cyclic n-color composition [σ] is

self-conjugate if and only if it falls in the latter case.

Proof. By de�nition of the primitive composition, E(σ) = prim(E(σ))t for some integer t. We need

to show t is either 1 or 2. By Proposition 2.4, the length of E(σ) is t times that of prim(E(σ)).

There are two cases based on the parity of t.

If t is odd, since |E(σ)| is even, |prim(E(σ))| is also even. But if the length of prim(E(σ))

is even, then prim(E(σ)) is the expanded form of some other n-color composition ψ. That is,

prim(E(σ)) = E(ω) for some other n-color composition ψ. By Proposition 2.7, undoing the expansion

yields σ = ψt which implies t = 1 because σ is primitive.

If t is even, say t = 2k for some integer k, then we can de�ne υ = prim(E(σ))2 so that E(σ) = υk.

The length of υ is even, being twice the length of prim(E(σ)). So, as above, there is an n-color

composition ω such that υ = E(ω). That is, E(σ) = (E(ω))k and by, Proposition 2.7, σ = ωk,

therefore k = 1 which gives t = 2.

For the second claim, note that a primitive self-conjugate cyclic n-color composition [σ] cannot

have E(σ) also primitive, else the length of this primitive expanded form would be even, contradicting

Theorem 3.3. In other words, if [σ] is self-conjugate, then E(σ) = prim(E(σ))2. We saw above that

prim(E(σ)) having even length (that is, [σ] not being self-conjugate) means E(σ) = prim(E(σ)).

In other words, for σ primitive, [σ] is not self-conjugate if and only ifE(σ) is also primitive. We also

know E(σ) can only be primitive when σ is also primitive. Thus, counting the number of primitive

non-self-conjugate cyclic n-color compositions reduces to counting the number of primitive expanded

forms for a given weight ℓ. Write Cprim(ℓ,m) for the number of primitive (regular) compositions of ℓ

with m parts.

Theorem 3.6. The number of self-conjugate cyclic n-color compositions of ℓ is

[CC(ℓ)]self = [CC(ℓ)] −
∑
k|ℓ

k∑
p=1

1

p
Cprim(k + p, 2p).

Proof. Recall that the expanded form of an n-color composition of weight k and length p is a regular

composition with weight k+p and length 2p. For �xed k, summing for possible values of p (from 1 to

k) gives the number of primitive expanded forms. That is, writing A(k) for the number of primitive

n-color compositions of k whose expanded form is also primitive,

A(k) =
k∑

p=1

Cprim(k + p, 2p).

Let [A(k)] be the number of non-self-conjugate primitive cyclic n-color compositions of a given
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weight k. Primitive expanded forms in the same 2-cyclic composition correspond with the same non-

self-conjugate cycle, but by Proposition 2.5, a primitive expanded form with length 2p has exactly p

even shifts. Therefore,

[A(k)] =
k∑

p=1

1

p
Cprim(k + p, 2p).

To complete the proof, we need an expression applicable to all compositions, not just the primitive

ones. Since �xing the weight ℓ causes a one-to-one relationship between compositions and their

primitives, we simply carry out an additional sum of primitive compositions across all divisors k of

ℓ. Writing [B(ℓ)] for the number of non-self-conjugate cyclic n-color compositions of a given weight

ℓ, we have

[B(ℓ)] =
∑
k|ℓ

[A(k)] =
∑
k|ℓ

k∑
p=1

1

p
Cprim(k + p, 2p).

The total number of self-conjugate cyclic n-color compositions of ℓ is then [CC(ℓ)] − [B(ℓ)], as

discussed earlier.

Table 1 gives the �rst few values of [CC(ℓ)]self which is now listed in the OEIS [11, A365859].

ℓ [CC(ℓ)]self
1 1

2 1

3 2

4 1

5 3

6 2

7 5

8 1

9 10

10 3

ℓ [CC(ℓ)]self
11 19

12 2

13 41

14 5

15 94

16 1

17 211

18 10

19 493

20 3

Table 1. Number of self-conjugate cyclic n-color compositions of weight ℓ for 1 ≤ ℓ ≤ 20.

4. On the sequence of self-conjugate cyclic n-color compositions

The data of Table 1 suggest some general results: Through n = 16, it appears that [CC(2k)]self = 1.

Also, it seems that [CC(2ℓ)]self = [CC(ℓ)]self for all ℓ. We will prove that these results hold in general.

First, we establish a consequence of Lemma 3.5.

Corollary 4.1. For even ℓ, there are no primitive self-conjugate cyclic compositions of ℓ.

Proof. We show that for any primitive composition σ of ℓ, the corresponding cyclic composition

[σ] cannot be self-conjugate. By Lemma 3.5 and Proposition 2.4, we have |E(σ)| = k|prim(E(σ))|
where k is either 1 or 2. In any case, 2

k
is an integer. Now, from Lemma 2.1 we have |E(σ)| = 2|σ|.

Thus, |prim(E(σ))| = 2
k
|σ|.
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Lemma 2.1 also shows that the length of σ is |E(σ)| − ℓ. Because ℓ is even, |σ| must also be

even. Therefore, |prim(E(σ))| is also even since it is a multiple of |σ|. Therefore, [σ] cannot be

self-conjugate.

With this, we can establish the patterns observed in Table 1.

Theorem 4.2. Given ℓ a positive integer, [CC(2ℓ)]self = [CC(ℓ)]self .

Proof. We establish a bijection between the two sets of self-conjugate compositions.

Let [σ] be a self-conjugate cyclic n-color composition of ℓ. The composition [σ2] is then a cyclic

n-color composition of 2ℓ which is also self-conjugate by Corollary 3.4. This transformation is one-

to-one because σ2 = ω2 if and only if σ = ω.

For the reverse map, let [ω] be a self-conjugate cyclic n-color composition of 2ℓ. By Corollary 4.1,

ω cannot be primitive. However, [prim(ω)] is also self-conjugate by Corollary 3.4 and it has an odd

weight w which divides 2ℓ by Proposition 2.4. Any odd divisor of 2ℓ is also a divisor of ℓ. Thus,

there is an integer q such that [prim(ω)q] is a composition of ℓ which, again by Corollary 3.4, is

self-conjugate. Notice that ω = prim(ω)2q, so this mapping is the inverse of the previous one.

The result for powers of 2 then follows from [CC(1)]self = 1.

Another consequence of Theorem 4.2 is that the subsequence of Table 1 from odd ℓ values deter-

mines the entire sequence. This bisection is also in the OEIS [11, A365858] as the number of regular

cyclic compositions with only odd parts. We use expanded forms to establish a bijection between

these types of compositions.

Theorem 4.3. Let ℓ be an odd integer, and m ≤ ℓ. The number of self-conjugate cyclic n-color

compositions of ℓ with m parts is the same as the number of cyclic regular compositions of ℓ with m

parts in which all parts are odd.

Proof. Let [σ] be a self-conjugate cyclic n-color composition of ℓ with m parts. We know E(σ) has

2m parts and, since [σ] is self-conjugate, prim(E(σ)) has an odd length.

The length of prim(E(σ)) must be an odd divisor of the length of E(σ) by Proposition 2.4. As in

the proof of Theorem 4.2, this means we halve E(σ), i.e., there exists a regular composition υ such

that E(σ) = υ2. Since E(σ) has weight ℓ+m and length 2m, then υ must be a composition of ℓ+m
2

with m parts (note that, because ℓ is odd, m must also be odd). Now consider the list τ obtained

by replacing each part p of υ by 2p− 1. The weight of the resulting composition is 2 · ℓ+m
2
−m = ℓ,

as claimed.

This correspondence is invertible because, starting with τ , we can build the composition υ, in

which each part 2p− 1 is changed to p, and then form an expanded form υ2 corresponding to an n-

color composition σ = E−1(υ2). To see that [σ] is self-conjugate, notice that prim(E(σ)) = prim(υ).

By Proposition 2.4, the length of prim(υ) is a divisor of |υ| = |τ |. But by parity, τ has an odd

length since it is a composition of an odd integer with only odd parts. Hence, the length of prim(υ)

is necessarily odd, which implies that [σ] is self-conjugate by Theorem 3.3.

We are left to show σ ∼ ω if and only if τσ ∼ τω, so that the map sending [σ] to [τσ] is not only

well-de�ned but also a bijection. By Lemma 2.3, σ ∼ ω if and only if τσ
2∼ τω. We know τσ and

τω both have odd length. For compositions of odd length m, even and odd shifts are equivalent: If

υ = Sr(τ ), then υ = Sr+m(τ ). Thus, τσ
2∼ τω if and only if τσ ∼ τω.



conjugating cyclic n-color compositions 63

For example, consider again the cyclic n-color composition [41, 62, 33, 54, 75] of Figure 7 with weight

25 and 5 parts which is also self-conjugate. Disregarding the cyclic structure, we can split the

expanded form (1, 4, 2, 5, 3, 1, 4, 2, 5, 3) into two copies of (1, 4, 2, 5, 3). Taking 1 from each part in the

second copy leaves (1, 4, 2, 5, 3) and (0, 3, 1, 4, 2). Adding these lists element-wise gives (1, 7, 3, 9, 5),

a regular composition of 25 with 5 parts; see Figure 8.

Fig. 8. Bijection between self-conjugate compositions and compositions with only odd parts.

5. Connection to balanced compositions

MacMahon de�ned conjugation for regular compositions and here we have de�ned conjugation for

cyclic n-color compositions. The �rst named author o�ered a notion of conjugation for n-color

compositions that unfortunately only applies to a small subset [8]. The di�erence in the cyclic case

is that the number of barriers equals the number of spots as described in Section 3. A de�nition of

conjugation applicable to all n-color compositions remains open.

In trying to address this problem, the second and third named authors studied balanced n-color

compositions which themselves have connections to many combinatorial objects [3]. The de�nition is

based on the expanded form: An n-color composition σ is balanced if s = E(σ) satis�es
∑
s2k−1 =∑

s2k. For example, (11, 43, 21, 32) is balanced because its expanded form (1, 1, 3, 2, 1, 2, 2, 2) has

1 + 3 + 1 + 2 = 1 + 2 + 2 + 2.

We conclude with a connection between balanced n-color compositions and the ideas studied here.

Proposition 5.1. For σ ∈ CC(ℓ), if [σ] is self-conjugate, then E(σ) is balanced.

Proof. It su�ces to show this for the primitive case. Let E(σ) = (p1, . . . , p2m). By Lemma 3.5,

E(σ) = prim(E(σ))2 and m = |prim(E(σ))| is odd. By Proposition 2.6, Sm(E(σ)) = E(σ). Hence,

pi = pi+m for 1 ≤ i ≤ m. Since m is odd, this gives a natural matching between the even and odd

indexed parts of E(σ) so that E(σ) is balanced.

Certainly the converse does not hold, as the previous example (11, 43, 21, 32) is balanced but one

can verify that [(11, 43, 21, 32)] is not self-conjugate.
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